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Probabilistic models have been successfully applied for a wide variety of prob-

lems, such as but not limited to information retrieval, computer vision, bio-informatics

and speech processing. Probabilistic models allow us to encode our assumptions

about the data in an elegant fashion and enable us to perform machine learning

tasks such as classification and clustering in a principled manner. Probabilistic

models for bio-acoustic data help in identifying interesting patterns in the data (for

instance, the species-specific vocabulary), as well as species identification (classifi-

cation) in recordings where the label is not available.

The focus of this thesis is to develop efficient inference techniques for exist-

ing models, as well as develop probabilistic models tailored to bioacoustic data.

First, we develop inference algorithms for the supervised latent Dirichlet allocation

(LDA) model. We present collapsed variational Bayes, collapsed Gibbs sampling and

maximum-a-posteriori (MAP) inference for parameter estimation and classification

in supervised LDA. We provide an empirical evaluation of the trade-off between

computational complexity and classification performance of the inference methods

for supervised LDA, on audio classification (species identification in this context)



as well as image classification and document classification tasks. Next, we present

novel probabilistic models for bird sound recordings, that can capture temporal

structure at different hierarchical levels, and model additional information such as

the duration and frequency of vocalizations. We present a non-parametric density

estimation technique for parameter estimation and show that the MAP classifier for

our models can be interpreted as a weighted nearest neighbor classifier. We provide

an experimental comparison between the proposed models and a support vector

machine based approach, using bird sound recordings from the Cornell Macaulay

library.
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1. INTRODUCTION

1.1. Motivation and Background

1.1.1 Landscape bioacoustics

Landscape bioacoustics refers to the study of large-scale ecological processes

through computational analysis of biological sounds. In this work, we focus specif-

ically on bird sounds. Landscape bioacoustics can address important ecological

questions such as

• How do bird populations vary as a function of vegetation, climate, time?

• Do birds vocalize differently (eg., vary the vocalization frequency) based on

presence/absence of other species of birds?

• How do the vocalization patterns from a single species vary with respect to

parameters such as age, geographical location?

Existing bird species distribution data are collected by human effort, which

can be expensive, labor intensive, and subject to human bias. Our goal is to develop

probabilistic models and efficient inference techniques for automatically identifying

the bird species present in an audio recording. Such algorithms will serve as part

of a system to automatically collect bird species presence/absence data, which will

provide valuable ecological information for species distribution modeling and con-

servation planning [2]. Automatic bird species identification will enable us to track

bird populations across varying landscapes, with an unprecedented time resolution,

in a cost effective manner. Additionally, probabilistic models help us understand

the vocalization patterns of individual bird species and learn the ‘language of birds’.
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The members of the Bioacoustics research group at Oregon State university

have deployed song meters (recording devices) at various locations in the H.J. An-

drews (HJA) experimental forest during Summer 2009, 2010 and collected more

than a tera byte of audio data. Most of the recordings are not labeled; the record-

ings contain simultaneous vocalizations of multiple bird species. The recordings are

plagued by various sources of noise such as stream noise, rain fall, other animal

species/insects in the forests. It is expensive to obtain detailed human annotation

(i.e., labels for each of the constituent elements) for such recordings. Automated

analysis of such large scale, noisy data presents significant challenges to current

machine learning algorithms. Some of the interesting questions are:

• What is the appropriate feature representation for a bird sound recording?

• How do we learn the vocabulary and song structure (if any) of each bird

species? For other types of audio sounds (eg., human speech), knowledge of the

vocabulary and the grammatical structure of the language may be employed

to improve the performance of the speech recognition system. However, such

information is not available for bird sounds.

• How do we learn classification rules from limited supervision? (eg., just in-

formation about presence/absence of species in audio recordings, instead of

labeling each of the constituent elements in the recording)

• How can we identify individuals based on limited training data from that

species? Developing models to answer this question will help in obtaining

abundance counts, rather than just presence/absence of bird species.
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This work is a first step towards solving the ambitious goals stated above.

Here, we assume that each recording is labeled with a single species, which usually

corresponds to the most prominent bird species within the recording. We develop

probabilistic models that can identify the species present in a new test recording,

as well as learn the patterns of the vocalizations of each bird species present in the

training data. We develop efficient inference algorithms for our models and evaluate

the classification accuracy of the different approaches using recordings from the

Cornell Macaulay library.

1.1.2 Nature of bird vocalization

Human speech recognition systems are generally based on models that char-

acterize the vocabulary and grammar of a particular language. The notion of vo-

cabulary and grammar is usually ambiguous for sound signals other than human

speech. However, bird vocalization is a good example of a class of natural sounds

where we can expect to find an underlying vocabulary and inherent grammatical

structure [3]. Bird recordings usually contain a structured pattern of brief sounds

from a species-specific vocabulary. Fig. 1.1(a) and 1.1(b) display the spectrogram

of two recordings containing the species Winter Wren and Swainson’s Thrush re-

spectively. Bird sounds can be hierarchically sub divided into the following levels:

phrases, syllables and elements [4]. Elements consist of multiple frames, where frame

corresponds to a very short interval of time (roughly milli seconds). Syllables are

constructed of one or more elements, but they can be seen as suitable unit for recog-

nition of bird species because they can be more reliably detected from continuous

recordings than elements [5]. Phrases capture the patterns of syllables and usually

include more regional and individual variability than syllables [5].
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Spectrogram of bird sound recording
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FIGURE 1.1: Spectrogram of a recording belonging to (a) Winter Wren species (b)

Swainson’s Thrush species.
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1.1.3 Bird species identification system

The basic block diagram of a typical bird species identification system is shown

in Fig. 1.2. In the training stage, we observe the audio recordings along with the

corresponding label for each recording. Most systems typically compute the spec-

trogram of the audio recording, process the spectrogram and then obtain a feature

vector representation for each recording. The <feature vector, label> pairs for

the training documents are used as input to a machine learning algorithm that can

learn a classification rule. In the test stage, we obtain the feature vector represen-

tation for the audio recording and predict the label of the test recording. In this

work, we focus on developing probabilistic models that learn a model based on the

training data and predict the species present in the test data based on the model.

1.2. Feature vector representation of the audio signal

Audio classification systems typically begin by extracting acoustic features

from audio signals. Such features often pertain to individual frames (i.e., very

short duration of signal). Each sound recording contains multiple syllables and each

syllable in turn, contain multiple frames. To apply many standard algorithms for

classification, it is necessary to represent a sound recording using a set of fixed-

length vectors. In this section, we present a general introduction to the methods.

Exact parameter settings and other details about our implementation are available

in [6].
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FIGURE 1.2: Typical Bird species identification system (a) Training stage: The

labels (i.e., the list of species present in the recording) are observed for training

data (b) Test stage: The labels are predicted based on the classification rule learnt

from the training data. In this work, we develop probabilistic models to learn from

training data and classify test data (shaded boxes).
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1.2.1 Spectrogram

Throughout this work, we will use the spectrogram of an audio signal for

various purposes. In this section, we will briefly review the computation and in-

terpretation of spectrograms. Fig. 1.3 shows the time domain representation of a

chirp signal. The basic idea of a spectrogram is to divide a time domain signal into

overlapping frames (windows in time domain) and compute the frequency spectrum

of each frame. The magnitude of the frequency spectrum corresponds to the in-

tensity of the image (blue corresponds to lower intensity, red corresponds to higher

intensity). Fig. 1.4 provides the time domain signals and the corresponding spec-

trograms of chirps. We can observe the correspondence between the rate of increase

(decrease) in the time domain signal and the variation of the magnitude spectro-

gram. To compute the spectrogram, we need to define the following parameters

• Frame (Time window) size

• Discrete Fourier Transform size (number of frequency bins)

• Amount of overlap between successive frames

Essentially, the spectrogram provides a visual time-frequency representation of the

audio signal.

1.2.2 Segmentation of the audio recording

A typical pre-processing step for audio classification is segmentation, which

is the process of identifying the interesting segments present in a recording. Typ-

ically, the interesting segments correspond to the syllables produced by the birds.

Segmentation is inherently an ill-posed problem and we typically obtain only a list
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of potential syllables. Once we identify the frames corresponding to the list of po-

tential syllables, we may aggregate the frame level features at the syllable level or

we may aggregate the frame level features for the entire recording [3, 7, 8].

Segmentation algorithms can be broadly classified into

• Time domain segmentation (1-D): Here the segmentation is done only in the

time domain, i.e., the segmentation algorithm returns a set of vertical markers

in the spectrogram.

• Time-frequency segmentation (2-D): Here the segmentation is done in both

time and frequency domain, i.e., the segmentation algorithm returns a set of

regions enclosing the syllables in the spectrogram. A simple example would

be boxes around the syllables, but the regions can assume free-form shapes in

general.

2-D segmentation algorithms are helpful when multiple sources of sound (corre-

sponding to different frequencies) are present at the same time instant. These

segments can be used as the building blocks for the classifier. For instance, the seg-

ments can be used as the instances in an multiple instance multiple label (MIML)

algorithm. Next, we illustrate some approaches for segmentation.

Manual segmentation

Here, we manually create the segmentation boundaries. The boundaries may be

free form shapes, boxes around the syllables, or vertical markers in the time domain

(1-D). Fig. 1.5 illustrates a 2-D manual segmentation algorithm where the segmen-

tation boundaries are marked by boxes. Manual segmentation can be expensive and

tedious.
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Energy based segmentation

First, we describe a 1-D energy segmentation algorithm. We first compute the

spectrogram of the audio signal and then compute the energy of each frame. We

determine a threshold for energy of frames corresponding to syllables. Next, we

determine the points where the energy of the signal intersects the threshold. If the

derivatives at these points have positive (negative) sign, these are marked as the

beginning (end) of the syllable. Fig. 1.6 illustrates this approach. Instead of fixing

a single threshold, we can initially start with a high threshold, identify the elements

corresponding to noise and signal, re-compute the threshold, and iteratively identify

the final list of syllables. An alternative energy based segmentation procedure is

described in Fig. 1.7. First, we determine sharp local minima in the energy. These

endpoints correspond to transitions between high vocalization and low vocalization,

and are potential syllable markers. The regions between these endpoints are treated

as potential syllables and the energy of each potential syllable is computed. Based

on a threshold, we decide the final list of syllables. Sometimes, it may be beneficial

to merge adjacent elements to obtain longer syllables. A similar approach may be

used for 2-D energy based segmentation.

KL-divergence based segmentation

We first compute the spectrogram of the audio signal and then compute the power

spectral density (PSD) of each frame and normalize it to obtain the normalized PSD.

Note that the normalized PSD is a valid probability density function. Next, we com-

pute the Kullback Leibler (KL) divergence between the normalized power spectral

density (PSD) of each frame and the uniform distribution. Syllables contain spec-
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normalized PSD of each frame and the uniform distribution is computed. Next, we

determine the sharp local minima in the KL-divergence plot. The vertical markers

denote potential syllable boundaries.

tral structure (due to harmonic nature of bird vocalizations) and their constituent

frames usually have high values of KL divergence while noisy frames usually have

low values of KL divergence. We can use an algorithm to determine sharp local

minima of the KL divergence. Fig. 1.8 provides an example of the KL-divergence

based segmentation approach. Similar to the energy based segmentation, we can

merge adjacent elements.

In practice, it is beneficial to use a combination of methods for segmentation.

Energy based segmentation approaches are effective for bird sound recordings with
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high signal-to-noise ratio (SNR). The KL-divergence based segmentation approach

helps identify tonal regions in the spectrogram, but does not account for the ac-

tual energy in the frame. Hence, these approaches complement each other in their

ability to identify bird syllables. Here, we use a combination of KL-divergence and

energy-based algorithms for segmentation. Further details and illustrations of our

segmentation algorithm are available in Appendix A.

1.2.3 Frame level features

After segmentation, the next task is to compute frame level features. We con-

sider the following frame level features:

Spectrum PDF

Spectrum PDF refers to the normalized PSD for each frame.

fc(Mean frequency) and BW(Bandwidth)

The mean frequency, fc and the bandwidth, BW of each frame correspond to the

mean and standard deviation of the filtered Spectral PDF, where the normalized

PSD specifies the probability density function. Highly tonal vocalizations will have

lower bandwidth. Fig. 1.9(a) illustrates the computation of mean frequency and

bandwidth for each frame and Fig. 1.9(b) displays a scatter plot of the mean fre-

quency and bandwidth of all the frames in this syllable.

Mel Frequency Cepstral Coefficients (MFCCs)

MFCCs are a popular feature representation for audio signals and have been suc-

cessfully applied for human speech recognition. MFCCs approximate the human

auditory system’s response by choosing a set of equally spaced frequency bands on

the Mel scale as the basis function. However, they are not as simple to visualize as

the other features used here. MFCCs are computed as follows: [9]
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1. Compute the PSD of a frame.

2. Map the PSD obtained above onto the mel scale, using triangular overlapping

windows.

3. Compute the logarithms of the powers at each of the mel frequencies.

4. Compute the discrete cosine transform (DCT) of the mel log powers.

5. The MFCCs are the magnitudes of the resulting DCT coefficients.

Other frame level features

Some other frame level features include the energy of the frame, zero crossing rate,

KL-divergence between the PSD and uniform distribution.

1.2.4 Interval and Syllable level features

Once we obtain the frame level features, we need to obtain a feature vector

representation at the syllable level or the interval level (depending on the model

in Chapter 3.). We will describe the computation of syllable level features here,

the interval level features can be computed in a similar fashion. The syllable level

features can be computed using the following methods:

1. Compute the mean of the frame level features of the constituent frames in the

syllable,

2. Parametrize the distribution of the frame level features within the syllable,

and use the maximum likelihood parameter estimates as the feature vector

representation of the syllable. In general, we can use distributions that capture
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FIGURE 1.10: Example of syllable level feature vector computation: The syllable

is parametrized by the parameters of the Gaussian distribution (mean, covariance)

fitted to the frame level features (here, mean frequency and bandwidth).

temporal dependence between the frames and obtain features that capture

temporal dependence.

Fig. 1.10 displays the spectrogram of a syllable and the scatter plot of the mean

frequency and bandwidth of the frames. The syllable is parametrized by the pa-

rameters of the Gaussian distribution fitted to the frame level features. Fig. 1.11

contains the scatter plot of the syllable level features of syllables belonging to dif-

ferent species. The syllable level features are the mean of the frame level features

within the syllable, and the frame level features were the mean frequency and band-

width. While mean frequency and bandwidth might appear to be very simple frame

level features, we observe in Fig. 1.11 that some species are reasonably separated

by just aggregating these features at the syllable level.
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FIGURE 1.11: Example of scatter plot of syllable level features from syllables be-

longing to various species. In this case, the syllable level features are the mean of

the mean frequency and bandwidth of the constituent frames within each syllable.

Other than the frame level features described above, one might also use fea-

tures such as syllable lengths (i.e., the duration of the syllables), and the number of

syllables within a recording. Fig. 1.12 shows the histogram of the syllable lengths

and the number of syllables for each species. Some species such as Downy Wood-

pecker tend to produce a lot of short syllables, while species such as Black-throated

blue warbler tend to produce few syllables. When two species vocalize in the same

frequency range, but differ in their vocalization durations, these features provide

valuable cues for species identification.

1.2.5 Codebooks of frame level features

In the previous section, we described several frame level features. In general,

the frame level features are continuous, and they may be very high dimensional.

Codebook construction allows us to map the frame level features to a discrete word.
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FIGURE 1.12: (a) Histogram of the syllable lengths, across species. Note: Graph

has been truncated for readability. Black-throated blue warbler tends to produce

long syllables (> 730 frames) (b) Histogram of the number of syllables per recording,

across species
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Fig. 1.13 illustrates the codebook construction for 2-dimensional features with a

codebook containing 3 elements in the dictionary. Basically, we cluster the data

points (in this case, the frame level features) and represent each data point by the

index of the nearest cluster. Hence, a recording may be interpreted as a text doc-

ument, where words correspond to frames, the paragraphs correspond to syllables

and the document itself corresponds to the recording. The interval level histogram

of the codewords in a recording allows us to obtain a bag-of-codewords representa-

tion for the recordings, similar to the popular bag-of-words representation for text

documents. Codebook representations have been successfully applied for images

(bag-of-visual words) as well.

1.3. Bird species identification problem

1.3.1 Problem statement

Our objective is to identify bird species based on audio recordings. In gen-

eral, the training data is a collection of recordings of bird sounds, each of which

is labeled with the list of species present in the recording. The recordings dif-

fer in their duration, so they are split into equal-length intervals (of duration

30 seconds). The task is to learn an acoustic model for each species based on

these training set intervals so that we can correctly classify a test interval. The

training dataset can be viewed as a collection of <interval, label> pairs, i.e.,

S = {(D(1),y(1)), (D(2),y(2)), . . . , (D(M),y(M))}, where D(m) corresponds to the data

representation of the mth interval, y(m) denotes the set of species present in the mth

interval and M denotes the total number of training set intervals.

We next discuss the data representation of the interval. Fig. 1.14 illustrates the
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data representation. An interval of sound can be viewed as a collection of syllables.

Syllables are further divided into frames, where each frame corresponds to the sound

in a very short span of time. The frames can then be represented by the frame level

features described in Section 1.2.3. A syllable x(i) consisting of ni frames can be

viewed as a sequence of observations, i.e., syllable x(i) = [x1(i), x2(i), . . . , xni
(i)]

where observation xj(i) corresponds to the feature vector representation of the jth

frame in the ith syllable. Mathematically, the data in an interval of sound may be

represented as D = [x(1), n1, z1, . . . ,x(N), nN , zN , N ], where z1, z2, . . . , zN denote

the syllable level labels. As an example for such a dataset, consider an extension

of Fig. 1.5, where the label information is available for each of the syllables. In

general, each of the syllables might belong to a different species and usually, the

syllable labels are not observed. In the case where only the recording-level labels

are available, the learning problem can be cast in the multiple instance multiple

label (MIML) framework [10], where the bags correspond to the recordings and the

instances correspond to the syllables or the frames. In the models developed in

this work, we assume that each of the recordings contains just a single species, i.e.,

y(i) ∈ {1, 2, . . . , C} where C denotes the number of classes.

1.3.2 Connection to other machine learning problems

Next, we discuss the connections between the problem stated above and some

of the other applications of machine learning. The bird species identification problem

is similar to:

• Image classification: Images usually contain labels about multiple objects

present in the image. It is relatively easy to obtain high level labels about

presence/absence of objects in the image, but difficult to obtain fine-grained
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annotation for the images.

• Document classification: Consider the case where the frame level feature vec-

tors are discrete words (for instance, obtained through a codebook representa-

tion). In this case, the audio recording may be thought of as a text document.

Many text documents on the web contain multiple ‘tags’ (or categories), but

it is expensive for humans to point out which portion of the text is responsible

for the tag.

A popular representation for text documents is the ‘bag-of-words’ representation

where we represent a document by an empirical histogram computed over the dic-

tionary, i.e., each document is represented as a vector of size equal to that of the

dictionary, with each entry denoting the number of times the corresponding word

occurred in that particular document. Note that the bag-of-words representation

does not make use of information regarding the order of the words within the doc-

ument. By using the bag-of-words representation, documents of varying lengths

are transformed to a fixed length vector (of size equal to the dictionary size of

the document corpus). The bag-of-words representation has been very successfully

used in many text classification problems. Images may be converted to a bag-of-

visual-words representation as described in Section 1.2.5 and ideas from the text

classification domain can be applied for image classification.

1.3.3 Previous work in bird species identification

Bird species can be classified using features extracted from audio recordings.

Different feature representations and machine learning methods have been applied

for bird species identification in the literature [3, 7, 11–13]. A common approach

to bird species classification is to identify distinct syllables, then construct feature
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FIGURE 1.14: Data representation for bird sound recordings: y(i) denotes the set

of species present in the ith interval. Each interval is divided into syllables which

are further divided into frames. In general, each of the syllables might belong to a

different species.

vectors for those syllables and apply a standard classifier such as nearest neighbor

or support vector machines to predict the species for each syllable [3, 5, 7, 8, 14–16].

In [11], the authors used dynamic time warping (DTW) to compare the input spec-

trograms with a predefined set of templates. In [12], the authors used neural net-

works and multivariate statistical techniques in conjunction with a set of temporal

and spectral features. In [13], the authors used wavelet coefficients along with self

organizing map (SOM) and multilayer perceptron (MLP). In [3], the authors com-

pared three different feature representations (sinusoidal model, Mel-cepstrum model,

descriptive parameters) by evaluating their performance with different classification

algorithms based on DTW, Gaussian mixture model (GMM), Hidden Markov model

(HMM). In [7], the author used a decision tree based classifier with support vector

machine (SVM) at each node. Song-level species prediction has also been investi-

gated using Hidden Markov Models [3, 17], Gaussian Mixture Models [3], based on

comparisons of syllable-pair histograms [18], or nearest-neighbor classifiers using a

feature constructed by aggregating syllable features [8].
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Audio classification in general has been widely studied, with applications to

human speech and music being the most common. Probabilistic topic models have

also been applied for unsupervised learning of musical key profiles [19]. The interval-

level model is closely related to recent work by Seyerlehner et al. [20] on music genre

identification. They follow a codebook approach to constructing audio feature his-

tograms, and use a nearest-neighbor classifier with ℓ1 distance to classify these

features. However, it is not obvious why a nearest-neighbor classifier is ideal for

classifying histograms of features, or which distance measures are the best for com-

paring histograms. Here, we show that the Bayes optimal classifier for a probability

model for audio is closely related to nearest-neighbor classifiers using histograms of

features with appropriate distance measures.

1.4. Probabilistic models for bird species identification

1.4.1 Background

Probabilistic models have been successfully applied in domains such as infor-

mation retrieval, computer vision, bio-informatics and speech processing. Proba-

bilistic models allow us to encode our assumptions about the data explicitly, while

simultaneously enabling us to perform conventional machine learning tasks such as

classification and clustering. Probabilistic graphical models can be used to capture

the hierarchical nature of the manner in which the data is generated. For example,

hierarchical Bayesian models can be used to model the distributions at syllable level

as well as interval level in Fig. 1.14. The desired properties of the parameters (eg.,

sparsity) may be favored by choosing appropriate prior distributions for the param-

eters. In addition, probabilistic models are flexible, allowing simultaneous modeling
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of various types of information, for instance, the models under consideration can

be readily extended to handle multiple-labels and additional information such as

annotations or tags.

Recently, there has been a lot of work in the development of probabilistic

models for text documents. Particularly, an interesting problem is that of learning

the ‘topics’ present in a document corpus. The basic assumption is that each doc-

ument contains a few topics, where topics may be interpreted as clusters of words.

Intuitively, these methods find a lower dimensional representation of the documents

through a low-rank approximation to the original bag-of-words representation, i.e.,

Vocabulary× Documents ≈ (Vocabulary× Topics) · (Topics× Documents)

The models differ in the way they characterize the quality of the approximation (eg.,

ℓ2 loss, KL divergence) and their assumptions about the prior distributions about

the low rank factors. Latent Semantic Indexing (LSI) computes a lower dimensional

representation of the bag-of-words representation by computing a singular value

decomposition. Probabilistic Latent Semantic Analysis (PLSA) [21] introduced a

probabilistic generative model for the documents and employed Expectation Max-

imization (EM) algorithm for parameter estimation. Another popular approach is

Non-Negative Matrix Factorization (NNMF), where the low rank factors are con-

strained to be non-negative [22]. Latent Dirichlet Allocation (LDA) [23] introduced

a Bayesian version of the PLSA model. A wide variety of inference algorithms have

been developed for inference in LDA [23–26]. However, LDA is an unsupervised

model and cannot be directly used for classification. Supervised extensions of LDA

have been proposed for applications such as image classification [27–29], document

classification [30–32], movie rating prediction [33], named entity mining [32, 34],
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credit attribution in multi-labeled corpora [35].

1.4.2 Motivation for new models and inference methods

In this thesis, we develop efficient inference techniques for existing models, as

well as develop probabilistic models tailored to bioacoustic data. First, we develop

inference algorithms for the supervised latent Dirichlet allocation (LDA) model in-

troduced in [27]. While the effect of inference algorithm has been studied for unsu-

pervised LDA [26], it is not obvious which inference algorithm is suitable for super-

vised LDA. Supervised LDA models are evaluated based on classification accuracy

and moreover, the inference for test data is different compared to the unsupervised

LDA model. Unlike text documents where the dictionary size is large and there are

relatively few words per document, images and audio contain large number of words

per document but the dictionary size (i.e., the codebook size) is relatively small.

Clearly, there is a need for efficient inference techniques for parameter estimation

and classification in supervised LDA models. computational complexity and classi-

fication performance of the inference methods for supervised LDA. We evaluate our

results on the bird species identification task, as well as, image classification and

document classification tasks.

Next, we present novel probabilistic models for bird sound recordings that can

account for the temporal structure at the block level (blocks may correspond to

syllables or the entire interval), as well as model additional information such as the

length of the vocalizations and the frequency of vocalizations. Such information is

not captured by existing models, and we have shown that these can help in species

identification. The frame level features considered here can take on continuous

values unlike the discrete codewords in Chapter 2. We use a non-parametric density



30

estimation procedure and show that the MAP classifier can be interpreted as a

nearest neighbor classifier with an appropriate distance criterion. We evaluate the

classification accuracy obtained by our models on the species identification task and

compare their performance to an SVM-based approach.

1.4.3 Organization of this thesis

In Chapter 2., we discuss the inference algorithms for supervised LDA model.

In Chapter 3., we discuss the probabilistic models tailored to bird sound record-

ings. Finally, in Chapter 4., we provide a summary and discuss future work. For

readability, we have made the chapters self-contained, and the notation correspond

to [6, 36].



31

2. SUPERVISED LATENT DIRICHLET ALLOCATION

2.1. Background on topic models

Latent Dirichlet allocation (LDA) [23] is an unsupervised latent variable model

originally applied in the field of document modeling due to its ability to decompose

documents into topics and uncover topics decomposition into words in a concise

manner. As an unsupervised model, LDA can be used to perform dimensionality

reduction by mapping the high dimensional bag-of-words representation to lower

dimensional topic representation.

Recently, there has been a growing interest in supervised extensions of LDA

for applications such as image classification [27–29], document classification [30–32],

movie rating prediction [33], named entity mining [32,34], credit attribution in multi-

labeled corpora [35]. In this paper, we focus on the supervised LDA model intro-

duced in [27]. The motivations for supervised LDA are multi fold. Supervised LDA

can help in identifying topics specific to a particular class. In addition, probabilistic

models are flexible, allowing simultaneous modeling of various types of information,

for instance, the supervised LDA model under consideration can be readily extended

to handle multiple-labels and additional information such as annotations or tags.

Despite the ability of topic models to produce a concise representation, pa-

rameter estimation in topic models remains a challenging task. In most cases, exact

inference is intractable and hence, approximate inference methods are required. In-

ference methods for topic models can be broadly categorized into sampling based

approaches and deterministic approximations. Recent work stresses the importance
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of properly adapting the priors (hyperparameters) in LDA-based models [26, 37].

This can be addressed by optimizing the prior parameterization instead of using a

fixed prior. An excellent comparison of various inference algorithms for LDA such

as variational Bayes (VB), collapsed Gibbs sampling (CGS), collapsed variational

Bayes (CVB) and maximum a-posteriori (MAP) inference, is available in [26].

Previous work in the supervised LDA model employed VB for inference [27].

We derive the MAP, CGS and CVB inference solutions for supervised LDA and

study the effect of the choice of inference algorithm for supervised LDA. While the

extension of [26] to the supervised case might appear straightforward at first sight,

several new aspects arise in the supervised case:

• Model based classification: The classification stage is completely new relative

to LDA and requires the development of efficient inference techniques for clas-

sification of test documents.

• Classification accuracy: Supervised LDA is evaluated in terms of classification

accuracy rather than perplexity. It is not obvious which inference algorithm

leads to the best classification accuracy.

• Train vs Test computational complexity: While the training complexity of su-

pervised LDA is similar to that of LDA, model based classification approach

for Supervised LDA requires significantly additional computation in the test

stage than LDA, and can be computationally intensive when the number of

classes is large. We introduce a new classification approach to solve this prob-

lem.

In this work, we address the following questions:
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1. Which inference algorithm provides a good trade-off between classification

accuracy and computational complexity for Supervised LDA?

2. Which inference algorithm is suitable when using LDA as just an unsupervised

pre-processing technique (i.e., when the topic representation is used as an input

to a generic classifier)?

2.2. Problem statement

The training data is assumed to be a collection of M documents along with

their corresponding labels. The collection of Ni words for the ith document is

denoted by wi = {wi1, . . . , wiNi
} and the label associated with the ith document

is denoted by yi. The entire corpus can then be represented by (W,Y) where

Y = (y1, y2, . . . , yM) and W = (w1,w2, . . . ,wM). We assume that each document

belongs to one of C classes, i.e., yi ∈ {1, 2, . . . , C}. We refer the reader to Table 2.1

for an explanation of the symbols used. The task is to learn a model for (W,Y) so

that we are able to classify a new test document wt. Next, we discuss the details of

the supervised LDA model used in this paper.

2.3. Generative process for supervised LDA

Supervised LDA [27] is a natural extension to the original LDA model [23].

The graphical model for the supervised LDA is shown in Fig. 2.1 and the generative

process is explained in Algorithm 1.

The key difference between supervised LDA and LDA is that, for each training
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Algorithm 1 Generative process

for k = 1 to K do

Draw φk,· ∼ Dirichlet(β)

end for

for i = 1 to M do

Draw yi, Ni

Draw θi ∼ Dirichlet(αyi,·)

for j = 1 to Ni do

Draw zij ∼ Discrete(θi)

Draw wij ∼ Discrete(φzij ,·)

end for

end for

document, we first draw the label y and then choose a class-dependent Dirichlet prior

for the topic proportions. The Dirichlet prior over topics is represented as a C ×K

matrix α where cth row of α matrix corresponds to the Dirichlet prior for class

c. Note that we consider both α and β to be asymmetric Dirichlet priors. The

number of words in each document, Ni, is an ancillary variable and we assume that

it is independent of the class c. The supervised LDA model may also be viewed as

a special case of models such as Labeled-LDA model [35] and Dirichlet-Multinomial

Regression model [38].
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M
Ni K

yi

θi α

zij β

wij φk·

FIGURE 2.1: Graphical model for Supervised LDA. The shaded nodes correspond

to the observations.

2.4. Parameter estimation in supervised LDA

Parameter estimation in Supervised LDA is based on the maximum marginal

likelihood principle. The marginal likelihood of the data i.e., the likelihood of

(W,Y) conditioned on the hyperparameters, is given by

p(W,Y|α,β) =

∫

θ

∫

φ

∑

Z

p(W,Y,Z,θ,φ|α,β) dθdφ,

where Z corresponds to the topic assignments of all the words in the training corpus.

The above integral is intractable. Deterministic approaches (such as VB) replace the

integral with a tractable lower bound. Sampling based approaches (such as CGS)

approximate this integral (expectation) using an empirical (sample-based) average.

The MAP estimation procedure approximates the integral by using point estimates
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TABLE 2.1: List of symbols

C Number of classes

M Number of training documents

Ni Number of words in ith training document

K Number of topics

V Vocabulary size

W All the words in the training documents

wi 1 × Ni vector containing the words in document i

zi 1 × Ni vector containing topic assignments of corresponding words in wi

Y Labels of the training documents

θ K × M matrix whose ith column represents the ‘topic-multinomial’

parameter for the ith training document

φ K × V matrix where φkl denotes the probability of lth word given kth topic

α C × K matrix where αc,· denotes the Dirichlet prior for class c

β 1 × V vector which denotes the Dirichlet prior for each row of φ

of φ and θ (Z can be marginalized out).

To the best of our knowledge, only VB inference has been explored earlier for

the supervised LDA model [27]. We derive the update equations for MAP, CGS and

CVB0 for the supervised LDA model. Not surprisingly, if we set all the Y to be

equal in our update equations, we recover the update equations for the unsupervised

LDA case.
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2.4.1 MAP estimation

The MAP estimate of θ and φ is given by

θ∗,φ∗ = arg max
θ,φ

p(W,θ,Y,φ|α,β) (2.1)

As shown in Appendix B, the objective function for MAP is given by

log p(W,θ,Y,φ|α,β) =
∑

i

( V∑

v=1

[

nvi log(φ⊤θ)vi

]

+ log P (yi)

+
K∑

k=1

(αyi,k − 1) log θik − log B(αyi,·)
)

+
∑

k

(∑

v

(βv − 1) log φkv − log B(β)
)

, (2.2)

where B(·) denotes the multinomial beta function. Parameter estimation is per-

formed by maximizing (2.2) w.r.t. θ, φ, α, and β in a coordinate ascent fashion.

As shown in Appendix D, the updates for θik and φkl are given by,

θik ∝ max(gik, 0), φkv ∝ max(hkv, 0) (2.3)

where
∑

k θik = 1,
∑

v φkv = 1 and

gik =
V∑

v=1

[

nvi
φkvθ̂ik

∑K
k′=1 φk′vθ̂ik′

]

+ (αyi,k − 1),

hkv =
∑

i

[

nvi
θikφ̂kv

∑K
k′=1 θik′φ̂k′v

]

+ (βv − 1). (2.4)

Note that θ̂, φ̂ denote the values of θ,φ from the previous iteration.

Connection to NNMF

Note that (2.2) resembles the objective function of KL-divergence minimizing non-

negative matrix factorization (NNMF) [39], where we have additional regularization

terms on θ,φ. The equivalence between EM updates for PLSA and KL-divergence
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minimizing NNMF updates in the unregularized case (i.e., α = 1,β = 1 in (2.2)),

has been observed in [40]. In the EM algorithm for MAP solution in LDA, the E-

step involves the computation of γwjk = P (zij = k|wij, θi) and the M-step involves

maximization w.r.t. θ and φ. To ensure that γwjk’s are valid probabilities, [26]

impose the constraint α > 1,β > 1 in their MAP solution. Even if α < 1,β < 1,

γwjk can be valid probabilities if gik ≥ 0 and hkl ≥ 0 in (2.4). Another subtle differ-

ence exists. In (2.2), the hyperparameters are optimized using Maximum likelihood

(ML) estimation for Dirichlet distribution whereas in the MAP solution by [26], the

hyperparameters are optimized using ML for Polya distribution. The Polya distri-

bution accounts for the number of words in the document (and hence the number

of topic variables), whereas the Dirichlet distribution estimates α using the θ′is and

hence, does not account for document length in the hyperparameter estimation.

2.4.2 Collapsed Gibbs sampling (CGS)

In this section, we present the collapsed Gibbs sampling updates for supervised

LDA. They can be derived in a similar fashion as CGS for LDA [24,26].

P (zij = k|wij = v,Z\ij, yi) ∝ (n
\ij
ki + αyi,k)

n
\ij
kv + βv

n
\ij
k + 1⊤β

,

where n
\ij
kv =

∑

(i′,j′)/∈(i,j) 1[zi′j′ = k, wi′j′ = v], n
\ij
k =

∑

(i′,j′)/∈(i,j) 1[zi′j′ = k] and

n
\ij
ki =

∑

j′ 6=j 1[zij′ = k]. Note that \ij indicates that the current word-topic pair

has been excluded from the counts.

2.4.3 Collapsed Variational Bayes (CVB0)

In this section, we present the collapsed variational updates for supervised

LDA. As in LDA, the variational distribution is assumed to factorize as follows
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[25,26]:

q(Z,θ,φ) = q(θ,φ|Z)
∏

i

∏

j

q(zij), (2.5)

where q(zij) is a multinomial distribution with parameters given by q(zij = k) = γijk.

Using the zeroth order approximation to the variational bound (which we will refer

to as CVB0), the updates for γijk are obtained as

γijk ∝ (n
\ij
ki + αyi,k)

n
\ij
kv + βv

n
\ij
k + 1⊤β

(2.6)

where n
\ij
kv =

∑

(i′,j′)/∈(i,j),wi′j′=v γi′j′k , n
\ij
ki =

∑

j′ 6=j γij′k, and n
\ij
k =

∑

(i′,j′)/∈(i,j) γi′j′k.

For both CVB0 and CGS, upon convergence, the parameter estimates are

computed using φ̂kv ∝ (nkv +βv), where
∑

v φ̂kv = 1. Note that while MAP is inher-

ently parallelizable i.e., the θi’s for the documents can be updated in parallel, the

collapsed inference algorithms (CGS and CVB0) are not inherently parallelizable.

2.5. Classification

For a test document wt, model-based classification is made using the MAP

rule, i.e.,

y∗
t = arg max

yt

p(yt|wt) = arg max
yt

p(yt,wt). (2.7)

2.5.1 Classification using VB

VB can be used to classify a test document as follows [27]

y∗
t = arg max

c
p(wt, yt = c).
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Since the RHS is intractable, they compare the variational lower bounds for log p(wt, yt =

c). The variational lower bound may be computed as follows [41]

log p(wt, yt = c) ≥ Eq[log p(wt, yt = c)] + H[q], (2.8)

where q denotes the fully factorized variational distribution q(θt, zt) = q(θt)
∏Nt

j=1 q(ztj).

This approach requires recomputation of the variational lower bound for each pos-

sible value of c, and can be computationally demanding when C is large.

Next, we present the classification rules for MAP and CVB0.

2.5.2 Classification using MAP

We express p(yt|wt) as follows

y∗
t = arg max

yt

∫

θt

p(θt|wt)p(yt|θt) dθt. (2.9)

Since the integral in (2.9) cannot be computed in closed-form, we propose to ap-

proximate it as follows

y∗
t ≈ arg max

yt

p(yt|θ∗t )
∫

θt

p(θt|wt) dθt (2.10)

= arg max
yt

p(yt|θ∗t ), (2.11)

where,

θ∗t = arg max
θt

p(θt|wt), (2.12)

= arg max
θt

log p(wt|θt) + log p(θt). (2.13)

The approximation in (2.10) may be interpreted as a zeroth order version of Laplace

approximation of the integral in (2.9) around θ∗t . Additionally, obtaining a single θ∗t

(rather than C) enables us to think of supervised LDA as a supervised dimensionality
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reduction method. Note that θ∗t can be obtained by using an optimization similar

to (2.2). Since y is unobserved for test data, we have log p(θt) which is a mixture

of Dirichlet distributions, instead of log p(θi|yi) used in training (2.2). We treat yt

as a latent variable and derive an EM algorithm to compute θ∗t . The update rule is

given by θtk ∝ max(gtk, 0), where
∑

k θtk = 1, and

gtk =
V∑

l=1

[

nlt
φklθ̂t(k)

∑K
u=1 φulθ̂t(u)

]

+
C∑

c=1

P (yt = c|θ̂t)(αck − 1).

Note that θ̂t denotes the value from the previous iteration. Note the similarity of

(2.14) to (2.4). Since yt is not observed, the (αck−1) term is weighted by P (yt = c|θ̂t).

2.5.3 Classification using CVB0

We consider two classification rules for CVB0. First, we classify y∗
t using

y∗
t = arg max

c
p(wt, yt = c),

Since the RHS is intractable, we use the collapsed variational lower bound for

log p(wt, yt = c). The collapsed variational lower bound is computed using (2.8),

where the expectation is w.r.t the collapsed variational distribution, given by q(θt, zt) =

q(θt|zt)
∏Nt

j=1 q(ztj). We refer to this classifier as CVB0-1. Note that this approach

can be computationally intensive when C is large. We introduce a second approach

to alleviate this problem,

γtjk ∝ (n
\ij
kt +

C∑

c=1

P (yt = c|n̂·t) αc,k) φ̂kv (2.14)

where n
\tj
kt =

∑

j′ 6=j γtj′k, n̂·t denotes the value of n·t from the previous iteration and

φ̂ denotes the estimate of φ computed from the training data. We will refer to the

second approximation as CVB0-2.
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2.6. Experimental Results

In the first experiment, we compare the classification accuracy and runtime

achieved by MAP, CVB0, VB and PLSA for the supervised LDA model. In the

second experiment, we compare the classification accuracy achieved by MAP, CVB0

when LDA is employed as a dimensionality reduction method. We implemented CGS

and observed that the runtime associated with CGS is significantly larger than the

runtime associated with the other methods. In CGS, we need to compute the topic

probabilities for each occurrence of a word (and not just every unique occurrence as

in the other methods) as well as draw multiple topic samples before estimating the

hyperparameters. Hence, we do not include the results obtained using CGS here.

2.6.1 Implementation details

All the methods were implemented in Matlab. We used similar vectorization

techniques in all of our implementations. We plan to make our code publicly avail-

able in the near future.

Hyperparameter optimization for MAP

Species identification, Image classification: We restricted α ≥ 1, but did not impose

any constraint on β. In our experiments, we used a log-barrier method with Newton

update equations [42] to compute the optimum α, β in (2.2).

Document classification: Since the documents are of significantly varying lengths,

we computed nki = Niθki and estimated α using unconstrained ML for Polya dis-

tribution. Similarly, we compute nkv and estimate β.

Hyperparameter optimization for CVB0

We used the fixed point updates in [43] to compute the ML estimates of Polya dis-
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tribution.

Hyperparameter optimization for VB

As done by [27], we optimize α, but set β to 1.

PLSA-NN

As observed by [44], PLSA is equivalent to LDA when all the hyperparameters are

set to 1. Hence, we used the same update equations as that of the MAP estima-

tion, except that the hyperparameters are held constant at 1. Once the θ’s have

been obtained for the training as well as the test data, we use a k-nearest neighbor

(k-NN) classifier with Euclidean distance metric for classifying the test documents.

Following [45], we set the number of nearest neighbors, k = 10.

2.6.2 Datasets

In this section, we describe the datasets used in our experiments.

Species identification (Audio classification)

1 We used recordings from the Cornell Macaulay library, of 6 species: Downy Wood-

pecker, Mountain Chickadee, Western Tanager, Swainson’s Thrush, Black Throated

Blue Warbler, and Winter Wren. The recordings were collected over several decades,

mainly in the western United States. Most are made using a directional microphone

in the field. The amount of noise in the recordings varies widely. In addition to

static and wind, some recordings contain cars sounds, human speech, and other

non-bird sounds. We manually removed most portions of sound with human voices.

Although each recording is labeled with just one species, some recordings contain

multiple birds, sometimes of different species; usually the loudest bird present cor-

1This experiment was not reported in [36].
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responds to the label for the recording. The sampling frequency for all recordings is

44.1 kHz. The audio data is stored as mono-channel WAV files. All of these record-

ings are at least 30 seconds long, and most are less than 10 minutes. We divide

each recording into intervals of 30 seconds, resulting in 265 intervals. We first apply

the segmentation algorithm described in Appendix A, then compute three different

frame level features described in Section 1.2.3. Next, we construct a codebook for

each of the frame level features [6] to obtain the bag-of-words representation for each

audio recording. For constructing codebooks, we apply the k-means++ clustering

algorithm [46] to a random subset of the frame-level features from the training data

set. Further details regarding our implementation are available in [6].

Image classification

LabelMe: The first image classification dataset was used in [28]. The dataset con-

sists of 1600 images from the LabelMe toolbox. There are totally eight classes. For

each image, the SIFT vectors are obtained and then the SIFT vectors are clustered

to obtain the codebook (size=158) representation. Each image contains 2401 SIFT

vectors. The pre-processed dataset in bag-of-words format was made publicly avail-

able by [28]. More details regarding the dataset are available in [28]. We used three

random train-test data splits for cross validation, each time dividing the data into

800 training documents and 800 test documents.

MSRC-v2: We also evaluate our algorithms on a subset of the MSRC-v2 dataset. We

used images belonging to eight groups, namely, ‘book’, ‘grass, cow’, ‘tree,

grass, sky’, ‘bike, building’, ‘sign’, ‘water, boat’, ‘aeroplane, grass,

sky’, ‘road, building’ resulting in a total of 240 images. We divided each image

into 8×8 blocks and we cluster the blocks using k-means algorithm to create a code-

book of size 160. Using this codebook, we create the bag-of-words representation for
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each image. Again, we use 50% of the dataset for training and 50% of the dataset

for testing. While we realize that it might be possible to use more sophisticated

features, our goal here is to compare inference algorithms for classification rather

than find good feature vector representations. Note that quite some overlap exists

between the classes themselves.

Document classification

We used the 20Newsgroups dataset 2 for document classification. The original

dataset2 consists of 18824 documents belonging to 20 different topics (class label).

We grouped the 20 topics into four classes, namely ‘Computer’ (comp.), ‘Talk’

(talk.), ‘Science’ (sci.), ‘Recreational’ (rec.). We removed words occurring more

than 5000 times in the entire corpus, as well as words occurring less than 200 times

in the entire corpus. This resulted in 2144 words. We retained only documents

that contained at least 100 words in them. We used three random train-test data

splits for crossvalidation, each time using 1990 documents in the training set and

1327 documents in the test set. In all of our experiments for this dataset, we vary

number of topics as follows, K = 20, K = 50 and K = 80.

2.6.3 Simulation details

Image classification, Document classification

We vary the number of topics and report the classification accuracy and runtime

in each case. For each train-test data split, we try three random initializations and

report the best classification accuracy and the total runtime. The total runtime is

2http://people.csail.mit.edu/jrennie/20Newsgroups/



46

the sum of the runtimes for each random initialization, which is the sum of the time

for training and the time for testing. We compute the mean and standard deviation

of the results based on the 3 random train-test splits. The error bars in our graphs

denote the variation amongst 3 random train-test splits for cross-validation.

Species identification

We vary the number of topics from 10 to 50 in steps of 10 and report the best

classification accuracy. We used the ‘individual-independent’ crossvalidation setup

described in Section 3.7.4.

In all the above cases, we train the model till the fractional change in log

likelihood, given by abs[(llnew − llold)/llnew], is less than a threshold (10−6 in our

experiments), with an additional limit on the maximum number of iterations (300

in our experiments).

2.6.4 Effect of the inference algorithm on classification accuracy

The classification accuracy comparison is shown in Fig. 2.2, Fig. 2.3 and Ta-

ble 2.2 for the LabelMe, MSRC-v2 and Newsgroup datasets respectively. We can

observe that MAP provides comparable performance to VB, CVB0 in terms of

classification accuracy in the LabelMe dataset. However, in the newsgroup and

MSRC-v2 datasets, CVB0 outperforms MAP and performs quite similar to VB.

The CVB0-2 classifier provides comparable performance to CVB0-1 classifier. The

classification accuracy comparison is shown in Table. 2.3 for the Cornell Macaulay

library dataset. We observe that VB consistently achieves good performance. For

codebook of MFCCs, both MAP and PLSA-NN outperform VB. In general, MAP

tends to perform better with fewer number of topics (always 10 here).
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FIGURE 2.2: LabelMe dataset: Comparison of classification accuracy obtained using

MAP, CVB0-1, CVB0-2, VB and PLSA-NN.
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FIGURE 2.3: MSRC-v2 dataset: Comparison of classification accuracy obtained

using MAP, CVB0-1, CVB0-2, VB and PLSA-NN.
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TABLE 2.2: Newsgroup dataset: Comparison of classification accuracy obtained

using MAP, CVB0

Number of topics MAP CVB0

20 72.29 ± 0.04 85.45 ± 0.27

50 76.61 ± 1.35 83.49 ± 1.06

80 78.27 ± 1.09 81.31 ± 2.10

2.6.5 Effect of the inference algorithm while using LDA as pre-processing
step

LDA can be viewed as a dimensionality reduction method. The topic rep-

resentations for each document can be used as input to a discriminative classifier

such as support vector machine (SVM). In this experiment, we compare the effec-

tiveness of various inference methods, when LDA is used as a pre-processing step.

To this extent, we obtained the topic representation for each document using the

unsupervised LDA model and trained a SVM using the topic representation for the

documents as the feature vectors. We then compare the accuracy of SVM classifier

using the CVB0 and MAP feature representations. We used the Matlab interface

to LibSVM [47] in our SVM experiments. We used Gaussian kernel and one-vs-

one SVM. The kernel bandwidth γ and regularization parameter Cr were optimized

using grid search ([10−0.5, 100, 101] for γ and [10−2, 10−1, 100] for Cr).

One might also use the topic representations obtained using the Laplace ap-

proximation in Supervised LDA as input to a classifier. We compare the classifi-
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TABLE 2.3: Cornell Macaulay library dataset: Comparison of classification accu-

racy obtained using MAP, CVB0, VB for codebooks of different frame level features.

The optimal number of topics for each combination is included within parentheses.

Method fc, BW MFCCs Spectral PDF

MAP 81.51 (10) 89.06 (10) 80.38 (10)

CVB0-1 84.91 (40) 84.15 (50) 80.38 (20)

CVB0-2 84.15 (10) 86.42 (20) 82.26 (20)

PLSA-NN 81.51 (20) 88.68 (10) 85.28 (30)

VB 88.30 (20) 87.17 (50) 87.92 (50)

cation accuracy achieved by the various feature vector representations. The results

are shown in Fig. 2.4 and Fig. 2.5. Surprisingly, the overall classification accuracy

seems to be higher when using topic representations from unsupervised LDA.

2.6.6 Computational complexity

The runtime comparison for the LabelMe and MSRC-v2 datasets are shown

in Fig. 2.6 and Fig. 2.7 respectively. We observe that MAP provides considerable

advantage in terms of runtime, while providing slightly worse classification accuracy

in the LabelMe dataset and significantly worse results in the MSRC-v2 dataset. The

CVB0-2 classifier is significantly faster than CVB0-1. The computational complexity

in the training stage for the supervised LDA is similar to the discussion in [26].

During the classification stage, CVB0-2 and MAP are roughly O(C) times faster

than VB and CVB0-1.
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FIGURE 2.4: LabelMe dataset: Comparison of classification accuracy achieved by

using topic representations computed using MAP, CVB0-2, as feature vector for

SVM.
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51

0 20 40 60 80 100 120 140
10

1

10
2

10
3

10
4

Number of topics

R
un

tim
e 

(s
)

 

 

MAP
CVB0−2
VB
PLSA NN
CVB0−1

FIGURE 2.6: LabelMe dataset: Comparison of run time of MAP, CVB0-1, CVB0-2,

variational Bayes (VB) and PLSA-NN.

As mentioned earlier, MAP can be parallelized while the collapsed inference

algorithms such as CVB and CGS are not inherently parallelizable. The compu-

tational complexity of PLSA and MAP seem to be comparable in these dataset.

However, for classification using PLSA, we need to compute the nearest neighbor

for the test data, which can be computationally intensive for large scale applications.

2.7. Conclusion

We presented MAP, CGS and CVB0 inference algorithms for the supervised

LDA model. We introduced a computationally efficient classification algorithm for
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FIGURE 2.7: MSRC-v2 dataset: Comparison of run time of MAP, CVB0-1, CVB0-

2, VB and PLSA-NN.

MAP and CVB0 that is scalable for datasets involving large number of classes.

Additionally, this classification algorithm allows us to use supervised LDA as a su-

pervised dimensionality reduction tool. We provided an empirical comparison of

the classification accuracy and runtime of MAP, CVB0 to VB. The results indicate

that, with proper hyperparameter tuning, CVB0 and VB can yield similar clas-

sification performance, while MAP yields a slightly worse performance. However,

MAP is computationally very efficient and can provide speed-ups of over an order of

magnitude compared to VB and CVB0. Additionally, we evaluated the classification

performance achieved by MAP and CVB0 when topic representations obtained using

LDA, as well as supervised LDA, are used as feature vector input for an SVM. The

results indicate that topic representations obtained using unsupervised LDA lead to

slightly higher classification accuracy than supervised LDA, and CVB0 outperforms
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MAP in both supervised as well as the unsupervised case. Based on our results, we

advocate CVB0 parameter estimation with the CVB0-2 classifier for the supervised

LDA model, since it provides a good tradeoff between classification accuracy and

run time. Future work will explore the extension of our inference algorithms to more

complex topic models that can handle annotations and multiple labels.
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3. PROBABILISTIC MODELS TAILORED FOR BIRD
SPECIES IDENTIFICATION

3.1. Motivation

Even though different machine learning algorithms have been applied for bird

species identification, there has been little work on the development of probabilistic

models specific to bird vocalization. Probabilistic models enable Bayesian inference

and help in identifying the interesting characteristics of data [48]. Probabilistic

models have been successfully applied in other domains, for example, document

clustering [49], document classification, computer vision, speech processing.

Bird vocalization is analogous to document classification in that the distri-

bution of frame level features depends on the particular species. Hence, we can

build probabilistic models for bird vocalization in a similar manner to those devel-

oped for document classification. One possibility is to treat each sound recording

as a species-dependent distribution of frame level features. Another possibility is

to treat each sound recording as a species-dependent distribution over syllables

and treat each syllable as a distribution over frame level features. To present a

weak analogy to the document classification terminology, frame level features can

be viewed as words, syllables can be viewed as topic for the entire paragraph (unlike

the topic assignment for every word Chapter 2. and species can be viewed as the

document class. However, there are a few characteristics of bird recordings that

are not usually applicable to documents. For instance, the frame level features are

usually continuous in nature, the number of syllables in a specific interval of time

is species-dependent, the duration of the syllable (i.e., the number of frames within
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the particular syllable) is also species dependent. These differences mandate the

development of probabilistic models specific to bird vocalization.

In previous work, we presented syllable-level probabilistic models [1] and

Briggs et al. presented interval-level probabilistic models (interval here implies an

interval of recording) [2]. The goal of this paper is to present a theoretical frame-

work that unifies syllable-level and interval-level modeling. The main contributions

of this work are:

• We present the Independent Block model and show how both syllable-level

modeling and interval-level modeling are special cases of the block-level mod-

eling approach.

• We consider two models of treating the frames within a block, namely, In-

dependent Frame Independent Block model (IFIB) model and Markov Chain

Frame Independent Block (MCFIB) model.

• We derive the Bayes risk minimizing classifier (MAP classifier) for each model

and show that it can be approximated by a nearest-neighbor classifier with

appropriate distance criterion, if we use a non-parametric density estimation

procedure.

• For the IFIB model, we derive closed-form expressions for the distance measure

for cases where the distribution of frame level features belongs to the exponen-

tial family. For the MCFIB model, we derive closed form expressions for the

distance measure when the distribution of frame level features is multivariate

Gaussian.

• We experimentally evaluate the accuracy of the proposed classifiers using
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cross-validation on a data set consisting of 265 thirty-second recordings of

six species of birds, from the Cornell Macaulay library. We compare our re-

sults to SVM. Results indicate that the proposed approaches outperform the

SVM-based approach.

3.2. Problem statement

Our objective is to identify bird species based on audio recordings. We have

a collection of recordings of bird sounds, each of which is labeled with a partic-

ular species. The recordings differ in their duration, so they are split into equal-

length intervals. The task is to learn an acoustic model for each species based

on these training set intervals so that we can correctly classify a test interval.

The training dataset can be viewed as a collection of interval-label pairs, i.e.,

S = {(D(1), y(1)), (D(2), y(2)), . . . , (D(Kt), y(Kt))}, where D(m) corresponds to the

data representation of the mth interval, y(m) denotes the label of the mth interval

and Kt denotes the total number of training set intervals.

We next discuss the data representation of the interval. An interval of sound

can be viewed as a collection of syllables. It is common practice to divide syllables

further into frames, where each frame corresponds to the sound in a very short span

of time. The frames can then be represented by features such as: power spectral

density, mean frequency, spectral bandwidth, short time energy, zero crossing rate,

Mel frequency cepstral coefficients (MFCCs) and energy. More formally, a syllable

x(i) consisting of ni frames can be viewed as a sequence of observations, i.e., syllable

x(i) = [x1(i), x2(i), . . . , xni
(i)] where observation xj(i) corresponds to the feature

vector representation of the jth frame in the ith syllable. The duration of the syllables
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(D(1), y(1))
︸ ︷︷ ︸

Interval 1
︷ ︸︸ ︷

{x(1)(1)

︸ ︷︷ ︸

Syllable 1
︷ ︸︸ ︷

[x1(1)(1), . . . , xn1(1)(1)]

, n
(1)
1 }, . . . , {x(N)(1), n

(1)
N }, N (1), y(1)

, (D(2), y(2)), . . .

FIGURE 3.1: Data representation for Syllable level modeling

(D(1), y(1))
︸ ︷︷ ︸

Interval 1
︷ ︸︸ ︷

[x
(1)
1 , x

(1)
2 , . . . , x(1)

n ], n(1), y(1)

, (D(2), y(2)), . . .

FIGURE 3.2: Data representation for Interval level modeling

is characteristic of a particular species, hence the number of frames within a syllable

ni is included as part of the model. The number of syllables within an interval N is

also species-dependent and hence included as part of the model. Mathematically, the

data in an interval of sound may be represented as D = [x(1), n1, . . . ,x(N), nN , N ].

Fig. 3.1 explains the data hierarchy for syllable level modeling. As an alter-

native to syllable level modeling, one might want to model the frame level features

directly at the interval-level. Fig. 3.2 explains the data hierarchy for interval level

modeling. Notice that the interval level model does not distinguish between frames

belonging to different syllables. The interval level models are more relevant for

scenarios where segmentation can be very noisy or for applications where notion

of syllables is less ambiguous. Here, we develop generative probability models for

the frame level features (at both interval level and syllable level) produced by each

species (from the labeled training examples) and extend these probabilistic models

to build Bayes-optimal classifiers for bird species identification.
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TABLE 3.1: List of symbols

Variable Description

y Class label (bird species)

N Number of blocks present in a fixed interval

θi Block parametrization vector of ith block

ni Number of frames in ith block (length)

x(i) ith block features, [x1(i)x2(i) · · ·xni
(i)]

xj(i) Feature representation of the jth frame (i.e., jth observation) in ith block

N t
y(l) Number of blocks present in the lth traininginterval from class y

N t
y Total number of training blocks from class y,

∑

l N
t
y(l)

Kt
y Number of training set intervals from class y

Kt Total number of training set intervals

D Data in an interval [x(1), n1, . . . ,x(N), nN , N ]

n Total number of frames in an interval,
∑

i ni

3.3. Probability models

In this section, we demonstrate how the interval-level and syllable-level models

can be unified in a general framework. First, we define a block to be an unit of the

duration of sound that lies between the duration of a frame and the duration of

the interval. The size of the block is directly proportional to the number of frames

within that block and inversely proportional to the number of blocks within an
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interval of sound. The blocks may themselves correspond to syllables or intervals,

allowing us to capture the temporal structure at different levels. A block containing

n frames may be represented as x = [x1, x2, . . . , xn], where xj denotes the jth frame

level feature within the block. There are many possible ways to characterize a block

in terms of its constituent frame level features. Here, we assume that the frame level

features of the block x are drawn from a parametric distribution characterized by θ

and use θ as the feature vector representation for the block. Next, we introduce the

independent block model.

3.3.1 Independent Block model

Fig. 3.3(a) contains the independent block model. To generate an interval of

sound, we follow the procedure shown in Algorithm 2.

Algorithm 2 Generative process for a single interval

Draw the class label y ∼ P (y)

Draw the number of blocks N ∼ P (N |y)

for i = 1 to N do

Draw the block parametrization vector θi ∼ p(θ|y), and the number of frames

within the block ni ∼ P (n|y)

Draw x(i) ∼ p(x(i)|θi, ni)

end for

We would like to highlight the following details about the independent block

model.

• The block parametrization parameter θi is drawn in an i.i.d. fashion from

p(θ|y).
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• The independent block model does not make any assumptions about how the

frame level features are drawn within the block. Here, we consider two cases

where the frame level features are drawn in i.i.d. fashion or Markov chain

fashion.

• Even though p(x(i)|θi, ni) is assumed to be a parametric probability distri-

bution, no such restriction is imposed on p(θ|y). Here, we estimate p(θ|y)

using a non-parametric density estimation procedure. This helps us model

even multi-modal distributions for p(θ|y).

• One might want to choose the parametric density p(x(i)|θi, ni) depending on

the length of the block. For short blocks, we might use unimodal distributions,

whereas for long blocks, one might want to use a multi modal distribution.

3.3.2 The Interval-IID model

The Interval-IID model follows the graphical representation in Fig. 3.3(b).

The model suggests that to generate an interval, we first determine its class label

y based on the class prior P (y). Given y, we then generate an interval-specific

parameterization θ based on p(θ|y), which parameterizes the the frame feature dis-

tribution p(x|θ) of that interval. Given θ, we then generate n independent and

identically distributed (i.i.d.) frame feature vectors xj based on p(x|θ) (thus the

name Interval-IID, i.e., frames are i.i.d. within an interval). Note that the Interval-

IID model does not distinguish between frame level features belonging to different

syllables. The Interval-IID model is a special case of the independent block model,

where there is just one block (N = 1) and all the frame level features within the

block are generated in an i.i.d. fashion. The supervised LDA model described in

Chapter 2. can be viewed as a special case where the blocks correspond to the
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frames. However, in that case, we first choose a document-specific distribution of

topics and then choose a particular distribution before choosing each frame level

feature.

3.3.3 Independent syllable model

The independent syllable model is a special case of the independent block

model where each block corresponds to a syllable. The syllables present in an

interval are independent and identically distributed (i.i.d.) i.e., we select both a

syllable parametrization vector θi (for the frame-level features) and length ni for

each syllable independent of other syllables. Note that the independent syllable

model does not specify how the frame level features within a syllable are drawn. In

Fig. 3.4, we present two special cases, namely,

• Independent Frame Independent Syllable (IFIS) model, where the

frame level features are assumed to be drawn in an i.i.d. fashion conditioned

on θi,

• Markov Chain Frame Independent Syllable (MCFIS) model, where

the frame level features are assumed to be drawn in a Markov chain fashion

conditioned on θi.

3.3.4 Taxonomy of the models

In Fig. 3.5, we present the taxonomy of the various models in a slightly different

fashion from the order discussed above. We divide the models based on whether the

frame level features are drawn in an i.i.d. or Markov chain fashion within the block,

resulting in the independent frame independent block (IFIB) model and Markov

chain frame independent block (MCFIB) model. Within the IFIB model, if the
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FIGURE 3.5: Taxonomy of the various models. The models considered in this work

have been highlighted.

block corresponds to the interval, we obtain the Interval-IID model; if the block

corresponds to syllable, we obtain the IFIS model. Within the MCFIB model,

if the block corresponds to the syllable, we obtain the MCFIS model. Here, we

use a multinomial distribution (multi-modal) for modeling frame-level features at

the interval level and multivariate Gaussian distribution (uni-modal) for modeling

frame-level features at the syllable level.

3.4. Independent Block model

Recall that the data representation for an interval is D = [x(1), n1, . . . ,x(N), nN , N ].

Based on the graphical model of the independent block model shown in Fig. 3.3(a),
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the likelihood that an interval D was generated by class y, is given by

p(D|y) = P (N |y)
N∏

i=1

p(x(i), ni|y) (3.1)

The block parametrization vector θi is a hidden parameter and cannot be

observed directly. The likelihood of a block x(i) can be found by marginalizing over

the hidden variable θi i.e.,

p(x(i), ni|y) = Eθi|y

[

p(x(i)|θi)
]

P (ni|y), (3.2)

where Eθi|y[·] represents marginalization over θi based on the class-conditional dis-

tribution p(θi|y).

3.4.1 Independent Frame Independent Block (IFIB) model

As shown in Appendix E, the logarithm of Eq. (3.1) can be expressed as

log p(D|y) = C(X) + log P (N |y) +
N∑

i=1

log

∫

θi

e−niD̂kl(θ̂i‖θi)p(θi, ni|y)dµ(θi) (3.3)

where,

θ̂i = arg max
θi∈Θ

log p(x(i)|θi) (3.4)

D̂kl(θ̂i‖θi) =
1

ni

log
p(x(i)|θ̂i)

p(x(i)|θi)
(3.5)

C(X) =
N∑

i=1

log p(x(i)|θ̂i) (3.6)

Note that

• θ̂i is the maximum likelihood (ML) estimate of θi in the likelihood p(x(i)|θi).

• D̂kl(θ̂i‖θi) is a sample-estimate of the Kullback Leibler divergence (KL di-

vergence) between the distributions p(·|θ̂i) and p(·|θi). By definition of θ̂i in

Eq. (3.4), D̂kl(θ̂i‖θi) ≥ 0 ∀ θi ∈ Θ.
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• log p(x(i)|θ̂i) is independent of θi and hence treated as a constant w.r.t. θi.

In the IFIB model, each block is assumed to be an i.i.d. sequence of observa-

tions, i.e., p(x(i)|θi) =
∏ni

j=1 p(xj(i)|θi). Hence, for the IFIB model, D̂kl(θ̂i‖θi) in

Eq. (3.5) can be expressed as

D̂kl(θ̂i‖θi) =
1

ni

ni∑

j=1

log
p(xj(i)|θ̂i)

p(xj(i)|θi)
. (3.7)

The IFIB model is general in that it does not specify the precise form of the frame

probability model p(·|θ). As mentioned earlier, D̂kl(θ̂i‖θi) can be interpreted as a

sample based estimate of the true KL divergence between the distributions p(x|θi)

and p(x|θ̂i). However, if p(x|θi) belongs to the exponential family of distributions,

D̂kl(θ̂i‖θi) can be shown to be equal to the true KL divergence between the distri-

butions p(x|θi) and p(x|θ̂i) (See Appendix F for proof). For the IFIB model, when

p(·|θi) belongs to the exponential family, Eq. (3.3) becomes

log p(D|y) = C(X) + log P (N |y) +
N∑

i=1

log

∫

θi

e−niDkl(θ̂i‖θi)p(θi, ni|y)dµ(θi) (3.8)

3.4.2 Geometric interpretation of ML

Note that if the test syllable is very similar to the training syllable, i.e., θ̂i ≈

θi, the value of D̂kl(θ̂i‖θi) in Eq. (3.7) approaches zero, thus maximizing the log-

likelihood in Eq. (3.3).

3.4.3 Special cases of IFIB model

IFIS model

The IFIS model is a special case of the IFIB model where each block corresponds

to a syllable. Next, we present a special case of the IFIS model.
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Gaussian IFIS: Here, we assume that the frame probability model p(x|θ) follows

a multivariate Gaussian distribution, i.e.,

p(x|θ) =
1√

det 2πC
e−

1
2
(x−µ)T C−1(x−µ), (3.9)

where θ = (µ,C), i.e., the syllable parametrization vector is specified by the mean

and covariance of the multivariate Gaussian distribution. p(·|θ̂) is characterized as

p(·|µ̂, Ĉ), where µ̂ and Ĉ are ML estimates of µ and C respectively. For syllable

x(i) = [x1(i), x2(i), . . . , xni
(i)], the ML estimates are given by

µ̂ =
1

ni

ni∑

j=1

xj(i)

Ĉ =
1

ni

ni∑

j=1

(xj(i) − µ̂)(xj(i) − µ̂)T

If the frame level features are d-dimensional, then the number of parameters in θ is

d+ d(d− 1)/2 = d(d+1)/2. If we restrict the covariance matrix to be diagonal, the

number of parameters is d + d = 2d. This restriction is especially helpful for cases

where ni ≪ d2.

The multivariate Gaussian distribution belongs to the exponential family.

Hence,

D̂kl

(
p(·|µ̂, Ĉ)‖p(·|µ,C)

)
=

1

2

(

log
det C

det Ĉ
+ tr(C−1Ĉ − I) + (µ̂ − µ)T C−1(µ̂ − µ)

)

,

where the RHS of Eq. (3.10) equals the true KL divergence between two Gaussian

distributions N (µ̂, Ĉ) and N (µ,C) [50].

Interval-IID model

The Interval-IID model is a special case of the IFIB model where N = 1, i.e., the

entire interval is treated as a single block. For the IFIS model, the frame probabil-

ity model p(x|θ) is at syllable level. However, for the Interval IID model, the frame
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probability model is at the interval level. In general, the choice of unimodal frame

probability model is not justified at the interval level. Hence, one might want to

use a multi-modal distribution. Here, we present a case where p(x|θ) is assumed to

follow a multinomial distribution.

Multinomial Interval IID: Let the frame level features be discretized into L non-

intersecting bins defined by the sets Al. Assume that frame-level feature xj falls into

one of the histogram bins {A1, . . . , AL} with probability {θ1, . . . , θL}, respectively.

The vector θ = [θ1, . . . , θL]T parametrizes a multinomial probability mass function

(or a histogram), i.e.,
∑

l θl = 1 and θl ≥ 0. Hence, we have

p(x|θ) =
L∏

l=1

θ
I(x∈Al)
l , (3.10)

where I(·) is the indicator function which takes the value one if its argument is true

and zero otherwise. Let θ̂ denote the ML estimate of the multinomial parameter θ.

For an interval x = [x1, x2, . . . , xn], θ̂ is given by

θ̂l =
1

n

n∑

j=1

I(xj ∈ Al)

If the frame level features are d-dimensional and each dimension is divided into

B bins, then the number of parameters in θ is dB. For higher dimensional frame

level features, one might construct an L-dimensional codebook. We refer to [2, 6]

for further details about our codebook construction procedure. Since multinomial

distribution belongs to the exponential family, we have

D̂kl(θ̂‖θ) =
L∑

l=1

θ̂l log
θ̂l

θl

, (3.11)

where the RHS of Eq. (3.11) equals the true KL divergence between a multinomial

distribution parameterized by θ̂ and another parameterized by θ.
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3.4.4 Markov Chain Frame Independent Block (MCFIB) model

In the IFIB model, we considered each block to be an i.i.d. sequence of ob-

servations. Doing so, we ignored any temporal structure within the block. For

instance, the i.i.d. assumption does not capture the gradient increase or decrease

in mean frequency between successive frames within a syllable. A simple method

to incorporate temporal structure would be to model each block as a Markov chain

of observations i.e., p(xj(i)|xj−1(i), xj−2(i), . . . , x1(i), θi) = p(xj(i)|xj−1(i), θi). As-

suming that the first observation is generated according to a probability distribution

p(·|θ) and denoting the conditional distribution by p(xj(i)|xj−1(i), θi), the likelihood

of the ith block can be written as product of the likelihood of the first frame and

the conditional likelihood of the remaining frame-level features, i.e.,

p(x(i)|θi) = p(x1(i)|θi)

ni∏

j=2

p(xj(i)|xj−1(i), θi). (3.12)

For tractability, we assume that p(x1(i)|θi) follows an uniform distribution and is

independent of y. Hence, it is irrelevant for classification.

For notational convenience, we make a slight modification to the log likelihood

expression in Eq. (3.3) for the MCFIB case.

log p(D|y) = C(X) + log P (N |y) +
N∑

i=1

log

∫

θi

e−(ni−1)D̂kl(θ̂i‖θi)p(θi, ni|y)dµ(θi)(3.13)

where C(X), θ̂i and D̂kl(θ̂i‖θi) are defined as

C(X) =
N∑

i=1

ni∑

j=2

log p(xj(i)|xj−1(i), θ̂i) +
N∑

i=1

log p(x1(i))),

θ̂i = arg max
θi∈Θ

ni∑

j=2

log p(xj(i)|xj−1(i), θi),

D̂kl(θ̂i‖θi) =
1

ni − 1

ni∑

j=2

log
p(xj(i)|xj−1(i), θ̂i)

p(xj(i)|xj−1(i), θi)
. (3.14)
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In the MCFIB case, θ̂i for a block is obtained by maximizing the conditional likeli-

hood p(x2(i), x3(i), . . . , xni
(i)|x1(i), θ). In the MCFIB case, p(xj(i)|xj−1(i), θ̂i) and

p(xj(i)|xj−1(i), θi) are different distributions for each value of j. Hence the in-

terpretation of D̂kl as well as the definition of the KL divergence here is not as

straightforward as the IFIB case.

MCFIS model

The MCFIS model is a special case of the MCFIB model where each block corre-

sponds to a syllable. Next, we present a special case of the MCFIS model.

Gaussian MCFIS: Here, we consider the frame probability model in Eq. (3.12) to

be Gaussian, i.e., θi = (µ̃, C̃),






xj(i)

xj+1(i)




 ∼ N (µ̃, C̃), µ̃ =






µ1

µ2




 , and C̃ =






C11 C12

CT
12 C22




 .

Note that in this case, the syllable parametrization vector θ includes the cross-

covariance between consecutive frame level features C12. For a multivariate Gaussian

distribution, the conditional distribution p(xj(i)|xj−1(i), θ) is also Gaussian

p(xj(i)|xj−1(i), θi) =
1√

det 2πCc

e−
1
2
(xj(i)−µj|j−1)

T C−1
c (xj(i)−µj|j−1),

where µj|j−1 = µ2 + CT
12C

−1
11 (xj−1(i)− µ1) and Cc = C22 −CT

12C
−1
11 C12. If we assume

the distribution of frame level features to be stationary within a syllable, we have

µ1 = µ2 = µ, C22 = C11, and the model is characterized by θ = (µ,C11, C12). Here,

we select θ̂ by maximizing the conditional likelihood as θ̂ = (µ̂, Ĉ11 , Ĉ12). For a

test syllable x(i) = [x1(i), x2(i), . . ., xni
(i)], the conditional ML solutions for µ̂, Ĉ11,
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and Ĉ12 are given by

µ̂ = (I − M̂)−1(µ̂2 − M̂µ̂1)

Ĉ11 =
∞∑

k=0

M̂kĈc(M̂
k)T

Ĉ12 = Ĉ11M̂
T

where

M̂ = ĈT
12Ĉ

−1
11 ,

µ̂1 =
1

ni − 1

ni−1∑

j=1

xj(i), µ̂2 =
1

ni − 1

ni−1∑

j=1

xj+1(i),

Ĉ11 =
1

ni − 1

ni−1∑

j=1

(xj(i) − µ1)(xj(i) − µ1)
T ,

Ĉ12 =
1

ni − 1

ni−1∑

j=1

(xj(i) − µ1)(xj+1(i) − µ2)
T ,

Ĉc = Ĉ22 − ĈT
12Ĉ

−1
11 Ĉ12,

Ĉ22 =
1

ni − 1

ni−1∑

j=1

(xj+1(i) − µ2)(xj+1(i) − µ2)
T .

During the training phase, the model parameters µ,C11, C12 can be estimated

in a similar fashion in terms of µ1, µ2, C11, C12, C22. Substituting these ML estimates

in Eq. (3.14), D̂kl for MCFIS model can be written in the following form

D̂kl(θ̂‖θ) =
1

2

(

log
det Cc

det Ĉc

+ tr(C−1
c Ĉc − I) + tr

[

C−1
c (M − M̂)Ĉ11(M − M̂)T

]

+(∆µ̂2 − M∆µ̂1)
T C−1

c (∆µ̂2 − M∆µ̂1)
)

, (3.15)

where ∆µ̂2 = µ̂2 −µ2 and ∆µ̂1 = µ̂1 −µ1. We would like to point out that D̂kl(θ̂‖θ)

has been expressed in terms of µ1, µ2, C11, C12, C22 just for convenience; inherently,

the Gaussian MCFIS model involves only the parameters µ,C11, C12. Note that if
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the test syllable is very similar to the training syllable, i.e., θ̂ ≈ θ, the value of D̂kl

in Eq. (3.15) approaches zero, thus maximizing the log-likelihood in Eq. (3.13).

3.5. Classification and Training

We consider the Bayes risk minimizer of the probability of error for classifica-

tion. Hence, our classifier is the maximum-a-posteriori (MAP) rule [48]:

ŷ = arg max
y

p(D|y)P (y), (3.16)

which is equivalent to the maximization of the posterior p(y|D). The log version of

the MAP rule is given by

ŷ = arg max
y

log p(D|y) + log P (y). (3.17)

We proceed with the evaluation of the MAP criterion for the independent block

model. The MAP criterion for Interval-IID, IFIS and MCFIS models can be derived

in a similar fashion. To obtain the MAP criterion for the independent block model,

Eq. (3.3) is substituted into Eq. (3.17), yielding

max
y

log P (y) + log P (N |y) +
N∑

i=1

log
(∫

θi

e−niD̂kl(θ̂i‖θi)p(θi, ni|y)dµ(θi)
)

Typically, the models p(θ, n|y), P (N |y), P (y) in Eq. (3.18) are not available.

We propose to estimate them from training samples in a non-parametric fashion.

To estimate p(θ, n|y), we follow the kernel density estimation approach. Since only

a small number of samples are available for estimating p(θ, n|y) for a given n (or

potentially zero), we employ smoothing via the kernel q(n|n(k, y)) in our estimator:

p̂(θ, n|y) =
1

N t
y

Nt
y∑

k=1

q(n|n(k, y))δ(θ − θ(k, y)), (3.18)
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where N t
y denotes number of training blocks from class y and θ(k, y), n(k, y) re-

spectively denote the block parametrization vector and length of the kth training

block from class y. The estimator p̂(θ, n|y) is essentially a weighted average of the

parametrization vectors of all the training blocks from class y where the weight

q(n|n(k, y)) accounts for the block length similarity. Next, we estimate the class

prior probability via the following ratio of counts

P̂ (y) =
Kt

y

Kt
, (3.19)

where Kt
y denotes the number of training set intervals from class y and Kt denotes

the total number of training set intervals. Finally, we estimate the class conditional

probability for the number of blocks within an interval using the kernel density

estimator

P̂ (N |y) =
1

Kt
y

Kt
y∑

j=1

qk(N |N(j, y)), (3.20)

where qk(·|·) is the kernel and N(j, y) denotes the number of blocks in the jth training

interval from class y. As shown in Appendix G, substituting these estimated models

p̂(θ, n|y), P̂ (N |y), P̂ (y) into Eq. (3.18) yields us the following MAP criterion

min
y

− log P̂ (y) − log P̂ (N |y) + N log
Nt

y

Nt +
∑N

i=1 nid((θ̂i, ni)‖(θ(1,i,y), n(1,i,y)))

−∑N
i=1 log

(

1 +
∑Nt

y

k=2 e−ni∂d((θ̂i,ni)‖(θ
(k,i,y),n(k,i,y)))

)

(3.21)

where d((θ1, n1)‖(θ2, n2)) measures a divergence between the block parametrization

vector and length of one block to that of another, and is given by

d((θ1, n1)‖(θ2, n2)) = D̂kl(θ1‖θ2) + dq(n1, n2), (3.22)

where dq(n1, n2) is a non-negative divergence for comparing block lengths and is
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given by

dq(n1, n2) =
1

n1

log
q(n1|n1)

q(n1|n2)
. (3.23)

Also, ∂d((θ̂i, ni)‖(θ(k,i,y), n(k,i,y))) in Eq. (3.21) is given by

∂d((θ̂i, ni)‖(θ(k,i,y), n(k,i,y))) = d((θ̂i, ni)‖(θ(k,i,y), n(k,i,y))) − d((θ̂i, ni)‖(θ(1,i,y), n(1,i,y))).

Note the use of order statistics notation (θ(1,i,y), n(1,i,y)) to denote the nearest neigh-

bor for the ith test syllable amongst all the training examples from class y. Consider

the MAP criterion in Eq. (3.21) as a sum of five terms. The first term accounts for

the fact that the number of intervals from different training classes might not be

equal. If all classes have equal number of training intervals, the first term becomes a

constant and therefore is irrelevant to the classification. The second term accounts

for the fact that the number of blocks within a fixed interval is species-dependent.

The last three terms correspond to the likelihood of the observations. The last term

accounts for the contribution due to training blocks other than the nearest neighbor

from class y. For large ni, the last term becomes negligible. If we consider the

contribution of the nearest neighbor alone, the MAP classifier can be approximated

as

min
y

− log P̂ (y) − log P̂ (N |y) + N log
N t

y

N t
+

N∑

i=1

nid((θ̂i, ni)‖(θ(1,i,y), n(1,i,y)))

Note that, due to the nearest-neighbor nature of the classifier in Eq. (3.24),

the training process involves only the computation of ML parameter estimates for

each block in the training set. One might think of the block parametrization vector

θ as feature vector and apply conventional Euclidean distance measures such as ℓ2-

norm. However, as we will show in Section 3.6., the KL divergence has connections



74

to Fisher information metric, which is a natural metric for comparing probability

distributions. Also, the classifier in Eq. (3.24) automatically weights the distance

contributions of individual blocks.

3.5.1 IFIS model

The MAP classifier for the IFIS model has the form of Eq. (3.24). In the

Gaussian IFIS case, D̂kl in Eq. (3.22) is replaced by D̂kl from Eq. (3.10).

3.5.2 MCFIS model

Starting with the log-likelihood as defined in Eq. (3.13), the MAP classification

rule for MCFIS can be derived in a similar fashion to the independent block model.

The only difference is that, for the MCFIS model, D̂kl in Eq. (3.22) is given by

Eq. (3.14) instead of Eq. (3.7). For Gaussian MCFIS, D̂kl is given by Eq. (3.15).

Fig. 3.6 illustrates the interpretation of D̂kl for IFIS and MCFIS models. The

left most column is a test syllable from species 3. The other six elements in each

figure indicate the nearest syllable from the six species based on the appropriate

D̂kl. In the IFIS case, the nearest neighbors lie approximately in the same frequency

range and have similar bandwidth as the original syllable, but not similar temporal

structure. In the MCFIS case, the nearest neighbors tend to have a similar temporal

structure as the original syllable.

3.5.3 Interval-IID model

For Interval IID model, N = 1. Since P̂ (N |y) =
Nt

y

Nt , Eq. (3.24) can be further

simplified as

ŷ = arg min
y

− log P̂ (y) + d((θ̂, n)‖(θ(1,y), n(1,y))) (3.24)
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FIGURE 3.6: Interpreting D̂kl: The left most column is a test syllable from species

3. The other six elements in each figure indicate the nearest syllable from the six

species based on the appropriate D̂kl. (a) IFIS (b) MCFIS
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where d((θ̂, n)‖(θ(1,y), n(1,y))) is defined as in Eq. (3.22). For the Multinomial-Interval

IID model, D̂kl in Eq. (3.22) is given by Eq. (3.11). The training involves just the

creation of codebook and ML estimation of θ̂ for each training interval.

We would like to point out that when p(x|θ) is given by (3.10) and p(θ|y)

is the Dirichlet distribution, then the Interval-IID model becomes the Dirichlet-

Multinomial model, which is also referred to as Polya distribution [43] or the Dirich-

let compound multinomial (DCM) model [49]. This model is often used as a topic

model in text document classification. One criticism concerning the choice of Dirich-

let prior is the limited capability of representing multi modal priors [51]. Our expe-

rience with bird sounds suggests that the probability model p(θ|y) is indeed multi

modal.The non-parametric density estimation procedure employed here allows us to

accommodate multi modal priors.

3.6. Nearest Neighbors on Statistical Manifolds

In this section, we explore the connection between MAP classification and the

KL divergence based nearest neighbor rule. Denote a model by p(·|θ) where θ ∈ Θ.

A collection of probability models i.e., the parameter space Θ can be regarded as a

manifold. The collection of models given by

M =
{
p(·|θ) | θ ∈ Θ ∈ R

d
}

, (3.25)

is a d-dimensional statistical manifold if there exists a one-to-one smooth mapping

between θ to p(·|θ). In the geometric approach to statistical models [52], one can

measure the geodesic distance between two probability models by using the Fisher



77

information metric (FIM) as the Riemannian metric

DFIM(p(·|θ), p(·|θ̂)) = min
θ(·),

θ(0)=θ,

θ(l)=θ̂

∫ l

0

√

θ̇(t)TI(θ(t))θ̇(t)dt, (3.26)

where I(θ) is the Fisher information matrix given by

Iij(θ) = E
[d log p(x|θ)

dθi

d log p(x|θ)
dθj

]

. (3.27)

The FIM is considered a natural metric for statistical manifolds as it reflects the

capability to discriminate between probability models from their samples.

Consider a geodesic nearest neighbor rule using FIM DFIM(p(·|θ), p(·|θ̂)) defined

in (3.26). As the precise form of the manifold is unavailable, an exact computation of

the geodesic distance DFIM(θ, θ̂) is impossible. Since the nearest neighbor approach

prompts us to calculate short geodesic distances, local approximations of DFIM(θ, θ̂)

can be used instead. For two close probability models θ → θ̂, Dkl(θ̂‖θ) ≈ Dkl(θ‖θ̂),

and it is known [52] that

√

2Dkl(θ‖θ̂) → DFIM(θ, θ̂). The KL divergence provides a

computable approximation to the FIM manifold geodesic distance. Note that other

approximations for the FIM are available (e.g., certain Ali-Silvey divergences).

3.7. Experimental Results

In this section, we describe the experimental setup used to measure the clas-

sification error rates obtained by the proposed classifiers. We first describe the

implementation details of our experimental setup and then discuss the results.
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3.7.1 Kernel Smoothing

We used a Poisson probability mass function (PMF) to perform kernel den-

sity estimation in both Eq. (3.20) and Eq. (3.18). In Appendix H, we present the

expression for dq(n1, n2) when we employ a Poisson smoothing function.

3.7.2 List of Classifiers

There are many combinations of probability models and parametric assump-

tions. The probability models that we consider here are

• Gaussian IFIS

• Gaussian MCFIS

• Multinomial Interval-IID

For each of the above classifiers, we report results with the three possible

frame level features, namely (fc, BW ), MFCCs and Spectrum PDF. For Gaussian

IFIS and Gaussian MCFIS models, we restrict the covariance matrix to be diagonal

for MFCCs and Spectrum PDF. For Multinomial Interval IID model, we use a

codebook based approach for MFCCs and Spectrum PDF. For syllable level models,

we compare the performance to a Support Vector Machine (SVM) applied at syllable

level.

3.7.3 SVM setup

Support vector machines [53] (SVMs) are a family of algorithms for super-

vised classification that find a linear decision boundary by maximizing the margin

between two classes. In cases where linear classification is insufficient, the kernel

trick is applied to non-linearly project features into a higher dimensional space where
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linear separability is possible. We used the Matlab interface to the LIBSVM [54]

package in our experiments. Following Fagerlund [7], and the recommendations of

Hsu, Chang and Lin [55], we use a radial basis function kernel, and optimize the

SVM parameter C and the kernel parameter γ, by grid search. We evaluate the

SVM at all combinations of C and γ in {10−1, 100, 101, 102}, and report the best

accuracy achieved with any set of parameters. To handle multiple classes (in our

case, species), LIBSVM use the one-against-one voting scheme [56]. For Syllable-

SVM, we used SVM to classify each of the individual syllables and performed a

majority vote for classifying the interval based on these individual SVM decisions.

Six features: 2 mean vectors, 3 unique entries from covariance matrix and syllable

length were used and the features were normalized to lie in the range -1 to 1.

3.7.4 Cross Validation

To measure the accuracy of the proposed classifiers, we use them to predict the

species in each of 265 thirty-second intervals of sound. Each classifier is trained using

all of the intervals that do not come from the same recording as the interval being

classified (the data set consists of longer recordings that are split into intervals).

We use this setup so the classifier must identify species without already having

example recordings of the individual bird being classified. Fagerlund [7] used a

similar ‘individual independent’ setup for cross-validation.

Classifiers that use a codebook to construct feature histograms depend on a

randomized clustering algorithm. To account for the randomness, we ran five trials

for the Multinomial Interval IID model with different random seeds, and report

average accuracy, ± average deviation [6].
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Classifier fc, BW MFCCs Spectrum PDF

Gaussian IFIS 88.30 78.86 72.83

Gaussian MCFIS 86.03 81.88 25.28

Syllable-SVM 65.26 67.55 67.2

Multinomial Interval IID 87.32 ± 1.52 88.68 ± 0.96 85.81 ± 0.34

TABLE 3.2: The accuracy of each classifier in predicting bird species based on 265

thirty-second intervals of sound.

3.7.5 Comparison of classifiers with SVM

The results of our experiments are summarized in Table 3.2. The table con-

tains the accuracy (correct classification rate) in % for the various models. We

observe that the syllable-level models significantly outperform the Syllable-SVM

in classification accuracy. The MCFIS model outperforms the IFIS model while

using MFCCs, but performs worse for other frame level features. For lower dimen-

sional features, the syllable level IFIS model outperforms the Multinomial Interval

IID model. However, for higher dimensional features, the Multinomial Interval

IID model significantly outperforms the syllable level models. We believe that the

restricting the Gaussian covariances to be diagonal significantly affects the perfor-

mance of the models. Based on our experiments, we recommend syllable level models

when frame level features are low-dimensional and interval level models for high-

dimensional frame level features. It is interesting to compare the performance of

the Multinomial Interval IID model with the results in Table. 2.3 since these models

operate on the same data. We observe that, with the right inference procedure, the
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Supervised LDA model slightly outperforms the Multinomial Interval IID model.

3.8. Conclusion

We presented models tailored to bird sound recordings that can capture tem-

poral structure, and additional information such as the duration and frequency of

vocalizations. The models are very general in that they can be used to model the

temporal structure at the syllable level as well as the interval level. We used a

non-parametric density estimation procedure and showed that the MAP classifier

can be interpreted as a nearest neighbor classifier. We presented experimental re-

sults that indicate the ability of our models to outperform SVM-based approaches.

The nearest neighbor approach allows us to visualize similar patterns from existing

database of recordings and can be used for information retrieval purposes as well.
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4. CONCLUSION

4.1. Summary

In this thesis, we presented probabilistic models and inference techniques for

classification of bioacoustic data. We demonstrated that probabilistic models can

be used model various sources of information in an elegant way. By using principled

inference techniques, probabilistic models provide a refreshing alternative to generic

classifiers that require efficient feature vector transformations and extensive tuning

procedures. We developed a wide variety of inference techniques for our models.

The insights from our experiments enable us to choose the most suitable inference

procedure depending on the requirements of the application (eg., classification per-

formance, training time, test time). The ability of probabilistic models to model

different types of data and trade-off performance measures with a suitable infer-

ence technique, make them powerful tools for efficiently modeling the rich variety

of bioacoustic data.

4.2. Contributions

The contributions in this thesis are listed below.

1. Syllable level probabilistic models for bird species identification [1].

2. Efficient inference techniques for parameter estimation and classification in

supervised Latent Dirichlet Allocation model [36].
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3. General class of probabilistic models for bird species identification that can be

applied either at the syllable level or the interval level [6].

4.3. Publications

The following publications were published as part of M.Sc work.

4.3.1 Journal publications

1. B. Lakshminarayanan, F. Briggs, R. Raich, and X.Z. Fern, “Probabilistic

Models for Audio Classification of Bird Species,” In preparation

4.3.2 Conference publications

1. B. Lakshminarayanan, R. Raich, and X. Fern, “A Syllable-Level Probabilistic

Framework for Bird Species Identification,” in International Conference on

Machine Learning and Applications. IEEE, 2009, pp. 53–59

2. B. Lakshminarayanan and R. Raich, “Non-negative matrix factorization for

parameter estimation in hidden markov models,” in IEEE Workshop on Ma-

chine Learning for Signal Processing (MLSP),, 2010, pp. 89–94

3. B. Lakshminarayanan and R. Raich, “Inference in Supervised Latent Dirichlet

Allocation,” Submitted, Under review

4.4. Future work

One obvious extension would be extend our models to classify MIML data.

LDA-style models have been developed for MIML problems [32,58]. It would be in-
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teresting to compare the computational complexity and classification performance of

the different inference techniques for these MIML models. Most of the topic models

use generative criterion such as maximum marginal likelihood for parameter estima-

tion. It would be interesting to develop efficient approximate inference techniques

for discriminative training criteria. Most prior work in MIML evaluates classifica-

tion performance at the bag-level. Here, we are also interested in classifying the

syllables and recovering the species-specific vocabulary from MIML training data.

Developing and evaluating models that achieve good instance-level classification by

learning from bag-level labels is a very interesting future direction.
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A Segmentation algorithm

We first compute the spectrogram of the audio signal and then compute the

power spectral density (PSD) of each frame and normalize it to obtain the nor-

malized PSD. Next, we compute the Kullback Leibler (KL) divergence between the

normalized power spectral density (PSD) of each frame and the uniform distribution.

We use the locations of local minima of the KL divergence to determine boundaries

between elements. The regions within the boundaries are treated as elements. For

each element, we compute the average energy as well as the average KL divergence

of the constituent frames. Elements for which both the average energy as well as

average KL divergence are above a threshold are treated as ‘potential syllables’. We

set the threshold for average energy (average KL divergence) to be 1% of the maxi-

mum value of the average energy (average KL divergence) of all elements within that

interval. Finally, if two or more ‘potential syllables’ are adjacent, they are merged

to get the list of final syllables. Fig. 0.1 and 0.2 contain the segmentation outputs

for audio recordings belonging to Winter Wren and Swainson’s Thrush respectively.

B Derivation of MAP objective function for Supervised LDA

Based on the structure of the graphical model, we have

p(W,θ,Y,φ|α,β) = p(φ|β)
M∏

i=1

p(wi, θi, yi|α,φ). (B.1)

Next, we derive the expressions for each term on the RHS of (B.1). Let zi denote

the respective topic assignments for each word in the vector wi. For each document,
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FIGURE 0.1: Segmentation of Winter Wren recording: (a) The local minima in KL

divergence are marked initially (b) Each region between the initial set of markers is

treated as an element. The final list of syllables are obtained using the procedure

described in Section A. The start and end of the final syllables are marked in green

and red respectively.
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FIGURE 0.2: Segmentation of Swainson’s Thrush recording: (a) The local minima

in KL divergence are marked initially (b) Each region between the initial set of

markers is treated as an element. The final list of syllables are obtained using the

procedure described in Section A. The start and end of the final syllables are marked

in green and red respectively.
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we can marginalize out all possible topic assignments, i.e.,

p(wi, θi, yi|α,φ) =
(∑

zi

P (wi|zi,φ)P (zi|θi)
)

· p(θi|yi,α)P (yi).

The first term on the RHS of (B.2) can be simplified as

∑

zi

P (wi|zi,φ)P (zi|θi) = exp(
V∑

v=1

nvi log(φ⊤θ)vi), (B.2)

where nvi denotes the number of times word v occurs in the ith training document.

Using the fact that p(θi|yi,α) and p(φk,·|β) are Dirichlet distributions, we obtain

(2.2)

C Derivation of (B.2)

Here, we discuss the marginalization of zi in the first term on the RHS of

(B.2).

∑

zi

P (wi|zi,φ)P (zi|θi) =
∑

zi

Ni∏

j=1

K∏

k′=1

(

θik′

V∏

v=1

φ
1[wij=v]
k′v

)
1[zij=k′]

.
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Due to the independence structure, the marginalization can be done independently

for each zij,

∑

zi

P (wi|zi,φ)P (zi|θi) =
∏

j

K∑

zij=1

K∏

k′=1

[

θik′ φk′,wij

]
1[zij=k′]

.

Replacing zij by k,

=
∏

j

K∑

k=1

θik φk,wij

Representing
K∑

k=1

θik φk,wij
as an inner product,

=
∏

j

(φ⊤θ)wij ,i,

= exp(
∑

j

log(φ⊤θ)wij ,i),

= exp(
∑

j

V∑

v=1

[

1[wij = v] log(φ⊤θ)vi

]

),

= exp(
V∑

v=1

[

nvi log(φ⊤θ)vi

]

),

where nvi =
∑Ni

j=1 1[wij = v].

D Derivation of MAP update equations in (2.3)

Here, we present the co-ordinate optimization of θ in (2.2). φ can be optimized

in a similar fashion. For a fixed φ, the Lagrange function (including the sum-to-one

constraints on θ) is given by

J(θ) =
∑

i

( V∑

v=1

[

nvi log(φT θ)vi

]

+
K∑

k=1

(αyi,k − 1) log θik

)

−
∑

i

λi(
∑

k

θik − 1) + constant,
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where ‘constant’ refers to terms independent of θ. First, we derive a lower bound

for log(φT θ)vi using Jensen’s inequality.

log(φT θ)vi = log(
K∑

k=1

φkvθik) = log(
K∑

k=1

γk
φkvθik

γk

).

Assume that γk ≥ 0 ∀ k and
∑K

k=1 γk = 1. Applying Jensen’s inequality, we have

log(φT θ)vi ≥
K∑

k=1

γk log(
φkvθik

γk

).

Defining γk as

γk =
φkvθ̂ik

∑K
k′=1 φk′vθ̂ik′

,

we obtain

J(θ) ≥
∑

i

( V∑

v=1

[

nvi

K∑

k=1

φkvθ̂ik
∑K

k′=1 φk′vθ̂ik′

log θik

]

+
K∑

k=1

(αyi,k − 1) log θik

)

−
∑

i

λi(
∑

k

θik − 1) + constant.

Note that the surrogate (lower bound) is separable in θ′iks if φ is held constant.

Re-arranging the order of summations,

J(θ) ≥
∑

i

K∑

k=1

([ V∑

v=1

nvi
φkvθ̂ik

∑K
k′=1 φk′vθ̂ik′

+ (αyi,k − 1)
]

log θik

)

−
∑

i

λi(
∑

k

θik − 1) + constant.

Imposing the non-negativity constraints on θ, we obtain the update equations in

(2.3).

E Nearest neighbor form of the log likelihood

Substituting Eq. (3.2) in Eq. (3.1) and using p = elog p, we obtain

p(D|y) = P (N |y)
N∏

i=1

Eθi|y

[

elog p(x(i)|θi)
]

P (ni|y). (E.1)
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We can express log p(x(i)|θi) as follows:

log p(x(i)|θi) = log p(x(i)|θ̂i) − niD̂kl(θ̂i‖θi), (E.2)

where θ̂i and D̂kl(θ̂i‖θi) have been defined in Eq. (3.4) and (3.5) respectively. Sub-

stituting Eq. (E.2) in the logarithm of Eq. (E.1), we obtain

log p(D|y) = C(X) + log P (N |y) +
N∑

i=1

(

log P (ni|y) + log Eθi|y

[

e−niD̂kl(θ̂i‖θi)
])

,

where C(X) has been defined in Eq. (3.6). Using the integral form of expectation,

we obtain

log p(D|y) = C(X) + log P (N |y) +
N∑

i=1

(

log P (ni|y) + log

∫

θi

e−niD̂kl(θ̂i‖θi)p(θi|y)dµ(θi)
)

,

from which we obtain Eq. (3.3).

F D̂kl(θ̂‖θ) for Exponential family (i.i.d. case)

The exponential family is characterized as

p(x|θ) = h(x)eη(θ)T T (x)−A(η(θ))

where η(θ) corresponds to the natural parametrization of the exponential family.

For block x = [x1, x2, . . . , xn] containing n frames, if we assume that the

frames are i.i.d. within the block, we have p(x|θ) =
∏n

j=1 p(xj|θ). Let θ̂ denote the

maximum likelihood estimator, i.e.,

θ̂ = arg max
θ

n∑

j=1

log p(xj|θ)
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For the exponential family, we have the following property, [48]

Eθ̂[T (x)] =
1

n

n∑

j=1

T (xj). (F.1)

The true KL divergence between two distributions belonging to the same exponential

family is given by

Dkl(θ̂‖θ) =

∫

x

p(x|θ̂) log
p(x|θ̂)
p(x|θ)dx

= Eθ̂

[

log
p(x|θ̂)
p(x|θ)

]

=
(

η(θ̂) − η(θ)
)T

Eθ̂[T (x)] − A(η(θ̂)) + A(η(θ)) (F.2)

Next, we evaluate the sample KL divergence estimate,

D̂kl(θ̂‖θ) =
1

n

n∑

j=1

log
p(xj|θ̂)
p(xj|θ)

=
1

n

n∑

j=1

(

η(θ̂) − η(θ)
)T

T (xj) − A(η(θ̂)) + A(η(θ))

=
(

η(θ̂) − η(θ)
)T ( 1

n

n∑

j=1

T (xj)
)

− A(η(θ̂)) + A(η(θ)) (F.3)

From Eq. (F.1), (F.3), (F.2), we have D̂kl(θ̂‖θ) = Dkl(θ̂‖θ) for any p(x|θ)

belonging to the exponential family.

G Learning using kernel density estimates

Substituting the estimates p̂(θ, n|y), P̂ (N |y), P̂ (y) into Eq. (3.18) and adding

a constant (w.r.t y) term N log N t for convenience, we obtain the MAP criterion in

a new form

max
y

log P̂ (y) + log P̂ (N |y) − N log
N t

y

N t
+

N∑

i=1

log
( Nt

y∑

k=1

q(ni|n(k, y))e−niD̂kl(θ̂i‖θ(k,y))
)

.
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Combining terms to a single exponent

max
y

log P̂ (y) + log P̂ (N |y) − N log
N t

y

N t
+

N∑

i=1

log
( Nt

y∑

k=1

e
−ni(D̂kl(θ̂i‖θ(k,y))+ 1

ni
log 1

q(ni|n(k,y))
)
)

.

Subtracting the constant (w.r.t. y)
∑N

i=1 log q(ni|ni):

max
y

log P̂ (y) + log P̂ (N |y) − N log
N t

y

N t
+

N∑

i=1

log
( Nt

y∑

k=1

e
−ni(D̂kl(θ̂i‖θ(k,y))+ 1

ni
log

q(ni|ni)

q(ni|n(k,y))
)
)

.

Let d((θ1, n1)‖(θ2, n2)) = D̂kl(θ1‖θ2)+
1
n1

log q(n1|n1)
q(n1|n2)

and note that if q(n|l) is uniquely

maximized at n = l, then 1
n1

log q(n1|n1)
q(n1|n2)

≥ 0 and is zero if and only if n1 = n2.

Hence dq(n1, n2) = 1
n1

log q(n1|n1)
q(n1|n2)

is a divergence between n1 and n2. In this case,

d((θ1, n1)‖(θ2, n2)) being the sum of two divergences is also a divergence which

applied to (θ1, n1) and (θ2, n2). Hence, we can further express the MAP criterion as

max
y

log P̂ (y) + log P̂ (N |y) − N log
N t

y

N t
+

N∑

i=1

log
( Nt

y∑

k=1

e−nid((θ̂i,ni)‖(θ(k,y),n(k,y)))
)

Let (θ(k,i,y), n(k,i,y)) denote the ordered version of (θ(k, y), n(k, y)) w.r.t. k, such that

d((θ̂i, ni)‖(θ(1,i,y), n(1,i,y))) ≤ d((θ̂i, ni)‖(θ(2,i,y), n(2,i,y))) ≤ . . .

≤ d((θ̂i, ni)‖(θ(Nt
y ,i,y), n(Nt

y ,i,y)))

Using the order notations and applying a negative sign, we rewrite the MAP criterion

as

min
y

− log P̂ (y) − log P̂ (N |y) + N log
N t

y

N t
−

N∑

i=1

log

Nt
y∑

k=1

(

e−nid((θ̂i,ni)‖(θ
(1,i,y),n(1,i,y)))

)

Expressing d((θ̂i, ni)‖(θ(k,i,y), n(k,i,y)) as

d((θ̂i, ni)‖(θ(k,i,y), n(k,i,y)) = d((θ̂i, ni)‖(θ(1,i,y), n(1,i,y)) + ∂d((θ̂i, ni)‖(θ(k,i,y), n(k,i,y)),

we obtain Eq. (3.21).
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H Kernel smoothing function - Poisson case

Consider the Poisson kernel function given by

q(n|l) =
lne−l

n!

The corresponding divergence is given by

dq(n, l) =
1

n
log

q(n|n)

q(n|l)

=
1

n
log

nne−n

lne−l

=
l

n
− 1 − log

l

n
,

which can be verified to be non-negative as log(x) ≤ (x − 1).




