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Uncertainty Quantification In Deep Learning

• Predict output distribution p(y|x) rather than point estimate
– Classification: output label y∗ along with confidence– Regression: output mean and variance

• What’s a “good” uncertainty estimate?
– Calibration– Higher uncertainty on out-of-distribution examples

• Existing Bayesian solutions: MCMC, VI, MC-Dropout
Our contribution: A simple yet powerful non-Bayesian baseline
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A Simple Recipe for Uncertainty Estimation

1. Let neural network parametrize pθ(y|x). Use a proper
scoring rule as training criterion.

– Classification: cross entropy loss– Regression: Gaussian likelihood mean µθ(x) & var σ2
θ(x)

2. Augment with adversarial training
– Encourages p(y|x) to be similar to p(y|x + ∆x)

3. Train an ensemble ofM networkswith random initialization
4. Combine predictions at test time

p(y|x) =
1
M

M∑
m=1

pθm(y|x,θm)

Model combination & not Bayesian Model Averaging
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Classification Results on MNIST
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• Ensembles lead to better predictive uncertainty

• Adversarial training leads to further improvements
• Similar results on SVHN, ImageNet & regression
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Predictive entropy on known & unknown inputs

Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)

Single network & MC-dropout can produce overconfident wrong
predictions, whereas deep ensembles are more robust.Similar results on ImageNet (dogs vs no-dogs).
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