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ABSTRACT the importance of properly adapting the priors (hyperparameters)

Supervised latent Dirichlet allocation (Supervised-LDA) [1] is an LDA-based models [11, 12]. This can be addressed by optimiz-

o : g g the prior parameterization instead of using a fixed prior, a task
probabilistic topic model that can be used for classification. One Ov!ft\:hich increases the computational complexity associated with in-

j[he advantag.es of Superviged-LDA over l.Jnsup.ervised LDA is tha1Ierence in LDA-based models. Understanding the tradeoff between
it can potentially learn topics that are inline with the class Iabel'computational complexity and classification performance of the dif-

The va_riational Bayes algorithm proposed if‘ (1] for infere_nce inferent inference methods for Supervised-LDA is key to identifying
Supervised-LDA suffers from high computational complexity. To the most suitable inference algorithm for a particular application.

address this issue, we develop computationally efficient inferen hile we present results only for the Supervised-LDA model, we

methods for Supervised-LDA. Specifically, we present coIIapse_ elieve that similar trends will hold for other labeled/discriminative

variational Bayes and MAP inference for parameter estimation IrIopic models as well. For an excellent comparison of different in-

Supervised-LDA. Additionally, we present computationally efficient - :
inference methods to determine the label of unlabeled data. We prgrence methods such as variational Bayes (VB), collapsed Gibbs

. L : e ampling (CGS), collapsed variational Bayes (CVB) and maximum
vide an empirical evaluation of the classification performance an -posteriori (MAP) inference for (unsupervised) LDA, we refer to
computational complexity (training as well as classification run-[lz] '
time) of different inference methods for the Supervised-LDA model™

and a classifier based on probabilistic latent semantic analysis. Previous work in the Supervised-LDA model employed VB for

inference [1]. We derive the MAP and CVB inference solutions
Index Terms— Supervised Latent Dirichlet Allocation, Bayesianfor Supervised-LDA and study the effect of the choice of inference

inference, Classification method for Supervised-LDA. While the extension of [12] to the su-

pervised case might appear straightforward at first sight, several n

1. INTRODUCTION aspects arise in the supervised case:

e Model based classificationThe classification stage is com-
pletely new relative to LDA and requires the development of
efficient inference techniques for classification of test docu-
ments.

Latent Dirichlet allocation (LDA) [2] is an unsupervised latent vari-
able model originally applied in the field of document modeling due
to its ability to decompose documents into topics and uncover topics
decomposition into words in a concise manner. As an unsupervised

model, LDA can be used to perform dimensionality reduction by
mapping the high dimensional bag-of-words representation to lower
dimensional topic representation.

Recently, there has been a growing interest in supervised exten-
sions of LDA for applications such as image classification [1, 3, 4],
document classification [5—7], movie rating prediction [8], nhamed
entity mining [7, 9], and credit attribution in multi-labeled corpora
[10]. In this paper, we focus on the supervised LDA model intro-
duced in [1] (henceforth referred to as Supervised-LDA). The mo-
tivations for supervised topic models are multi fold. Supervised
topic models can help in identifying topics specific to a particular

e Classification accuracy: Supervised-LDA is evaluated in

terms of classification accuracy rather than perplexity. It is
not obvious which inference method leads to the best classi-
fication accuracy.

Train vs Test computational complexityvhile the training
complexity of Supervised-LDA is similar to that of LDA,
model based classification approach for Supervised-LDA re-
quires significant additional computation in the test stage than
LDA, and can be computationally intensive when the number
of classes is large. We introduce a new classification approach
to solve this problem.

class. In addition, probabilistic models are flexible, allowing simul-In this work, we address the following question: Which inference

taneou_s modeling of various types C_’f information, for instance,_ th"?nethod provides a good trade-off between classification accuracy
Superwsed-LD_A mod_el can b_e readily extended to handle multiplez computational complexity for the Supervised-LDA model?
labels and additional information such as annotations or tags.

Despite the ability of topic models to produce a concise repre-
sentation, parameter estimation in topic models remains a challeng-
ing task. In most cases, exact inference is intractable and hence o ] ]
approximate inference methods are required. Inference methods t§he training data is assumed to be a collection\éfdocuments
topic models can be broadly categorized into sampling based ag.long with their corresponding labels. The collectionaf words

-th .
proaches and deterministic approximations. Recent work stresséd the it document is Qenoteg bw: = {wir,...,win,} and
the label associated with thé" document is denoted by;.

The entire corpus can then be represented(®Y,Y) where

2. PROBLEM STATEMENT

*The first author performed this work while at Oregon State Ersiity.



Table 1. List of symbols
Number of classes @ K
Number of training documents

Number of words in*" training document
Number of topics

Vocabulary size
All the words in the training documents a @ N; M
1 x N; vector containing the words

in document
Z; 1 x N; vector containing topic assignments

of corresponding words iw; ) . .
Labels of the training documents Fig. 1. Graphical model for Supervised-LDA
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©

K x M matrix whosei*” column represents
the ‘topic-multinomial’ parameter for the
i*" training document

¢ | K x V matrix whereg;., denotes the
probability ofv‘" word givenk!" topic

a | C x K matrix whereo.,. denotes the
Dirichlet prior for class: 4. PARAMETER ESTIMATION IN SUPERVISED-LDA
B 1 x V vector which denotes the Dirichlet
prior for each row ofp

LDA model may also be viewed as a special case of models such
as Labeled-LDA model [10] and Dirichlet-Multinomial Regression
model [13].

Parameter estimation in Supervised-LDA is based on the maximum
marginal likelihood principle. The marginal likelihood of the data,
i.e., the likelihood of( W, Y) conditioned on the hyperparameters,

is given by
Y = (y1,y2,-..,ym) and W = (wq,wo,...,wn). We
assume that each document belongs to oneCotlasses, i.e., p(W,Yl|a,B) = /9/ > p(W,Y,Z,6,d|a, 3) d0ds,
yi € {1,2,...,C}. We refer the reader to Table 1 for an ex- ¢z

planation of the symbols used. The task is to learn a model fofyhere Z corresponds to the topic assignments of all the words in
(W,Y) so that we are able to classify a new test document  the training corpus. The above integral is intractable. Determin-
Next, we discuss the details of the Supervised-LDA model used ifstic approaches (such as VB) replace the integral with a tractable
this paper. lower bound. Sampling based approaches (such as CGS) approxi-
mate this integral (expectation) using an empirical (sample-based)
3. DESCRIPTION OF THE MODEL — SUPERVISED LDA average. The MAP estimation procedure approxime.\tes the integral
by using point estimates @ and@ (Z can be marginalized out)
Supervised-LDA [1] is a natural extension to the original LDA  To the best of our knowledge, only VB inference has been ex-

model [2]. The graphical model for Supervised-LDA is shown in Plored earlier for the Supervised-LDA model [1]. We derive the
Fig. 1 and the generative process is explained in Algorithm 1. update equations for MAP and CVBO inference methods for the

Supervised-LDA model. Not surprisingly, if we set all theto be
equal (tol) in our update equations, we recover the update equations
for (unsupervised) LDA.

Algorithm 1 Generative process

for k =1to K do
Draw ¢y,. ~ Dirichlet(3)

4.1. MAP estimation

end for
for ¢ = 1to M do The MAP estimate 08 and¢ is given by
DraWyi ~ P(y)7 N;
Draw 6; ~ Dirichlet(ay, .) 0", ¢" = arg max p(W,8,Y, pla, B) @
for j = 1to NV; do '
Draw z;; ~ Discreteg;) As shown in Appendix A, the objective function for MAP is given
Draww;; ~ Discreteg., ;) by
end for
end for lng(W197Y7¢|a7/8)

= i(i [nm log(g‘bTe)m] + log P(y:)

i=1 wv=1

The key difference between Supervised-LDA and LDA is that
for each training document, we first draw the lakelnd then
choose a class-dependent Dirichlet prior for the topic proportions. +
The Dirichlet prior over the document specific topic proportions is
represented as@ x K matrix o, where thec!” row of o matrix
corresponds to the Dirichlet prior for classNote that we consider
botha andg3 (defined in Table 1) to be asymmetric Dirichlet priors.
The number of words in each documel;,, is an ancillary variable
and we assume that it is independent of the cta3$he Supervised- 1See Table 1 in [14] for a list of inference methods in graphicatiels.
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whe_reB_(-) denotes the multi_no_mial beta function. Parameter estiwheren;f,j = Z@,J/)i(i’j)ywi,j/:v Virj'k n}i” = 2 Vil
mation is performed by maximizing (2) w.r.8, ¢, , andgin a

\ij = il gl i i i
coordinate ascent fashion. The updategfgrandey, are given by, andng” = 3 (s jng.) Yok Further details are available in

Appendix B.
0ix o< max(gix, 0), v < Max(hry, 0 3 . i L o
r (9ix; 0) o (o, 0) ® Note that in VB, a fully factorized variational distribution is as-
where}”, 0, = 1,5, ¢r, = 1 and sumed, i.e.q(Z,0,¢) = [[, ¢(0:) [1,; a(zi;) [, a(éx.) and pa-
rameter estimation is performed by coordinate ascent on the negative
.V Mo variational free energy [1]. Upon convergence, the parameter esti-
gik = bi Z [‘ﬁkvw} + (ay, e — 1), mates are computed usigg, « (nr, + Bv), whered"  or, = 1.
v=1 k=1 CklvTik Note that while MAP is inherently parallelizable i.e., thés for the
M documents can be updated in parallel, the collapsed inference meth-

n Nws
hio = ko Y [Hik KiA] + (Bv = 1). (4)  ods are not inherently parallelizable.
i=1 Eklzl eik/¢k/v
Note thatd, ¢ denote the values @, ¢ from the previous iteration. S. CLASSIFICATION

. For a test documenw;, model-based classification is made using
4.1.1. Connection to NNMF the MAP rule, i.e.,

Note that (2) resembles the objective function of KL-divergence . _ 8
minimizing non-negative matrix factorization (NNMF) [15], with Y¢ = argmax p(yelw:) = arg max p(ye, we)- ®)
additional regularization terms af, ¢». The equivalence between

EM updates for Probabilistic Latent Semantic Analysis (PLSA) [16]5 1. Classification using VB

and KL-divergence minimizing NNMF updates in the unregularized i

case (i,e.e = 1,8 = 1in (2)), has been observed in [17]. In the VB can be used to classify a test document as follows [1]

EM algorithm for MAP solution in LDA [12], the E-step involves .

the computation of,;x = P(zi;|wi;,0;) and the M-step involves yi = argmax p(we, ye = c).

maximization w.r.t.0 and¢. To ensure thai.,;x’s are valid prob- ) o o
abilities, [12] impose the constraiet > 1,3 > 1 in their MAP Since the RHS is intractable, they compare the variational lower
solution. Even ifoc < 1,3 < 1, vu;x can be valid probabilities if ~bounds forlog p(w:, y: = ¢). The variational lower bound is com-
gir > 0andhy, > 0in (4). Another subtle difference exists. In (2), Puted as follows:

the hyperparameters are optimized using Maximum likelihood (ML) _ _

estimation for Dirichlet distribution whereas in the MAP solution log p(we, ye = c) = Eqllog p(w, ye = ¢)] + Hlq], ©)

by [12], the hyperparameters are optimized using ML for Polya disy, e, denotes the fully factorized variational distributiof®, z;) =

tribution. The Polya distribution accounts for the number of wordsé\lsg9 )T, q(z.;). This approach requires recomputation of the
in the document (and hence the number of topic variables), whereds '/ 1 li=1 7\*t3): .
the Dirichlet distribution estimatas using thed;s and hence, does variational lower bound for each possible valueyof and can be

- .~~~ _computationally demanding whefi is large. Next, we present the
not account for document length in the hyperparameter eSt'matlon'classification rules for MAP and CVBO.

4.2. Collapsed Variational Bayes (CVBO0) 5.2. Classification using MAP

In this section, we present the collapsed variational updates f
Supervised-LDA. As in LDA, the collapsed variational distribution
is assumed to factorize as follofd 2, 14]:

We expres®(y:|w:) as follows

vi = argmax [ p(6swe)p(un[60) db. (10)
9(Z,6,9) = q(6,|Z) [ [ ] a(zi5). (5) o
g Since the integral in (10) cannot be computed in closed-form, we

. . e . . ropose to approximate it as follows
whereq(z;;) is a multinomial distribution with parameters given by prop PP

q(z:i; = k) = 7i;x. The log marginal likelihood is lower bounded . .
by the negative collapsed variational free energy [14, 18], i.e., Yo~ argmax p(ye|67 )/ p(0c|we) db: (11)
, 0,
log p(W, Y|e, 8) > Eqllogp(W, Y|, )] + Hlg],  (6) = argmax p(y6;), (12)

where the RHS denotes the negative collapsed variational free eghere,

ergy. Maximizing the zeroth order Taylor approximation to the neg-

ative collapsed variational free energy (hence the name CVBO), the 07 = argmax p(6:|wy), (13)
updates fory;;;, are obtained as 8

= argmax log p(w¢|6:) + log p(6:). (14)
\ij Ot
o (n\ijJra )M (7 . .
Vigk ki yiok “k” +178 The approximation in (11) may be interpreted as a zeroth order ver-

sion of Laplace approximation of the integral in (10) arodiidAd-
2To keep the notation uncluttered, we do not mention the veriatpa-  ditionally, obtaining a singlé; (rather tharC’) enables us to think of
rameters explicitly. Supervised-LDA as a supervised dimensionality reduction method.




Note thatd; can be obtained by using an optimization similar to 6.1.2. Hyperparameter optimization for CVBO
(2). Sincey; is unobserved for test data, we hawg p(0;) which is
a mixture of Dirichlet distributions, instead &g p(6;|y;) used in
training (2). We treay); as a latent variable and derive an EM algo-
rithm to comput®; . The update rule is given I, o« max(gsx,0),
where}", 6, =1, and 6.1.3. Hyperparameter optimization for VB

We used the fixed point updates in [20] to compute the ML estimates
of Polya distribution.

As done by [1], we optimizex, but set3 to 1.

4 br10: (k) <
gk =Y =g+ > _ P(yr=c|0)(aer — 1). (15)
' l:l[ SE wet(w] o ' 6.1.4. PLSA-NN

Note thatd; denotes the value from the previous iteration. Note theAs observed by [21], PLSA is equivalent to LDA when all the hyper-

similarity of (15) to (4). Sincey; is not observed, th@x.; — 1) term parameters are set 1o Hence, we used the same update equations
is weighted byP(yt:C|ét)- as that of the MAP estimation, except that the hyperparameters are

held constant at. Once th&’s have been obtained for the training as
well as the test data, we usesenearest neighbot(NN) classifier
with Euclidean distance metric for classifying the test documents.

We consider two classification rules for CVBO. First, we clasgify ~ ollowing [22], we set the number of nearest neighbars; 10.
using

5.3. Classification using CVBO

. 6.2. Datasets
Yy = argmax p(We,yt = c). . . . . .
e In this section, we describe the datasets used in our experiments.

Since the RHS is intractable, we use the collapsed variational lowar2P€!Me: The firstimage classification dataset was used in [3]. The

bound forlog p(w+, y: = ¢). The collapsed variational lower bound ataset consists of 1600 images from tiabelMetoolbox. There

is computed using (9), where the expectation is w.r.t the coIIapseare totall); eightsclasses. For each imagec,i thedSrt]:aIe-ri]nvagiant fea-
variational distributiong(6:, z:) = q(6:|z:) [T}, q(z1;). We refer ture transform (SIFT) vectors are computed and then the SIFT vec-

to this classifier as CVBO0-1. Note that this can be (:omputationall)}Ors are clustered to obtain the codebook (size=158) representation.
intensive wherC is large. We introduce a second approach to alle_Each image contains 2401 SIFT vectors. The pre-processed dataset

viate this problem in bag-of-words format was made publicly available by [3]. More

details regarding the dataset are available in [3]. We used three ran-

c dom train-test data splits for cross validation, each time dividing the
Yejk o (nyd + Z Py = c|fit) e k) Pro, (16) datainto 800 training documents and 800 test documents.
c=1 MSRC-v2:We evaluate our algorithms on a subset of the MSRC-v2
_ dataset We used images belonging to eight groups (i.e., class la-
wheren;’;J = Zj,# Vi, N.¢ denotes the value of.; from the bels), namely, book’, ‘grass, cow, ‘tree, grass,

previous iteration and denotes the estimate ¢fcomputed fromthe  SKY', ‘' bike, building’, “sign’, ‘water, boat’,
‘aeropl ane, grass, sky’', ‘road, building re-

training data. We will refer to the second approximation as CVB0-2. <=" “F ] < !
sulting in a total of 240 images. We divided each image #to 8

blocks and we cluster the blocks usihgneans algorithm to create
6. EXPERIMENTAL RESULTS a codebook of size 160. Using this codebook, we create the bag-
of-words representation for each image. Again, we use 50% of the
In the first experiment, we compare the classification accuracy angataset for training and 50% of the dataset for testing. While we
runtime achieved by MAP, CVBO, VB and PLSA for the Supervised-rea|ize that it might be possible to use more sophisticated features,
LDA model. We implemented CGS and observed that the runtimgyyr goal here is to compare inference methods for classification
associated with CGS is significantly larger than the runtime assomther than find good feature vector representations. Note that quite
ciated with the other methods. In CGS, we need to compute thgome overlap exists between the classes themselves.
topic probabilities for each occurrence of a word (and not just every
unique occurrence as in the other methods) as well as draw multipl . . .
topic samples before estimating the hyperparameters. Hence, we §03 Simulation details

not include the results obtained using CGS here. We vary the number of topics and report the classification accuracy
and runtime in each case. Note that, in practice, we are interested
6.1. Implementation details only in the performance at the optimé&l (chosen based on a valida-

] ) o tion set) for each method. For each train-test data split, we try three
All the methods were implemented in Matlab. We used similar vecrandom initializations and report the best classification accuracy and
torization techniques in all of our implementations. We plan to makehe total runtime. The total runtime is the sum of the runtimes for

our code publicly available in the near future. each random initialization, which is the sum of the time for train-
ing and the time for testing. We compute the mean and standard
6.1.1. Hyperparameter optimization for MAP deviation of the results based on the 3 random train-test splits. The

error bars in our graphs denote the variation amongst 3 random train-
We restrictede > 1, but did not impose any constraint @h In test splits for cross-validation. We train the model till the fractional
our experiments, we used a log-barrier method with Newton updatghange in log likelihood, given bybs[(Unew — Uota)/Unew), iS less
equations [19] to compute the optimum 3 in (2).

3http://iresearch.microsoft.com/en-us/projects/objasgriecognition/
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the computational complexity of the updates and the implementa-
than a thresholdl()~% in our experiments), with an additional limit tion aspects. During the classification stage, CVBO0-2 and MAP are
on the maximum number of iteration30( in our experiments). roughly O(C') times faster than VB and CVBO0-1. The computa-
tional complexity in the training stage for Supervised-LDA is similar
to that of LDA (see Section 5 in [12] for a related discussion). Let
U =75 ,U;,wherelU; = |{v € {1,2,...,V},ny # 0}, i.e.,U;
The classification accuracy comparison is shown in Fig. 2 and Fig. 8enotes the number of unique words in tHedocument. Note that
for the LabelMe and MSRC-v2 datasets respectively. We can obdsuallylU < VM. Let N = >, N;, whereN; denotes the number
serve that MAP provides comparable performance to VB, CVBO inof words in thei*® document, as defined in Table 1. The training
terms of classification accuracy in the LabelMe dataset. However, inomplexity per iteration i€)(KU) for MAP, CVBO and VB and
the MSRC-v2 dataset, CVBO outperforms MAP and performs quiteD (K N) for CGS. As mentioned earlier, MAP updates for different
similar to VB. The CVBO0-2 classifier provides comparable perfor-documents can be parallelized while the collapsed inference meth-
mance to CVBO0-1 classifier. ods such as CVB and CGS are not inherently parallelizable. VB is
slower than CVBO-1 due to expensive digamma computations. In
our experiments (not reported here), we have observed that CGS is
slower than VB due to the large number of iterations required.
The runtime comparison for the LabelMe and MSRC-v2 datasets are The computational complexity of PLSA and MAP seems to
shown in Fig. 4 and Fig. 5 respectively. We observe that MAP probe comparable in these datasets. However, for classification using
vides considerable advantage in terms of runtime. The CVBO0-2 cla?LSA, we need to compute the nearest neighbor for the test data,
sifier is significantly faster than CVBO0-1. We observe the trend MAPwhich can be computationally intensive for large scale applications.
< CVB0-2 < CVBO0-1 < VB. To gain further insight, we consider

6.4. Effect of the inference method on classification accuracy

6.5. Computational complexity



7. CONCLUSION [14] Y.W. Teh, D. Newman, and M. Welling, “A collapsed varia-

tional bayesian inference algorithm for latent dirichlet alloca-

We presented MAP and CVBO inference methods for the Supervised-  tion,” Advances in NIPS/ol. 19, pp. 1353, 2007.

LDA model. We introduced a computationally efficient classifica- “ . . .

tion algorithm for MAP and CVBO that is scalable for datasets[ls] ]P'D' Lee gndﬂH.S.Seung, Algorithms for non-negative matix

) - o : . actorization,” Advances in NIPSvol. 13, 2001.

involving large number of classes. Additionally, this classification

algorithm allows us to use Supervised-LDA as a supervised dimer{16] T. Hofmann, “Probabilistic latent semantic indexing,”Rroc.

sionality reduction tool. We provided an empirical comparison of ACM SIGIR ACM, NY, USA, 1999, pp. 50-57.

the classification accuracy and runtime of MAP, CVBO to VB. The[17] E. Gaussier and C. Goutte, “Relation between PLSA and NMF

results indicate that, with proper hyperparameter tuning, CVBO and and implications,” irProc. ACM SIGIRACM, 2005, pp. 601—
VB can yield similar classification performance, while MAP yields 602.

a slightly lower performance. However, MAP is computationally L . ) )

very efficient and can provide speed-ups of over an order of 'magn[ls] MJ Beal, Variational algorithms for approximate Bayesian

tude compared to VB and CVBO. Based on our results, we advocate  inference 2003.

CVBO parameter estimation with the CVBO0-2 classifier for the[19] S.P. Boyd and L. Vandenbergh€onvex optimization Cam-

Supervised-LDA model, since it provides a good tradeoff between bridge University Press, 2004.

classifi_cation accuracy and run time. Future work will explore theLZO] T. Minka, “Estimating a Dirichlet distribution,” 2003.

extension of our inference methods to more complex topic model

that can handle annotations and multiple labels. [21] M. Girolami and A. Kalan, “On an equivalence between PLSI
and LDA,” in Proc. ACM SIGIRACM, 2003, p. 434.
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