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Abstract

We propose a distributed Markov chain Monte Carlo (MCMC) inference algo-
rithm for large scale Bayesian posterior simulation. We assume that the dataset
is partitioned and stored across nodes of a cluster. Our procedure involves an in-
dependent MCMC posterior sampler at each node based on its local partition of
the data. Moment statistics of the local posteriors are collected from each sampler
and propagated across the cluster using expectation propagation message passing
with low communication costs. The moment sharing scheme improves posterior
estimation quality by enforcing agreement among the samplers. We demonstrate
the speed and inference quality of our method with empirical studies on Bayesian
logistic regression and sparse linear regression with a spike-and-slab prior.

1 Introduction

As we enter the age of “big data”, datasets are growing to ever increasing sizes and there is an urgent
need for scalable machine learning algorithms. In Bayesian learning, the central object of interest
is the posterior distribution, and a variety of variational and Markov chain Monte Carlo (MCMC)
methods have been developed for “big data” settings. The main difficulty with both approaches is
that each iteration of these algorithms requires an impractical O(N) computation for a dataset of
size N � 1. There are two general solutions: either to use stochastic approximation techniques
based on small mini-batches of data [15, 4, 5, 20, 1, 14], or to distribute data as well as computation
across a parallel computing architecture, e.g. using MapReduce [3, 13, 16].

In this paper we consider methods for distributing MCMC sampling across a computer cluster where
a dataset has been partitioned and locally stored on the nodes. Recent years have seen a flurry
of research on this topic, with many papers based around “embarrassingly parallel” architectures
[16, 12, 19, 9]. The basic thesis is that because communication costs are so high, it is better for each
node to run a separate MCMC sampler based on its data stored locally, completely independently
from others, and then for a final combination stage to transform the local samples into samples for
the desired global posterior distribution given the whole dataset. [16] directly combines the samples
by weighted averages under an implicit Gaussian assumption; [12] approximates each local poste-
rior with either a Gaussian or a Gaussian kernel density estimate (KDE) so that the combination
follows an explicit product of densities; [19] takes the KDE idea one step further by representing it
as a Weierstrass transform; [9] uses the “median posterior” in an RKHS embedding space as a com-
bination technique that is robust in the presence of outliers. The main drawback of embarrassingly
parallel MCMC sampling is that if the local posteriors differ significantly, perhaps due to noise or
non-random partitioning of the dataset across the cluster, or if they do not satisfy the Gaussian as-
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sumptions in a number of methods, the final combination stage can result in highly inaccurate global
posterior representations.

To encourage local MCMC samplers to roughly be aware of and hence agree with one another
so as to improve inference quality, we develop a method to enforce sharing of a small number of
moment statistics of the local posteriors, e.g. mean and covariance, across the samplers. We frame
our method as expectation propagation (EP) [8], where the exponential family is defined by the
shared moments and each node represents a factor to be approximated, with moment statistics to
be estimated by the corresponding sampler. Messages passed among the nodes encode differences
between the estimated moments, so that at convergence all nodes agree on these moments. As EP
tends to converge rapidly, these messages will be passed around only infrequently (relative to the
number of MCMC iterations). It can also be performed in an asynchronous fashion, hence incurring
low communication costs. As opposed to previous embarrassingly parallel schemes which require a
final combination stage, upon convergence each sample drawn at any single node with our method
can be directly treated as a sample from an approximate global posterior distribution. Our method
differs from standard EP as each factor to be approximated consists of a product of many likelihood
terms (rather than just one as in standard EP), and therefore suffers less approximation bias.

2 A Distributed Bayesian Posterior Sampling Algorithm

In this section we develop our method for distributed Bayesian posterior sampling. We assume that
we have a dataset D = {xn}Nn=1 with N � 1 which has already been partitioned onto m compute
nodes. LetDi denote the data on node i for i = 1, . . . ,m such thatD = ∪mi=1Di. LetD−i = D\Di.
We assume that the data are i.i.d. given a parameter vector θ ∈ Θ with prior distribution p0(θ). The
object of interest is the posterior distribution, p(θ|D) ∝ p0(θ)

∏m
i=1 p(Di|θ), where p(Di|θ) is a

product of likelihood terms, one for each data item in Di.

Recall that our general approach is to have an independent sampler running on each node targeting
a “local posterior”, and our aim is for the samplers to agree on the overall shape of the posteriors,
by enforcing that they share the same moment statistics, e.g. using the first two moments they will
share the same mean and covariance. Let S(θ) be the sufficient statistics function such that f(S) :=
Ef [S(θ)] are the moments of interest for some density f(θ). Consider an exponential family of
distributions with sufficient statistics S(·) and let q(θ; η) be a density in the family with natural
parameter η. We will assume for simplicity that the prior belongs to the exponential family, p0(θ) =
q(θ; η0) for some natural parameter η0. Let p̃i(θ|Di) denote the local posterior at node i. Rather
than using the same prior, e.g. p0(θ), at all nodes, we use a local prior which enforces the moments
to be similar between local posteriors. More precisely, we consider the following target density,

p̃i(θ|Di) ∝ q(θ; η−i)p(Di|θ),

where the effective local prior q(θ; η−i) is determined by the (natural) parameter η−i. We set η−i
such that Ep̃i(θ|Di)[S(θ)] = µ for all i, for some shared moment vector µ.

As an aside, note that the overall posterior distribution can be recovered via

p(θ|D) ∝ p(D|θ)p0(θ) = p0(θ)

m∏
i=1

p(Di|θ) ∝ q(θ; η0)

m∏
i=1

[
p̃i(θ|Di)

q(θ; η−i)

]
, (1)

for any choice of the parameters η−i, with a number of previous works corresponding to differ-
ent choices. [16, 12, 19] use η−i = η0/m, so that the local prior is p0(θ)1/m and (1) reduces to
p(θ|D) ∝

∏m
i=1 p̃i(θ|Di). [2] set η−i = η0 for their distributed asynchronous streaming variational

algorithm, but reported that setting η−i such that q(θ; η−i) approximates the posterior distribution
given previously processed data achieves better performance. We say that such choice of η−i is
context aware as it contains contextual information from other local posteriors. Finally, in the ideal
situation with exact equality, q(θ; η−i) = p(θ|D−i), then each local posterior is precisely the true
posterior p(θ|D). In the following subsections, we will describe how EP can be used to iteratively
approximate η−i so that q(θ; η−i) matches p(θ|D−i) as closely as possible in the sense of min-
imising the KL divergence. Since our algorithm performs distributed sampling by sharing messages
containing moment information, we refer to it as SMS (in short for sampling via moment sharing).
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2.1 Expectation Propagation

In many typical scenarios the posterior is intractable to compute because the product of likelihoods
and the prior is not analytically tractable and approximation schemes, e.g. variational methods or
MCMC, are required to compute the posterior. EP is a variational message-passing scheme [8],
where each likelihood term is approximated by an exponential family density chosen iteratively to
minimise the KL divergence to a “local posterior”.

Suppose we wish to approximate (up to normalisation) the likelihood p(Di|θ) (as a function of θ),
using the exponential family density q(θ; ηi) for some suitably chosen natural parameter ηi, and
that other parameters {ηj}j 6=i are known such that each q(θ; ηj) approximates the corresponding
p(Dj |θ) well. Then the posterior distribution is well approximated by a local posterior where all but
one likelihood factor is approximated,

p(θ|D) ≈ p̃i(θ|D) ∝ p0(θ)p(Di|θ)
∏
j 6=i

q(θ; ηj) = p(Di|θ)p̃i(θ|D−i),

where p̃i(θ|D−i) = q(θ; η−i), with η−i = η0 +
∑

j 6=i ηj , is a context-aware prior which incorpo-
rates information from the other data subsets and is an approximation to the conditional distribution
p(θ|D−i). Replace p(Di|θ) by q(θ; ηi), then the corresponding local posterior p̃i(θ|D) would be
approximated by q(θ; η−i + ηi). A natural choice for the parameter ηi is the one that minimises
KL(p̃i(θ|D)‖q(θ; η−i +ηi)). This optimisation can be solved by calculating the moment parameter
µi = Ep̃i(θ|D)[S(θ)], transforming the moment parameter µi into its natural parameter, say νi, and
then updating ηi ← νi − η−i.
EP proceeds iteratively, by updating each parameter given the current values of the others using the
above procedure until convergence. At convergence (which is not guaranteed), we have that,

νi = ν := η0 +

m∑
j=1

ηj ,

for all i, where ηj are the converged parameter values. Hence the natural parameters, as well as
the moments of the local posteriors, at all nodes agree. When the prior p0(θ) does not belong to
the exponential family, we may simply treat it as p(D0|θ) where D0 = ∅ and approximate it with
q(θ; η0) just as we approximate the likelihoods.

2.2 Distributed Sampling via Moment Sharing

In typical EP applications, the moment parameter µi = Ep̃i(θ|D)[S(θ)] can be computed either
analytically or using numerical quadrature. In our setting, this is not possible as each likelihood
factor p(Di|θ) is now a product of many likelihoods with generally no tractable analytic form.
Instead we can use MCMC sampling to estimate these moments.

The simplest algorithm involves synchronous EP updates: At each EP iteration, each node i receives
from a master node η−i (initialised to η0 at the first iteration) calculated from the previous iteration,
runs MCMC to obtain T samples from which the moments µi are estimated, converts this into natural
parameters νi, and returns ηi = νi−η−i to the master node. (Note that the MCMC chains are run in
parallel; hence the moments are computed in parallel unlike standard EP.) An asynchronous version
can be implemented as well: At each node i, after the MCMC samples are obtained and the new ηi
parameter computed, the node communicates asynchronously with the master to send ηi and receive
the new value of η−i based on the current ηj 6=i from other nodes. Finally, a decentralised scheme is
also possible: Each node i stores a local copy of all the parameters ηj for each j = 1, . . . ,m, after
the MCMC phase and a new value of ηi is computed it is broadcast to all nodes, the local copy is
updated based on messages the node received in the mean time, and a new η−i is computed.

2.3 Multivariate Gaussian Exponential Family

For concreteness, we will describe the required computations of the moments and natural parameters
in the special cases of a multivariate Gaussian exponential family. In addition to being analytically
tractable and popular, the usage of multivariate Gaussian distribution can also be motivated using
Bayesian asymptotics for large datasets. In particular, for parameters in Rd and under regularity
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conditions, if the size of the subsetDi is large, the Bernstein-von Mises Theorem shows that the local
posterior distribution is well approximated by a multivariate Gaussian; hence the EP approximation
by an exponential family density will be very good. Given T samples {θit}Tt=1 collected at node i,
unbiased estimates of the moments (mean µi and covariance Σi) are given by

µi ←
1

T

T∑
t=1

θit Σi ←
1

T − 1

T∑
t=1

(θit − µi)(θit − µi)
>, (2)

while the natural parameters can be computed as ηi = (Ωiµi,Ωi), where

Ωi =
T − d− 2

T − 1
Σ−1

i (3)

is an unbiased estimate of the precision matrix [11]. Note that simply using Σ−1
i leads to a biased

estimate, which impacts upon the convergence of EP. Alternative estimators exist [18] but we use
the above unbiased estimate for simplicity. We stress that our approach is not limited to multivariate
Gaussian, but applicable to any exponential family distribution. In Section 3.2, we consider the case
where the local posterior is approximated using the spike and slab distribution.

2.4 Additional Comments

The collected samples can be used to form estimates for the global posterior p(θ|D) in two ways.
Firstly, these samples can be combined using a combination technique [16, 12, 19, 9]. According
to (1), each sample θ needs to be assigned a weight of q(θ; η−i)

−1 before being combined. Alter-
natively, once EP has converged, the MCMC samples target the local posterior pi(θ|D), which is
already a good approximation to the global posterior, so the samples can be used directly as approx-
imate samples of the global posterior without need for a combination stage. This has the advantage
of producing mT samples if each of the m nodes produces T samples, while other combination
techniques only produce T samples. We have found the second approach to perform well in prac-
tice.

In our experiments we have found damping to be essential for the convergence of the algorithm.
This is because in addition to the typical convergence issues with EP, our mean parameters are also
estimated using MCMC and thus introduces additional stochasticity which can affect the conver-
gence. There is little theory in the literature on convergence of EP [17], and even less can be shown
with the additional stochasticity introduced by the MCMC sampling. Nevertheless, we have found
that damping the natural parameters ηi works well in practice.

In the case of multivariate Gaussians, additional consideration has to be given due to the possibility
that the oscillatory behaviour in EP can lead to covariance matrices that are not positive definite. If
the precision of a local prior Ω−i is not positive definite, the resulting local posterior will become
unnormalisable and the MCMC sampling will diverge. We adopt a number of mitigating strategies
that we have found to be effective: Whenever a new value of the precision matrix Ωnew

−i is not positive
definite, we damp it towards its previous value as αΩold

−i + (1−α)Ωnew
−i , with an α large enough such

that the linear combination is positive definite; We collect a large enough number of samples at
each MCMC phase to reduce variability of the estimators; And we use the pseudo-inverse instead of
actual matrix inverse in (3).

3 Experiments

3.1 Bayesian Logistic Regression

We tested our sampling via moment sharing method (SMS) on Bayesian logistic regression with
simulated data. Given a dataset D = {(xn, yn)}Nn=1 where xn ∈ Rd and yn = ±1, the conditional
model of each yn given xn is

p(yn|xn,w) = σ(ynw
>xn), (4)

where σ(x) = 1/(1+e−x) is the standard logistic (sigmoid) function and the weight vector w ∈ Rd

is our parameter of interest. For simplicity we did not include the intercept in the model. We used
a standard Gaussian prior p0(w) = N (w;0d, Id) on w and the aim is to draw samples from the
posterior p(w|D).
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Figure 1: Plot of covariate dimensions
1 and 20 of the simulated dataset for
Bayesian logistic regression.

Our simulated dataset consists ofN data points, each with
d dimensional covariates, generated using i.i.d. draws
xn ∼ N (µx,Σx), where Σx = PP>, P ∈ [0, 1]d×d

and each entry of µx and P are in turn generated
i.i.d. from U(0, 1). We generate the “true” parameter vec-
tor w∗ from the prior N (0d, Id), with which the labels
are sampled i.i.d. according to the model, i.e. p(yn) =
σ(ynw

∗>xn). The dataset is visualized in Fig. 1.

As the base MCMC sampler used across all methods, we
used the No-U-Turn sampler (NUTS) [6]. NUTS was also
used to generate 100000 samples from the full posterior
p(θ|D) which were used as ground truth. Across all the
methods, the sampler was initialised at 0d and used the
first 20d samples for burn-in, then thinned every other sample.

We compared our method SMS against consensus Monte Carlo (SCOT) [16], the embarrassingly
parallel MCMC sampler (NEIS) of [12] and the Weierstrass sampler (WANG) [19].

SMS: We tested both the synchronous (SMS(s)) and asynchronous (SMS(a)) versions of our
method, using a multivariate Gaussian exponential family. The damping factor used was 0.2. At
each EP iteration, SMS produced both the EP approximated Gaussian posterior q(θ; η0 +

∑m
i=1 ηi),

as well as a collection of mT local posterior samples Θ. We use K to denote the total number of EP
iterations. For SMS(a), every m worker-master update is counted as one EP iteration.

SCOT: Since each node in our algorithm effectively draws KT samples in total, we allowed each
node in SCOT to draw KT samples as well, using a single NUTS run. To compare against our al-
gorithm at iteration k ≤ K, we used the first kT samples for combination and form the approximate
posterior samples.

NEIS: As in SCOT, we drew KT samples at each node, and compared against ours at iteration k
using the first kT samples. We tested both the parametric (NEIS(p)) and non-parametric (NEIS(n))
combination methods. To combine the kernel density estimates in NEIS(n), we adopted the recur-
sive pairwise combination strategy as suggested in [12, 19]. We retained 10mT samples during
intermediate stages of pair reduction and finally drew mT samples from the final reduction.

WANG: We test the sequential sampler in the first arXiv version, which can handle moderately
high dimensional data and does not require a good initial approximation. The bandwidths hl
(l = 1, . . . , d) were initialized to 0.01 and updated with

√
mσl (if smaller) as suggested by the

authors, where σl is the estimated posterior standard deviation of dimension l. As a Gibbs sampling
algorithm, WANG requires a larger number of iterations for convergence but does not need as many
samples within each iteration. Hence we ran it for K ′ = 700� K iterations, each time generating
KT/K ′ samples on every node. We then collected every T combined samples generated from each
subsequent K ′/K iterations for comparative purposes, leaving all previous samples as burn-in.

All methods were implemented and tested in Matlab. Experiments were conducted on a cluster with
as many as 24 nodes (Matlab workers), arranged in 4 servers, each being a multi-core server with 2
Intel(R) Xeon(R) E5645 CPUs (6 cores, 12 threads). We used the parfor command (synchronous)
and the parallel.FevalFuture object (asynchronous) in Matlab for parallel computations.
The underlying message passing is managed by the Matlab Distributed Computing Server.

Convergence of Shared Moments. Figure 2 demonstrates the convergence of the local posterior
means as the EP iteration progresses, for a dataset with N = 1000, d = 5. It clearly illustrates that
our algorithm achieves very good approximation accuracy by quickly enforcing agreement across
nodes on local posterior moments (mean in this case). Note that when m = 50, we used a larger
number of samples for stable convergence.

Approximation Accuracies. We compare the approximation accuracy of the different methods on
a larger dataset with N = 4000 and d = 20. We use a moderately large number of nodes m = 32,
and T = 10000. In this case, each subset consists of 125 data points. We considered three different
error measures for the approximation accuracies. Denote the ground truth posterior samples, mean
and covariance by Θ∗, µ∗ and Σ∗, and correspondingly Θ̂, µ̂ and Σ̂ for the approximate samples
collected using a distributed MCMC method. The first error measure is mean squared error (MSE)
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Figure 2: Convergence of local posterior means on a smaller Bayesian logistic regression dataset
(N = 1, 000, d = 5). The x-axis indicates the number of likelihood evaluations, with vertical
lines denoted EP iteration numbers. The y-axis indicates the estimated posterior means (dimensions
indicated by different colours). We show ground truth with solid horizontal lines, the EP estimated
mean with asterisks, and local sample estimated means dots connected with dash lines.
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Figure 3: Errors (log-scale) against the cumulative number of samples drawn on all nodes (kTm).
We tested two random splits of the dataset (hence 2 curves for each algorithm). Each complete EP
iteration is highlighted by a vertical grid line. Note that for SCOT, NEIS(p) and NEIS(n), apart
from usual combinations that occur after every Tm/2 local samples are drawn on all nodes, we also
deliberately looked into combinations at a much earlier stage at (0.01, 0.02, 0.1, 0.5)Tm.
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Figure 4: Cross comparison with different numbers of nodes. Note that the x-axes have different
meanings. In figure (a), it is the cumulative number of samples drawn locally on each node (kT ). For
the asynchronous SMS(a), we only plot every m iterations so as to mimic the behaviour of SMS(s)
for a more direct comparison. In figure (b) however, it is the cumulative number of likelihood
evaluations on each node (kTN/m), which more accurately reflect computation time.
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between µ̂ and µ∗:
∑d

l=1(µ̂l − µ∗l )2/d; the second is KL-divergence between N (µ∗,Σ∗) and
N (µ̂, Σ̂); and finally the MSE of the conditional probabilities:

1

N

∑
x∈D

[ 1

|Θ̂|

∑
w∈Θ̂

σ(w>x)− 1

|Θ∗|
∑

w∈Θ∗

σ(w>x)
]2
. (5)

Figure 3 shows the results for two separate runs of each method. We observe that both versions of
SMS converge rapidly, requiring few rounds of EP iterations. Further, they produce approximation
errors significantly below other methods. The synchronous SMS(s) does appear more stable and
converges faster than its asynchronous counterpart but ultimately both versions achieve the same
level of accuracy. SCOT and NEIS(p) are very closely related, with their MSE for posterior mean
overlapping. Both methods achieve reasonable accuracy early on, but fail to further improve with
the increasing number of samples available for combination due to their assumptions of Gaussianity.
NEIS(p) directly estimates µ̂ and Σ̂ without drawing samples Θ̂ and is thus missing from Figure 3b
and 3c. Note that NEIS(n) is missing from Figure 3b because the posterior covariance estimated
from the combined samples is singular due to an insufficient number of distinct samples. Unsurpris-
ingly, WANG requires a large number of iterations for convergence and does not achieve very good
approximation accuracy. It is also possible that the poor performances of NEIS(n) and WANG are
due to the kernel density estimation used, as its quality deteriorates very quickly with dimensionality.

Influence of the Number of Nodes. We also investigated how the methods behave with varying
numbers of partitions, m = 8, 16, 32, 48, 64. We tested the methods on three runs with three differ-
ent random partitions of the dataset. We only tested m = 64 on our SMS methods.

In Figure 4a, we see the rapid convergence in terms of the number of EP iterations, and the insensi-
tivity to the number of nodes. Also, the final accuracies of the SMS methods are better for smaller
values of m. This is not surprising since the approximation error of EP tends to increase when the
posterior is factorised into more factors. In the extreme case of m = 1, the methods will be exact.
Note however that with larger m, each node contains a smaller subset of data, and computation
time is hence reduced. In Figure 4b we plotted the same curves against the number kTN/m of
likelihood evaluations on each node, which better reflects the computation times. We thus see an
accuracy-computation time trade-off, where with larger m computation time is reduced but accu-
racies get worse. In Figure 4c, we looked into the accuracy of the obtained approximate posterior
in terms of KL-divergence. Note that apart from a direct read-off of the mean and covariance from
the parametric EP estimate (SMS(s,e) & SMS(a,e)), we might also compute the estimators from the
posterior samples (SMS(s,s) & SMS(a,s)), and we compared both of these in the figure. As noted
above, the accuracies are better when we have less nodes. However, the errors of our methods still
increase much slower than SCOT and NEIS(p), for both of which the KL-divergence increases to
around 20 and 85 when m = 32 and 48 and is thus cropped from the figure.

3.2 Bayesian sparse linear regression with spike and slab prior

In this experiment, we apply SMS to a Bayesian sparse linear regression model with a spike and
slab prior over the weights. Our goal is to illustrate that our framework is applicable in scenarios
where the local posterior distribution is approximated by other exponential family distributions and
not just the multivariate Gaussian.

Given a feature vector xn ∈ Rd, we model the label as yn ∼ N (w>xn, σ
2
y), where w is the

parameter of interest. We use a spike and slab prior [10] over w, which is equivalent to setting
w = w̃� s, where s is a d-dimensional binary vector (where 1 corresponds to an active feature and
0 inactive) whose elements are drawn independently from a Bernoulli distribution whose natural
(log odds) parameter is β0 and w̃l|sl ∼ N (0, σ2

w) i.i.d. for each l = 1, . . . , d. [7] proposed the
following variational approximation of the posterior: q(w̃, s) =

∏d
l=1 q(w̃l, sl) where each factor

q(w̃l, sl) = q(sl)q(w̃l|sl) is a spike and slab distribution. (We refer the reader to [7] for details.)

The spike and slab distribution over θ = (w̃, s) is an exponential family distribution with sufficient
statistics {sl, slw̃l, slw̃

2
l }dl=1, which we use for the EP approximation. The moments required con-

sist of the probability of sl = 1, and the mean and variance of w̃l conditioned on sl = 1, for each
l = 1, . . . , d. The conditional distribution of w̃l given sl = 0 is simply the prior N (0, σ2

w). The
natural parameters consist of the log odds of sl = 1, as well as those for w̃l conditioned on sl = 1
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Figure 5: Results on Boston housing dataset for Bayesian sparse linear regression model with spike
and slab prior. The x-axis plots number of data points per node (equals the number of likelihood
evaluations) times the cumulative number of samples drawn per node, which is a surrogate for the
computation times of the methods. The y-axis plots the ground truth (solid), local sample estimated
means (dashed) and EP estimated mean (asterisks) at every iteration.

(Section 2.3). We used the paired Gibbs sampler described in [7] as the underlying MCMC sampler,
and a damping factor of 0.5.

We experimented using the Boston housing dataset which consists of N = 455 training data points
in d = 13 dimensions. We fixed the hyperparameters to the values described in [7], and generated
ground truth samples by running a long chain of the paired Gibbs sampler and computed the pos-
terior mean of w using these ground truth samples. Figure 5 illustrates the output of SMS(s) for
m = 2 and m = 4 (the number of nodes was kept small to ensure that each node contains at least
100 observations). Each color denotes a different dimension; to avoid clutter, we report results only
for dimensions 2, 5, 6, 7, 9, 10, and 13. The dashed lines denote the local sample estimated means at
each of the nodes; the solid lines denote the ground truth and the asterisks denote the EP estimated
mean at each iteration. Initially, the local estimated means are quite different since each node has
a different random data subset. As EP progresses, these local estimated means as well as the EP
estimated mean converge rapidly to the ground truth values.

4 Conclusion

We proposed an approach to performing distributed Bayesian posterior sampling where each com-
pute node contains a different subset of data. We show that through very low-cost and rapidly
converging EP messages passed among the nodes, the local MCMC samplers can be made to share
a number of moment statistics like the mean and covariance. This in turn allows the local MCMC
samplers to converge to the same part of the parameter space, and allows each local sample pro-
duced to be interpreted as an approximate global sample without the need for a combination stage.
Through empirical studies, we showed that our methods are more accurate than previous methods
and also exhibits better scalability to the number of nodes. Interesting avenues of research include
using our SMS methods to adjust hyperparameters using either empirical or fully Bayesian learning,
implementation and evaluation of the decentralised version of SMS, and theoretical analysis of the
behaviour of EP under the stochastic perturbations caused by the MCMC estimation of moments.
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