Do Deep Generative Models
Know What They Don’'t Know?

Balaji Lakshminarayanan
balajiln@

Joint work with Eric Nalisnick, Akihiro Matsukawa, Yee
Whye Teh, Dilan Gorur

6 DeepMind

Quantifying Uncertainty In Deep Learning

* Why predictive uncertainty?

— Good uncertainty scores quantify when we can trust the
model’s predictions

Quantifying Uncertainty In Deep Learning

* Why predictive uncertainty?

— Good uncertainty scores quantify when we can trust the
model’s predictions

* Predict output distribution p(y|x) rather than point estimate

— Classification: output label y* along with confidence
— Regression: output mean and variance

Source of uncertainty: Inherent stochasticity

Output y for a given x could be inherently stochastic
* Rewards in a casino
* Measurement noise in y
* Noise in labeling process (outcome could depend on rater)
+ Also known as aleatoric uncertainty

+ Considered to be “irreducible uncertainty”: persists even in
the limit of infinite data

Source of uncertainty: Model uncertainty

0.0184

0.8163

0.7143

05102

0.4082

03061

0.2041

0.1020

0.0000

-10 — 0 B 10

+ Multiple values of parameters could be consistent with the
observed data

+ Also known as epistemic uncertainty

+ Considered to be “reducible uncertainty”: vanishes in the
limit of infinite data (subject to identifiability)

Applications of Predictive Uncertainty’

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

"Weight uncertainty is also useful, e.g. compression, sensitivity analysis

Applications of Predictive Uncertainty’

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

+ Active learning for efficient data collection

"Weight uncertainty is also useful, e.g. compression, sensitivity analysis

Applications of Predictive Uncertainty’

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

+ Active learning for efficient data collection

* Dealing with noisy data and train-test skew in production
systems

"Weight uncertainty is also useful, e.g. compression, sensitivity analysis

Applications of Predictive Uncertainty’

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

+ Active learning for efficient data collection

* Dealing with noisy data and train-test skew in production
systems

+ Reinforcement learning: (Safe) Exploration

"Weight uncertainty is also useful, e.g. compression, sensitivity analysis

Applications of Predictive Uncertainty’

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

+ Active learning for efficient data collection

* Dealing with noisy data and train-test skew in production
systems

+ Reinforcement learning: (Safe) Exploration
* Model interpretability and visualization

"Weight uncertainty is also useful, e.g. compression, sensitivity analysis

Applications of Predictive Uncertainty’

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

+ Active learning for efficient data collection

* Dealing with noisy data and train-test skew in production
systems

+ Reinforcement learning: (Safe) Exploration
* Model interpretability and visualization
* Build modular systems that know what they don't know

"Weight uncertainty is also useful, e.g. compression, sensitivity analysis

Applications of Predictive Uncertainty’

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

+ Active learning for efficient data collection

* Dealing with noisy data and train-test skew in production
systems

+ Reinforcement learning: (Safe) Exploration

* Model interpretability and visualization

* Build modular systems that know what they don't know
* ... and many more!

"Weight uncertainty is also useful, e.g. compression, sensitivity analysis

How do we measure the quality of uncertainty?

+ Calibration: Measures how probabilistic forecasts align
with observed long-run frequencies
— Weather forecasting: Of all days where model predicted rain
with 80% probability, what fraction did we observe rain?
— Measures: Calibration curve / Reliability diagrams,
Expected calibration error (ECE)

How do we measure the quality of uncertainty?

+ Calibration: Measures how probabilistic forecasts align
with observed long-run frequencies

— Weather forecasting: Of all days where model predicted rain
with 80% probability, what fraction did we observe rain?

— Measures: Calibration curve / Reliability diagrams,
Expected calibration error (ECE)

* Robustness to dataset shift: does the system exhibit
higher uncertainty on inputs far away from training data?

- p(y|x) is typically accurate when x ~ pynin(x), but can make
overconfident errors when asked to predict on
out-of-distribution (OOD) inputs

How do we measure the quality of uncertainty?

+ Calibration: Measures how probabilistic forecasts align
with observed long-run frequencies

— Weather forecasting: Of all days where model predicted rain
with 80% probability, what fraction did we observe rain?

— Measures: Calibration curve / Reliability diagrams,
Expected calibration error (ECE)

* Robustness to dataset shift: does the system exhibit
higher uncertainty on inputs far away from training data?

- p(y|x) is typically accurate when x ~ pynin(x), but can make
overconfident errors when asked to predict on
out-of-distribution (OOD) inputs

— Cross-validation can inflate performance. Need to measure
ability of model to reject OOD inputs (e.g. confidence
VErsus accuracy curves).

How do we measure the quality of uncertainty?

+ Calibration: Measures how probabilistic forecasts align
with observed long-run frequencies

— Weather forecasting: Of all days where model predicted rain
with 80% probability, what fraction did we observe rain?

— Measures: Calibration curve / Reliability diagrams,
Expected calibration error (ECE)

* Robustness to dataset shift: does the system exhibit
higher uncertainty on inputs far away from training data?

- p(y|x) is typically accurate when x ~ pynin(x), but can make
overconfident errors when asked to predict on
out-of-distribution (OOD) inputs

— Cross-validation can inflate performance. Need to measure
ability of model to reject OOD inputs (e.g. confidence
VErsus accuracy curves).

How do deep networks fare?

Deep networks are poorly calibrated

On Calibration of Modern Neural Networks

Chuan Guo”' Geoff Pleiss“' Yu Sun”' Kilian Q. Weinberger '

Abstract

Confidence calibration — the problem of predict-
ing probability estimates representative of the
true correctness likelihood — is important for
classification models in many applications. We
discover that modern neural networks, unlike
those from a decade ago, are poorly calibrated.
Through extensive experiments, we observe that
depth, width, weight decay, and Batch Normal-
ization are important factors influencing calibra-
tion. We evaluate the performance of various
post-processing calibration methods on state-of-
the-art architectures with image and document
classification datasets. Our analysis and exper-
iments not only offer insights into neural net-
work learning, but also provide a simple and
straightforward recipe for practical settings: on
most datasets, temperature scaling — a single-
parameter variant of Platt Scaling — is surpris-
ingly effective at calibrating predictions.

1. Introduction

LeNet (1998) ResNet (2016)
0 CIFAR-100 CIFAR-100
. 1ol
9
w 0.8 -1
8 I
2 g g
g 06 215
& 1S
% 04 1
B
02 A
1 1
0.0
|20 02 04 06 0.8 10 00 0.2 04 06 08 10
EEl Outputs
0.8 [Gap
>
g 06
£
2
8 0.4
<
0.2
0o Error=30.6
0.0 02 04 06 08 1.0 0.0 0.2 04 06 08 1.0
Confidence

Figure 1. Confidence histograms (top) and reliability diagrams
(bottom) for a 5-layer LeNet (left) and a 110-layer ResNet (right)
on CIFAR-100. Refer to the text below for detailed illustration.

High confidence predictions on OOD inputs

Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images

Anh Nguyen Jason Yosinski Jeff Clune
University of Wyoming Cornell University University of Wyoming
anguyen8@uwyo. edu yosinski@cs.cornell.edu jeffclune@uwyo.edu

Abstract
Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of

pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify objects
in images with near-human-level performance, questions
naturally arise as to what differences remain between com-
puter and human vision. A recent study [(] revealed that
changing an image (e.g. of alion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take ¢ i neu- Xiog pengun
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes - =

that DNNs believe with near certainty are familiar objects, oo | remote oo] Arcan rey
which we call “fooling images” (more generally, fooling ex- Figure 1. Evolved images that are unrecognizable to humans,
amples). Our results shed light on interesting differences ™t that stte-of-the-art DNNs trained on ImageNet believe with
between human vision and current DNNs, and raise ques- 99.6% certainty to be a familiar object. This result highlights

rions about th Jity of DNN tor visi differences between how DNNs and humans recognize obje
lons about fhe generallly o compuler vision. Images are cither directly (top) or indirectly (bottom) encoded.

>
3
¥
3

peacock

Published as a conference paper at ICLR 2019

DO DEEP GENERATIVE MODELS KNOW
WHAT THEY DON’T KNOW?

Eric Nalisnick*{ Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan*
DeepMind

10

So far: Discriminative models

1l

Discriminative vs Generative models

“Discriminative” Model “Generative” Model

* p(y|x) is typically accurate when x ~ py.in(X), but can make
overconfident errors when asked to predict on 00D

2Novelty Detection and Neural Network Validation (Bishop, 1994)

12

Discriminative vs Generative models

“Discriminative” Model “Generative” Model

* p(y|x) is typically accurate when x ~ py.in(X), but can make
overconfident errors when asked to predict on 00D
- Use generative model to decide when to trust p(y|x) [1]?

2Novelty Detection and Neural Network Validation (Bishop, 1994)

12

Eﬁ’ém EA"_ g
%ﬁggfﬁg

AL T
Ewgﬁﬁﬁﬁﬁm

g,

if p(z*;¢) <,

then reject =*

Use p(X) modél to reject
inputs with density below
some threshold [Bishop, 1994].

AABI workshop, NeurlPS 20173

Panel Discussion, Advances in Approximate Bayesian Inference
(AABI) workshop

3https://www.youtube.com/watch?v=x1UByHT6OmQ&feature=youtu.be&t=46m23
14

https://www.youtube.com/watch?v=x1UByHT60mQ&feature=youtu.be&t=46m2s

AABI workshop, NeurlPS 2017

ZOUBIN: [The Bishop (1994) procedure] should be built into the

software.

15

AABI workshop, NeurlPS 2017

ZOUBIN: [The Bishop (1994) procedure] should be built into the
software.

MODERATOR: 1Isn’t that hard?

16

AABI workshop, NeurlPS 2017

ZOUBIN: [The Bishop (1994) procedure] should be built into the
software.

MODERATOR: 1Isn’t that hard?

ZOUBIN: If you stick a picture of a chicken into an MNIST
classifier, it should tell you it’s neither a seven nor a one.

[AUDIENCE LAUGHS]

17

Generative models for CIFAR

Generative
'E-ﬁ==§ Model p <XCIFAR—10>

h"EiH-' Training

Deep generative models where density p(x) can be computed:
Flows, Auto-regressive models, VAEs (lower bound)

18

Training on CIFAR and Testing on SVHN (OOD)

Training: CIFAR-10 Testing: SVHN

GENERATIVE
MODEL

p(xCIFAR-IO) § p(XSVHN)

19

Training a Flow-Based Model on CIFAR-10

CIFAR-10 Training Images

1 :
EEE o
dEGREESESn

Bits Per Dimension
(NLL / # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464

(Lower is Better)

00005
EEN CIFAR10-TRAIN

o004 M CIFAR10-TEST

00003
00002
00001

00000
-12000 -10000 -8000 6000 4000

log p(X) (Higher is Better)

20

Training a Flow-Based Model on CIFAR-10

SVHN Test Images

1
2 |

A O O o [

Bits Per Dimension
(NLL / # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464
SVHN-Test 2.389

(Lower is Better)

00005
BN CIFAR10-TRAIN

oooos 8 CIFARIO-TEST
W SVHN-TEST

00003

00002

00001

00000
-12000 10000 -8000 6000 ~4000

log p(X) (Higher is Better)

21

Training a Flow-Based Model on CIFAR-10

SVHN Test Images Bits(Per Dimen?ion
NLL / # dims / log 2)
AR fu2f o] v B 14 CIFAR10-Train 3.386
. ... ﬂ 3.464
L Dl S04

m: BigProblem! e

oooos M CIFAR10-TEST

W SVHN-TEST

00003

00002

00001

00000
-12000 -10000 8000 6000

4000
log p(X) (Higher is Better)

22

Phenomenon holds for VAEs and PixelCNN too

000030 000045 000040
m—CIFARIO-TRAIN o o00i0 - CIFAR10-TRAIN CIFARLO-TRAIN
000025 WM CIFAR10-TEST CIFAR10-TEST 00003 CIFAR10-TEST
B SVHN-TEST oo SVHN-TEST 000030 SVHN-TEST
000020 000030
000025
000025
000015 000020
000020
o000s
000010 000015
000010 oo
000005
o 0000s 000005
000000 — 000000 — 90000
00 -20000 15000 10000 -5000 3 ~16000 1400012000 ~10000 8000 ~6000 4000 ~2000 ~16000-14000-12000-10000 3000 6000 4000 -2000 O

log p(X) log p(X) log p(X)
(a) PixelCNN (b) VAE with RNVP as encoder ~ (¢) VAE conv-categorical likelihood

The phenomenon is asymmetric w.r.t. datasets

0.0005
EEE CIFAR10-TRAIN
00004 BN CIFAR10-TEST
BN SVHN-TEST

0.0003

0.0002

0.0001

000?012000 -10000 —8000 -6000 —4000
log p(X)
CIFAR-10 vs SVHN

0.0006

EEE SVHN-TRAIN
SVHN-TEST
CIFAR10-TEST

0.0005

0.0004
0.0003
0.0002
0.0001

0.0000
10000 —9000 —8000 —7000 —6000 —5000 —4000 —3000 —2000

log p(X)
SVHN vs CIFAR-10

24

Additional OOD dataset pairs

000204 1t 4L
. FashionMNIST-TRAIN
= FashionMNIST-TEST

00015 - WEE MNIST-TEST

00010 -
00005 -

00000 4 | —— e P —
4000 ~3500 ~3000 ~2500 ~2000 ~1500 ~1000 ~500 O

log p(X)

FashionMNIST vs MNIST

00005 . .

W ColebA-TRAIN
CelebA-TEST

W SVHN-TEST

00004 -
00003 -
00002 -
00001 -

000004 r v " " -
14000 -12000 -10000 -8000 -6000 —4000 -2000

log p(X)

CelebA vs SVHN

L R R S S R S R

. imageNet-TRAIN
= imageNet-TEST
[CIFAR10-TEST
-
-

00004 -

CFAR100-TEST

0.0003 - SVHN-TEST

00000 4 4

106 506
ImageNet vs CIFAR-10
vs SVHN

25

Not caused by overfitting: Early stopping does

not help

4.5
_ —— CIFAR-10 TRAIN
§ a0 —— CIFAR-10 TEST
= —— SVHN TEST
o
‘» 3.5
C
()
£
- 3.0
T
o
‘Lln' 2.5 k
g

2.0

0 20000 40000 60000 80000 100000
iterations

During Optimization

Ensembling does not fix the problem either

0.0005 0.0005
EEN CIFAR10-TRAIN
B CGFAR10-TEST
BN SVHN-TEST

Emm CIFAR10-TRAIN
0.0004 B CIFAR10-TEST
B SVHN-TEST

0.0004

0.0003 0.0003
0.0002 0.0002
0.0001 0.0001
0.0000 0.0000
-12000 -10000 -8000 —6000 —4000 —14000 —-12000 —10000 -8000 -6000 —4000 -2000 0
log p(X) log p(X)

CIFAR-10 vs SVHN CIFAR-10 vs SVHN
1 Glow Ensemble of 10 Glows

Digging deeper into flows

28

Flows: one slide summary

Define Z by a transformation of Change of Variables Formula (X = 2):
another variable X: 7 — f(X) df (X)
f(x) is a bijection
(invertible 1:1 mapping)
X z Use f such that th
. e that the
Use simple p, distribution selsuc .
(e.g. standard normal) Jacobian df/dx is easy to
compute

x=f%z) z=1(x)

29

Decomposition of likelihood for flow models

00005
EEN CFAR10-TRAIN

0000s ™= CIFAR10-TEST
W SVHN-TEST

00003

00002

00001

00000

~12000 -10000 -8000 -6000 -4000

log p(X)

CIFAR-10 vs SVHN

0008 00006
EEN CFAR10-TRAIN

NN CFAR10-TEST 00005
BN SVHN-TEST

00004

00003

00002

00001

0000 00000
-22000 -21800 -21600 -21400 -21200 -21000

log p(2)

Distribution Term

BN CFAR10-TRAIN
BN CFAR10-TEST
WEN SVHN-TEST

10000 12000 14000 16000 18000

log |af/ox|

Volume Term

30

Decomposition of likelihood for flow models

00005
WEN CIFAR10-TRAIN

00004 ™ CIFAR0-TEST
BN SVHN-TEST

00003

00002

00001

00000
-12000 -10000 -8000 6000 4000

log p(X)

CIFAR-10 vs SVHN

= Looks to be the cause
of the phenomenon

aooe 00006
EER CFAR10-TRAIN
WSS CFAR10-TEST
0006 WM SVHN-TEST

00005

00004

0005
0004 00003
oo 00002
0002

00001
0001
0000 00000
22000 21800 21600 21400 21200 21000

log p(2)

Distribution Term

W CFAR10-TRAIN
SN CFAR10-TEST
W SVHN-TEST

10000 12000 14000 16000 18000

log |af/ox|

Volume Term

31

Is the log volume term the culprit?

We define a sub-class we term constant-volume (w.r.t. input) flows.

Use only translation operations.

To isolate the effect of the volume term, we define
constant-volume (w.r.t. input) flows.

32

Is the log volume term the culprit? No.

We define a sub-class we term constant-volume (w.r.t. input) flows.

CIFAR-10 vs SVHN

0.0030

BN CIFAR10-TRAIN

Use only translation operations. 00025 W CIFARL0-TEST
W SVHN-TEST

0.0020

0.0015

0.0010

0.0005

0.0000
—10000 -9500 9000 —8500 -8000 ~-7500 ~-7000 —6500

log p(X)

33

Analysis of Constant Volume
GLOW models

34

Analysis of Constant Volume GLOW models

Mathematical characterization:

0 < Eqlogp(; 0)] — Eyp- log p(a; 0)]

Non-Training Training
Distribution Distribution

35

Analysis of Constant Volume GLOW models

Mathematical characterization:

0 < Eq[log p(; 0)] — Ey- [log p(; 6)]

Non-Training Training
Distribution Distribution

Second Moment
of Training
Distribution

Tr { [Vio log p (f(o; $)) + V3, log ’é?_wﬁ] (2 —Ep*)}

4 second Moment
of Non-Training
Distribution

~
~

N =

Change-of-Variable
Terms

36

Analysis of Constant Volume GLOW models

Mathematical characterization:

0 < Eq[logp(; 0)] — Ep- [log p(; 0)]

Non-Training Training

Distribution Distribution
Second Moment
of Training
Distribution
1 3 —
2 .
R 5 Tr | V2, logp. (f(@o;) + Vo ela 2| | (2 — 5
) { Second Moment
: of Non-Training
Change-of-Variable Distribution

Terms

37

Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

{ [IOg p(:z:g,)] ()} Second Moment Second Moment
of Non-Training of Training
c K C 2 Distribution Distribution
_2 2
logp(z Y) E H E :uk .j E : Tghyw,e = Tp* hw,c)
c=1 \k=1j=1 h,w

1x1 Cony. Params

38

Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

Tr { [VZ:O logp(a:o, 0)] (Eq — Ep*)} Second Moment Second Moment
of Non-Training of Training
Distribution Distribution

0> < —
8 Ing zZ; 'l»b Z H Zu’k c,j Z(Ug,h,w,c - g*,h,w,c)

c=1 \k=1j=1 h,w

\ 1x1 Conv. Param.s\

Sum over spatial
Sums over channel dimensions
dimensions

Product over
steps in flow

39

Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

Tr { [V?co IOg p(:l:o, 0)] (Eq — Ep*)} Second Moment Second Moment
of Non-Training of Training
c Distribution Distribution

0?
8 9.2 Ing Z; "/’ Z H Zuk (%] Z(Gg,h,w,c - z*,h,w,c)

c=1\ k=1 j=1 hyw

< 0 for all log-
concave densities Non-negative
(e.g. Gaussian) due to square

40

Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

Tr{[Vi, logp(eo; 6)] (g —Zpr)} seconanement - seconiomen
a c Distﬁtion Distribution
a a.2 logp(z ¢ Z H Zuk cJj Z(Ug,h,w,c - Ug*,h,w,c)
c=1 \k=1j=1 hyw 4
< 0 for all log- ¢ <
concave densities Non-negative Sign boils down to
(B CREE) due to square difference in moments.
Speaks to asymmetric
behavior.

M

Analysis of Constant Volume GLOW models

Plugging in the CIFAR-10 and SVHN statistics:

Esvin [log p(z; 0)] — Ecrrario[log p(; 0)]

K C

R 5 [0f 123+ 0f-65+0a3-14.5] >0 where ac = [[D tne,;
P k=1j=1

Differences in variances in the
three spatial dimensions

42

Analysis of Constant Volume GLOW models

Plugging in the CIFAR-10 and SVHN statistics:
Esvin [logp(a:; 0)] -]ECIFARIO[Ing(w; 0)]

K C
1
RS o7 [0f 123+ 03 6.5+ 03 145] >0 where a, = 11D ukes

g. .
¥ k=1j=1
—— CIFAR-10 TRAIN
Differences in variances in the K—;:i
—— SVHN TEST

three spatial dimensions

The expression will be non-negative for any
parameter setting of the CV flow....

Bits-per-dimension (bpd)

[

20000 40000 60000 80000 100000
iterations

43

Analysis of Constant Volume GLOW models

Plugging in the CIFAR-10 and SVHN statistics:

Esvin [logp(a:; 0)] — Ecrario [10317(1’5 9)]

K C
1
~ 202 [a% 123+ 0265+ a2 - 14.5] >0 where a, = H Zuk,c,j
P k=1j=1
0014 — CIFAR10 i
Differences in variances in the ooz g‘;:;l"ﬁ”" '
three spatial dimensions ey ;
008
This also means that we can manipulate the relative oo
log likelihoods just by changing the variance of the ooot
data. For natural images, this amounts to graying... °*
0 6500-10000-5300 ~9000 8500 ~8000 ~7500 7000 ~6500 6000
log p(X)

One weird trick to increase likelihoods: grayscale images!

44

Summary of Results

45

Summary of Results

= = s Empirical Results

46

Summary of Results

= » s Empirical Results
=== Analytical Results

NICE

DEEP -]

CONSTANT
sonenare

GANs™

47

Take home message

- Deep generative models are attractive but have problems
detecting out-of-distribution data.

48

Take home message

- Deep generative models are attractive but have problems
detecting out-of-distribution data.

* For flow-based models, the phenomenon can be explained
through the relative variances of the different input
distributions

— Grayscale images
— Constant images

48

Take home message

- Deep generative models are attractive but have problems
detecting out-of-distribution data.
* For flow-based models, the phenomenon can be explained
through the relative variances of the different input
distributions

— Grayscale images

— Constant images
* Be cautious when using density estimates from deep
generative models as proxy for “similarity” to training data

— Novelty detection
— Anomaly detection

48

Papers available on my webpage (link)

* Do Deep Generative Models Know What They Don’t Know?,
ICLR, 2019 [3]

* Hybrid models with deep and invertible features, ICML, 2019
(2]

49

http://www.gatsby.ucl.ac.uk/~balaji/
https://sites.google.com/corp/view/udlworkshop2019/

Papers available on my webpage (link)

* Do Deep Generative Models Know What They Don’t Know?,
ICLR, 2019 [3]

* Hybrid models with deep and invertible features, ICML, 2019
(2]

Check out our ICML 2019 workshop
https://sites.google.com/corp/view/udlworkshop2019/

49

http://www.gatsby.ucl.ac.uk/~balaji/
https://sites.google.com/corp/view/udlworkshop2019/

Thanks!

Acknowledgements:

- Eric Nalisnick

- Akihiro Matsukawa
- Dilan Gorur

* Yee Whye Teh

50

[1] Christopher M Bishop. Novelty Detection and Neural
Network Validation. 1994.

[2] Eric Nalisnick, Akihiro Matsukawa, YeeWhye Teh, Dilan
Gorur, and Balaji Lakshminarayanan. Hybrid models with
deep and invertible features. In ICML, 2019.

[3] Eric Nalisnick, Akihiro Matsukawa, YeeWhye Teh, Dilan

Gorur, and Balaji Lakshminarayanan. Do Deep Generative
Models Know What They Don't Know? In ICLR, 2019.

51

