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Quantifying Uncertainty In Deep Learning

* Why predictive uncertainty?
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Quantifying Uncertainty In Deep Learning

* Why predictive uncertainty?

— Good uncertainty scores quantify when we can trust the
model’s predictions

* Predict output distribution p(y|x) rather than point estimate

— Classification: output label y* along with confidence
— Regression: output mean and variance



Source of uncertainty: Inherent stochasticity

Output y for a given x could be inherently stochastic
* Rewards in a casino
* Measurement noise in y
* Noise in labeling process (outcome could depend on rater)
+ Also known as aleatoric uncertainty

+ Considered to be “irreducible uncertainty”: persists even in
the limit of infinite data



Source of uncertainty: Model uncertainty
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+ Multiple values of parameters could be consistent with the
observed data

+ Also known as epistemic uncertainty

+ Considered to be “reducible uncertainty”: vanishes in the
limit of infinite data (subject to identifiability)
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Applications of Predictive Uncertainty’

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

+ Active learning for efficient data collection

* Dealing with noisy data and train-test skew in production
systems

+ Reinforcement learning: (Safe) Exploration

* Model interpretability and visualization

* Build modular systems that know what they don't know
* ... and many more!

"Weight uncertainty is also useful, e.g. compression, sensitivity analysis
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+ Calibration: Measures how probabilistic forecasts align
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How do deep networks fare?



Deep networks are poorly calibrated

On Calibration of Modern Neural Networks

Chuan Guo”' Geoff Pleiss“' Yu Sun”' Kilian Q. Weinberger '

Abstract

Confidence calibration — the problem of predict-
ing probability estimates representative of the
true correctness likelihood — is important for
classification models in many applications. We
discover that modern neural networks, unlike
those from a decade ago, are poorly calibrated.
Through extensive experiments, we observe that
depth, width, weight decay, and Batch Normal-
ization are important factors influencing calibra-
tion. We evaluate the performance of various
post-processing calibration methods on state-of-
the-art architectures with image and document
classification datasets. Our analysis and exper-
iments not only offer insights into neural net-
work learning, but also provide a simple and
straightforward recipe for practical settings: on
most datasets, temperature scaling — a single-
parameter variant of Platt Scaling — is surpris-
ingly effective at calibrating predictions.

1. Introduction
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Figure 1. Confidence histograms (top) and reliability diagrams
(bottom) for a 5-layer LeNet (left) and a 110-layer ResNet (right)
on CIFAR-100. Refer to the text below for detailed illustration.



High confidence predictions on OOD inputs

Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images

Anh Nguyen Jason Yosinski Jeff Clune
University of Wyoming Cornell University University of Wyoming
anguyen8@uwyo. edu yosinski@cs.cornell.edu jeffclune@uwyo.edu

Abstract
Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of

pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify objects
in images with near-human-level performance, questions
naturally arise as to what differences remain between com-
puter and human vision. A recent study [ (] revealed that
changing an image (e.g. of alion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take ¢ i neu- Xiog pengun
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes - =

that DNNs believe with near certainty are familiar objects, oo | remote oo ] Arcan rey
which we call “fooling images” (more generally, fooling ex-  Figure 1. Evolved images that are unrecognizable to humans,
amples). Our results shed light on interesting differences ™t that stte-of-the-art DNNs trained on ImageNet believe with
between human vision and current DNNs, and raise ques- 99.6% certainty to be a familiar object. This result highlights

rions about th Jity of DNN tor visi differences between how DNNs and humans recognize obje
lons about fhe generallly o compuler vision. Images are cither directly (top) or indirectly (bottom) encoded.
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So far: Discriminative models
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Discriminative vs Generative models

“Discriminative” Model “Generative” Model

* p(y|x) is typically accurate when x ~ py.in(X), but can make
overconfident errors when asked to predict on 00D

2Novelty Detection and Neural Network Validation (Bishop, 1994)
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Discriminative vs Generative models

“Discriminative” Model “Generative” Model

* p(y|x) is typically accurate when x ~ py.in(X), but can make
overconfident errors when asked to predict on 00D
- Use generative model to decide when to trust p(y|x) [1]?

2Novelty Detection and Neural Network Validation (Bishop, 1994)
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Use p(X) modél to reject
inputs with density below
some threshold [Bishop, 1994].




AABI workshop, NeurlPS 20173

Panel Discussion, Advances in Approximate Bayesian Inference
(AABI) workshop

3https://www.youtube.com/watch?v=x1UByHT6OmQ&feature=youtu.be&t=46m23
14


https://www.youtube.com/watch?v=x1UByHT60mQ&feature=youtu.be&t=46m2s

AABI workshop, NeurlPS 2017

ZOUBIN: [The Bishop (1994) procedure] should be built into the

software.

15



AABI workshop, NeurlPS 2017

ZOUBIN: [The Bishop (1994) procedure] should be built into the
software.

MODERATOR: 1Isn’t that hard?

16



AABI workshop, NeurlPS 2017

ZOUBIN: [The Bishop (1994) procedure] should be built into the
software.

MODERATOR: 1Isn’t that hard?

ZOUBIN: If you stick a picture of a chicken into an MNIST
classifier, it should tell you it’s neither a seven nor a one.

[AUDIENCE LAUGHS]
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Generative models for CIFAR

Generative
'E-ﬁ==§ Model p <XCIFAR—10>

h"EiH-' Training

Deep generative models where density p(x) can be computed:
Flows, Auto-regressive models, VAEs (lower bound)

18



Training on CIFAR and Testing on SVHN (OOD)

Training: CIFAR-10  Testing: SVHN

GENERATIVE
MODEL

p(xCIFAR-IO) § p(XSVHN)
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Training a Flow-Based Model on CIFAR-10

CIFAR-10 Training Images
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Training a Flow-Based Model on CIFAR-10

SVHN Test Images

1
2 |

A O O o [

Bits Per Dimension
(NLL / # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464
SVHN-Test 2.389

(Lower is Better)

00005
BN CIFAR10-TRAIN

oooos 8 CIFARIO-TEST
W SVHN-TEST

00003

00002

00001

00000
-12000 10000  -8000 6000 ~4000

log p(X) (Higher is Better)

21



Training a Flow-Based Model on CIFAR-10

SVHN Test Images Bits( Per Dimen?ion
NLL / # dims / log 2)
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Phenomenon holds for VAEs and PixelCNN too
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The phenomenon is asymmetric w.r.t. datasets
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Additional OOD dataset pairs
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Not caused by overfitting: Early stopping does

not help
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Ensembling does not fix the problem either
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Digging deeper into flows
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Flows: one slide summary

Define Z by a transformation of Change of Variables Formula (X = 2):
another variable X: 7 — f(X) df (X)
f(x) is a bijection
(invertible 1:1 mapping)
X z Use f such that th
. e that the
Use simple p, distribution selsuc .
(e.g. standard normal) Jacobian df/dx is easy to
compute

x=f%z) z=1(x)

29



Decomposition of likelihood for flow models
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Decomposition of likelihood for flow models
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= Looks to be the cause
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Is the log volume term the culprit?

We define a sub-class we term constant-volume (w.r.t. input) flows.

Use only translation operations.

To isolate the effect of the volume term, we define
constant-volume (w.r.t. input) flows.

32



Is the log volume term the culprit? No.

We define a sub-class we term constant-volume (w.r.t. input) flows.

CIFAR-10 vs SVHN
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Analysis of Constant Volume
GLOW models
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Analysis of Constant Volume GLOW models

Mathematical characterization:

0 < Eqlogp(; 0)] — Eyp- log p(a; 0)]

Non-Training Training
Distribution Distribution
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Analysis of Constant Volume GLOW models

Mathematical characterization:

0 < Eq[log p(; 0)] — Ey- [log p(; 6)]

Non-Training Training
Distribution Distribution

Second Moment
of Training
Distribution

Tr { [Vio log p (f(o; $)) + V3, log ’é?_wﬁ ] (2 —Ep*)}

4 second Moment
of Non-Training
Distribution

~
~

N =

Change-of-Variable
Terms
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Analysis of Constant Volume GLOW models

Mathematical characterization:

0 < Eq[logp(; 0)] — Ep- [log p(; 0)]

Non-Training Training

Distribution Distribution
Second Moment
of Training
Distribution
1 3 —
2 .
R 5 Tr | V2, logp. (f(@o; ) + Vo ela 2| | (2 — 5
) { Second Moment
: of Non-Training
Change-of-Variable Distribution

Terms
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Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

{ [ IOg p(:z:g, )] ( )} Second Moment Second Moment
of Non-Training of Training
c K C 2 Distribution Distribution
_2 2
logp(z Y) E H E :uk .j E : Tghyw,e = Tp* hw,c)
c=1 \k=1j=1 h,w

1x1 Cony. Params
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Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

Tr { [VZ:O logp(a:o, 0)] (Eq — Ep*)} Second Moment  Second Moment
of Non-Training of Training
Distribution Distribution

0> < —
8 Ing zZ; 'l»b Z H Zu’k c,j Z(Ug,h,w,c - g*,h,w,c)

c=1 \k=1j=1 h,w

\ 1x1 Conv. Param.s\

Sum over spatial
Sums over channel dimensions
dimensions

Product over
steps in flow
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Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

Tr { [V?co IOg p(:l:o, 0)] (Eq — Ep* )} Second Moment Second Moment
of Non-Training of Training
c Distribution Distribution

0?
8 9.2 Ing Z; "/’ Z H Zuk (%] Z(Gg,h,w,c - z*,h,w,c)

c=1\ k=1 j=1 hyw

< 0 for all log-
concave densities Non-negative
(e.g. Gaussian) due to square
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Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

Tr{[ Vi, logp(eo; 6)] (g —Zpr)}  seconanement - seconiomen
a c Distﬁtion Distribution
a a.2 logp(z ¢ Z H Zuk cJj Z(Ug,h,w,c - Ug*,h,w,c)
c=1 \k=1j=1 hyw 4
< 0 for all log- ¢ <
concave densities Non-negative Sign boils down to
(B CREE) due to square difference in moments.
Speaks to asymmetric
behavior.
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Analysis of Constant Volume GLOW models

Plugging in the CIFAR-10 and SVHN statistics:

Esvin [log p(z; 0)] — Ecrrario[log p(; 0)]

K C

R 5 [0f 123+ 0f-65+0a3-14.5] >0 where ac = [[ D tne,;
P k=1j=1

Differences in variances in the
three spatial dimensions
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Analysis of Constant Volume GLOW models

Plugging in the CIFAR-10 and SVHN statistics:
Esvin [logp(a:; 0)] - ]ECIFARIO[Ing(w; 0)]

K C
1
RS o7 [0f 123+ 03 6.5+ 03 145] >0 where a, = 11D ukes

g. .
¥ k=1j=1
—— CIFAR-10 TRAIN
Differences in variances in the K—;:i
—— SVHN TEST

three spatial dimensions

The expression will be non-negative for any
parameter setting of the CV flow....

Bits-per-dimension (bpd)
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20000 40000 60000 80000 100000
iterations
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Analysis of Constant Volume GLOW models

Plugging in the CIFAR-10 and SVHN statistics:

Esvin [logp(a:; 0)] — Ecrario [10317(1’5 9)]

K C
1
~ 202 [a% 123+ 0265+ a2 - 14.5] >0 where a, = H Zuk,c,j
P k=1j=1
0014 — CIFAR10 i
Differences in variances in the ooz g‘;:;l"ﬁ”" '
three spatial dimensions ey ;
008
This also means that we can manipulate the relative oo
log likelihoods just by changing the variance of the ooot
data. For natural images, this amounts to graying... °*
0 6500-10000-5300 ~9000 8500 ~8000 ~7500 7000 ~6500 6000
log p(X)

One weird trick to increase likelihoods: grayscale images!
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Summary of Results
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Summary of Results

= = s Empirical Results
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Summary of Results

= » s Empirical Results
=== Analytical Results
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DEEP -]

CONSTANT
sonenare

GANs™
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Take home message

- Deep generative models are attractive but have problems
detecting out-of-distribution data.

48



Take home message

- Deep generative models are attractive but have problems
detecting out-of-distribution data.

* For flow-based models, the phenomenon can be explained
through the relative variances of the different input
distributions

— Grayscale images
— Constant images
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Take home message

- Deep generative models are attractive but have problems
detecting out-of-distribution data.
* For flow-based models, the phenomenon can be explained
through the relative variances of the different input
distributions

— Grayscale images

— Constant images
* Be cautious when using density estimates from deep
generative models as proxy for “similarity” to training data

— Novelty detection
— Anomaly detection
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Papers available on my webpage (link)

* Do Deep Generative Models Know What They Don’t Know?,
ICLR, 2019 [3]

* Hybrid models with deep and invertible features, ICML, 2019
(2]
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http://www.gatsby.ucl.ac.uk/~balaji/
https://sites.google.com/corp/view/udlworkshop2019/

Papers available on my webpage (link)

* Do Deep Generative Models Know What They Don’t Know?,
ICLR, 2019 [3]

* Hybrid models with deep and invertible features, ICML, 2019
(2]

Check out our ICML 2019 workshop
https://sites.google.com/corp/view/udlworkshop2019/
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http://www.gatsby.ucl.ac.uk/~balaji/
https://sites.google.com/corp/view/udlworkshop2019/

Thanks!
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