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Quantifying Uncertainty In Deep Learning

• Why predictive uncertainty?
– Good uncertainty scores quantify when we can trust themodel’s predictions

• Predict output distribution p(y|x) rather than point estimate
– Classification: output label y∗ along with confidence– Regression: output mean and variance
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Source of uncertainty: Inherent stochasticity

Output y for a given x could be inherently stochastic
• Rewards in a casino
• Measurement noise in y
• Noise in labeling process (outcome could depend on rater)
• Also known as aleatoric uncertainty
• Considered to be “irreducible uncertainty”: persists even inthe limit of infinite data
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Source of uncertainty: Model uncertainty

• Multiple values of parameters could be consistent with theobserved data
• Also known as epistemic uncertainty
• Considered to be “reducible uncertainty”: vanishes in thelimit of infinite data (subject to identifiability)
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Applications of Predictive Uncertainty1

• Cost-sensitive decision making (e.g. healthcare,self-driving cars, robotics)

• Active learning for efficient data collection
• Dealing with noisy data and train-test skew in productionsystems
• Reinforcement learning: (Safe) Exploration
• Model interpretability and visualization
• Build modular systems that know what they don’t know
• ... and many more!

1Weight uncertainty is also useful, e.g. compression, sensitivity analysis 5
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How do we measure the quality of uncertainty?

• Calibration: Measures how probabilistic forecasts alignwith observed long-run frequencies
– Weather forecasting: Of all days where model predicted rainwith 80% probability, what fraction did we observe rain?– Measures: Calibration curve / Reliability diagrams,Expected calibration error (ECE)

• Robustness to dataset shift: does the system exhibithigher uncertainty on inputs far away from training data?
– p(y|x) is typically accurate when x ∼ ptrain(x), but can makeoverconfident errors when asked to predict on

out-of-distribution (OOD) inputs– Cross-validation can inflate performance. Need to measureability of model to reject OOD inputs (e.g. confidenceversus accuracy curves).
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How do deep networks fare?

7



Deep networks are poorly calibrated
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High confidence predictions on OOD inputs
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So far: Discriminative models
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Discriminative vs Generative models

• p(y|x) is typically accurate when x ∼ ptrain(x), but can makeoverconfident errors when asked to predict on OOD

• Use generative model to decide when to trust p(y|x) [1]2

2Novelty Detection and Neural Network Validation (Bishop, 1994) 12
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AABI workshop, NeurIPS 20173

Panel Discussion, Advances in Approximate Bayesian Inference(AABI) workshop

3https://www.youtube.com/watch?v=x1UByHT60mQ&feature=youtu.be&t=46m2s 14
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AABI workshop, NeurIPS 2017
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AABI workshop, NeurIPS 2017
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Generative models for CIFAR

Deep generative models where density p(x) can be computed:
Flows, Auto-regressive models, VAEs (lower bound)
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Training on CIFAR and Testing on SVHN (OOD)
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Training a Flow-Based Model on CIFAR-10
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Training a Flow-Based Model on CIFAR-10
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Training a Flow-Based Model on CIFAR-10
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Phenomenon holds for VAEs and PixelCNN too
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The phenomenon is asymmetric w.r.t. datasets
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Additional OOD dataset pairs
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Not caused by overfitting: Early stopping does
not help

26



Ensembling does not fix the problem either
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Digging deeper into flows
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Flows: one slide summary
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Decomposition of likelihood for flow models
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Decomposition of likelihood for flow models

31



Is the log volume term the culprit?

To isolate the effect of the volume term, we define
constant-volume (w.r.t. input) flows.

32



Is the log volume term the culprit? No.
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Analysis of Constant Volume
GLOW models
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Analysis of Constant Volume GLOW models
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Analysis of Constant Volume GLOW models
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Analysis of Constant Volume GLOW models

One weird trick to increase likelihoods: grayscale images!
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Summary of Results
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Summary of Results
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Summary of Results

47



Take home message

• Deep generative models are attractive but have problemsdetecting out-of-distribution data.

• For flow-based models, the phenomenon can be explainedthrough the relative variances of the different inputdistributions
– Grayscale images– Constant images

• Be cautious when using density estimates from deepgenerative models as proxy for “similarity” to training data
– Novelty detection– Anomaly detection
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Papers available on my webpage (link)
• Do Deep Generative Models Know What They Don’t Know?,ICLR, 2019 [3]
• Hybrid models with deep and invertible features, ICML, 2019[2]

Check out our ICML 2019 workshophttps://sites.google.com/corp/view/udlworkshop2019/
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Thanks!
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