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Abstract
Modern deep learning models have achieved
great success in predictive accuracy for many
data modalities. However, their application to
many real-world tasks is restricted by poor uncer-
tainty estimates, such as overconfidence on out-
of-distribution (OOD) data and ungraceful failing
under distributional shift. Previous benchmarks
have found that ensembles of neural networks
(NNs) are typically the best calibrated models on
OOD data. Inspired by this, we leverage recent
theoretical advances that characterize the function-
space prior of an ensemble of infinitely-wide NNs
as a Gaussian process, termed the neural network
Gaussian process (NNGP). We use the NNGP
with a softmax function to build a probabilistic
model for multi-class classification and marginal-
ize over the latent Gaussian outputs to sample
from the posterior. This gives us a better under-
standing of the prior NNs place on function space
and allows a direct comparison of the calibra-
tion of the NNGP and its finite-width analogue.
We also examine the calibration of previous ap-
proaches to classification with the NNGP, which
treat classification problems as regression to the
one-hot labels. In this case the Bayesian poste-
rior is exact, and we compare several heuristics
to generate a categorical distribution over classes.
We find these methods are well calibrated under
distributional shift.

1. Introduction
The representations learned by NNs are difficult to inter-
pret and able to fit spurious correlations. Therefore if these
models are ever to be widely applied in high-risk areas like
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medicine or autonomous driving, they must gain our trust
in other ways. Specifically, we might ask that our models
are calibrated, that is, rather than simply providing point
estimates, they also report their confidence in the predic-
tion. Over many predictions, well calibrated models report
confidences that are consistent with measured performance.
The Brier score (BS), expected calibration error (ECE), and
negative log-likelihood (NLL) are common measurements
of calibration (Brier, 1950; Naeini et al., 2015; Gneiting &
Raftery, 2007).

Empirically, there are many concerning findings about the
calibration of deep learning techniques, particularly on out-
of-distribution (OOD) data whose distribution differs from
that of the training data (MacKay, 1992; Hein et al., 2019).
For in-distribution data, post-hoc calibration techniques
such as temperature scaling tuned on a validation set (Platt
et al., 1999; Guo et al., 2017) often give excellent results;
however, such methods have not been found to be robust on
shifted data and indeed sometimes even reduce calibration
on such data (Ovadia et al., 2019). Thus finding ways to
detect or build models that produce reliable signals when
making predictions on OOD data is a key challenge.

Sometimes data can be only slightly OOD or can shift from
the training distribution gradually over time. This is called
dataset shift (Quionero-Candela et al., 2009) and is impor-
tant in practice for models dealing with seasonality effects,
for example. While perfect calibration under arbitrary dis-
tributional shift is impossible, simulating plausible kinds of
distributional shift that may occur in practice at different
intensities can be a useful tool for evaluating the calibration
of existing models. A recently proposed benchmark takes
this approach (Ovadia et al., 2019). Using several kinds of
common image corruptions applied at various intensities,
the authors observed the degradation in accuracy expected
of models trained only on clean images (Hendrycks & Di-
etterich, 2019; Mu & Gilmer, 2019), but also saw very
different levels of calibration, with deep ensembles (Laksh-
minarayanan et al., 2017) proving the best.

Bridging Bayesian Learning and Neural Networks In
principle, Bayesian methods provide a promising way to
tackle calibration, allowing us to define models with and
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infer under specific aleatory and epistemic uncertainty. Typ-
ically, the datasets on which deep learning has proven suc-
cessful have high SNR, meaning epistemic uncertainty is
dominant and model averaging is crucial because our over-
parameterized models are not determined by the training
data. Indeed Wilson (2020) argues that ensembles are a kind
of Bayesian model average.

Ongoing theoretical work has built a bridge between NNs
and Bayesian methods (Neal, 1994a; Lee et al., 2018;
Matthews et al., 2018a), by identifying NNs with Gaussian
processes as the width of the network becomes very large.
Specifically, the neural network Gaussian process (NNGP)
describes the prior on function space that is realized by an
i.i.d. prior over the parameters. The function space prior is
a GP with a specific kernel that is defined recursively with
respect to the layers. While the many heuristics used in
training NNs may obfuscate the issue, little is known theo-
retically about the uncertainty properties implied by even
basic architectures and initializations of NNs. Indeed theo-
retically understanding overparameterized NNs is a major
open problem. With the NNGP prior in hand, it is possible to
disambiguate between the uncertainty properties of the NN
prior and those due to the specific optimization decisions by
performing Bayesian inference.

1.1. Summary of contributions

Unlike previous works, we construct a valid probabilistic
model for classification tasks using the NNGP, that is, a la-
bel’s prediction is always a categorical distribution. We
perform neural network Gaussian process classification
(NNGP-C) using a softmax link function to exactly mir-
ror NNs used in practice. We perform a detailed comparison
of NNGP-C against its corresponding NN on clean, OOD,
and shifted test data and find NNGP-C to be significantly
better calibrated and more performant than the NN.

Next, we evaluate the calibration of neural network Gaus-
sian process regression (NNGP-R) on both UCI regression
problems and classification on CIFAR10. As the posterior
of NNGP-R is a multivariate normal and so not a categorical
distribution, a heuristic must be used to calculate confi-
dences for classification problems. On the full benchmark
of Ovadia et al. (2019), we compare several such heuristics,
and against the standard RBF kernel and ensemble methods.
We find the calibration of NNGP-R to be competitive with
the best results reported in (Ovadia et al., 2019).

2. Full Bayesian Treatment of Classification
with Neural Kernels

It is common to interpret the logits of a NN once mapped
through a softmax as a categorical distribution over the
labels for each point. Indeed cross entropy loss is some-

times motivated as the KL divergence between the predicted
distribution and the observed label. Similarly, while the
initialization scheme used for a NN’s parameters is often
chosen for optimization reasons, it can also be thought of
as a prior. This implicit prior over functions and over the
distribution of labels has effects, despite the decision of
most common training algorithms in deep learning to forgo
explicitly trying to find its posterior. In this section, we take
seriously this implicit prior and utilize the simple character-
ization it has over logits in the infinite-width limit to define
a probabilistic model for mutli-class classification as

y ∼ softmax(f(x)), where f ∼ GP(0,K), (1)

where K is the NNGP kernel. If the prior is a correct model
for the data generation process, then the posterior is optimal
for inference. Thus, by avoiding heuristic approaches to
inference, we are able to directly evaluate the prior. Then
by comparing this to more standard gradient-based training
methods, we can understand their effect on calibration.

For training data (X ,Y), the posterior on a test point x can
be found by marginalizing out the latent space. Denote
F := f(X ), f := f(x), and F as the concatenation of F
and f , then

p(y|X ,Y) =

∫
softmax(f)p(f |Y) df, (2)

where

p(F|Y) = p(Y|F )p(F)/p(Y)

∝ N (F;0,K(F,F))
∏
i

softmax(Fi)Yi . (3)

See (Williams & Rasmussen, 2006) for details. We generate
samples from the joint posterior distribution of f and F
using elliptical slice sampling (ESS) (Murray et al., 2010).
Note that the latent space dimension in the datasets we
consider is substantial, which makes inference with ESS
computationally intensive, especially with hyperparameter
tuning of the kernel. Therefore, we focus our attention on
FC and CNN-Vec kernels.

Our main findings for NNGP-C, summarized in Fig. 1 and
Table S1, show that NNGP-C is well calibrated and out-
performs the corresponding NN. This indicates that the
MAP-based training of the NN is partly responsible for its
poor calibration and helps explain the success of ensembles.

3. Regression with the NNGP
As observed in Sec. 2, inference with NNGP-C is chal-
lenging as the posterior is intractable. In this section, we
consider Gaussian process regression using the NNGP (ab-
breviated as NNGP-R), which is defined by the model

y ∼ f(x) + ε, where f ∼ GP(0,K), (4)
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Figure 1. Investigating the calibration of Gaussian process classification with CNN-GP kernels. (left) Histogram of the confidence of
the posterior distribution for each test point. We compare the C-NNGP-C and a finite width CNN on an identically distributed test set
(CIFAR10) and an OOD test set (SVHN). C-NNGP-C shows lower confidence and higher entropy on both test sets compared to the CNN,
which has very high confidence on many points as indicated by the spike around 1. On the clean data the CNN’s overconfidence hurts
its calibration, as it achieves worse ECE and BS than C-NNGP-C. (middle) The performance of both models, C-NNGP-C is solid and
CNN dashed, under increasing distributional shift given by the CIFAR10 fog corruption. The accuracy of the CNN and C-NNGP-C are
comparable as the shift intensity increases, but C-NNGP-C remains better calibrated throughout. (right) We bin the test set into ten bins
sorted by confidence, and we plot mean confidence against mean accuracy. C-NNGP-C remains closer to x = y than the CNN, which
shifts toward increasing overconfidence.

where K is the NNGP kernel and ε ∼ N (0, σ2
ε ) is an in-

dependent noise term. One major advantage of NNGP-R
is that the posterior is analytically tractable. The posterior
at a test point x has a Gaussian distribution with mean and
variance given by

µ(x) = K(x,X )Kε(X ,X )−1Y
σ2(x) = K(x, x)−K(x,X )Kε(X ,X )−1K(X , x) (5)

where (X ,Y) is the training set of inputs and targets re-
spectively and Kε ≡ K + σ2

ε I. For regression problems
where y ∈ Rd, the variance describes the model’s uncer-
tainty about the test point. Note that while this avoids the
difficulties of approximate inference methods like MCMC,
computation of the kernel inverse means running time scales
cubically with the dataset size.

3.1. Benchmark on UCI Dataset

We perform non-linear regression experiments proposed
by Hernández-Lobato & Adams (2015), which is a stan-
dard benchmark for evaluating uncertainty of Bayesian
NNs. We use all datasets except for Protein and Year.
Each dataset is split into 20 train/test folds. We report
our result in Table 1, comparing against the following
strong baselines: Probabilistic BackPropagation with the
Matrix Variate Gaussian distribution (PBP-MV) (Sun et al.,
2017), Monte-Carlo Dropout (Gal & Ghahramani, 2016)
evaluated with hyperparameter tuning as done in Mukhoti
et al. (2018) and Deep Ensembles (Lakshminarayanan et al.,
2017). We also evaluated a standard GP with RBF kernel
KRBF(x, x′) = β exp

(
−γ||x− x′||2

)
for comparison.

Instead of maximizing train NLL for model selection, we
performed hyperparameter search on a validation set (we

further split the training set so that overall train/valid/test
split is 80/10/10), as commonly done in NN model selection
and in the BNN context applied in (Mukhoti et al., 2018).

We found that NNGP-R can outperform and remain com-
petitive with existing methods in terms of both root-mean-
squared-error (RMSE) and negative-log-likelihood (NLL).
In Table 1, we observe that NNGP-R achieves the lowest
RMSE on the majority (5/8) of the datasets and competitive
NLL.

Table 1. Result for regression benchmark on UCI Datasets with
FC-NNGP-R. Note ±x reports the standard error around estimated
mean for 20 splits. Average Test (top) RMSE (bottom) Negative
Log-Likelihood Performance.
Dataset (m, d) PBP-MV Dropout

Deep
Ensembles RBF FC-NNGP-R

Boston Housing (506, 13) 3.11 ± 0.15 2.90 ± 0.18 3.28 ± 1.00 3.24 ± 0.21 3.07 ± 0.24
Concrete Strength (1030, 8) 5.08 ± 0.14 4.82 ± 0.16 6.03 ± 0.58 5.63 ± 0.24 5.25 ± 0.20
Energy Efficiency (768, 8) 0.45 ± 0.01 0.54 ± 0.06 2.09 ± 0.29 0.50 ± 0.01 0.57 ± 0.02
Kin8nm (8192, 8) 0.07 ± 0.00 0.08 ± 0.00 0.09 ± 0.00 0.07 ± 0.00 0.07 ± 0.00
Naval Propulsion (11934, 16) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Power Plant (9568, 4) 3.91 ± 0.04 4.01 ± 0.04 4.11 ± 0.17 3.82 ± 0.04 3.61 ± 0.04
Wine Quality Red (1588, 11) 0.64 ± 0.01 0.62 ± 0.01 0.64 ± 0.04 0.64 ± 0.01 0.57 ± 0.01
Yacht Hydrodynamics (308, 6) 0.81 ± 0.06 0.67 ± 0.05 1.58 ± 0.48 0.60 ± 0.07 0.41 ± 0.04

Boston Housing (506, 13) 2.54 ± 0.08 2.40 ± 0.04 2.41 ± 0.25 2.63 ± 0.09 2.65 ± 0.13
Concrete Strength (1030, 8) 3.04 ± 0.03 2.93 ± 0.02 3.06 ± 0.18 3.52 ± 0.11 3.19 ± 0.05
Energy Efficiency (768, 8) 1.01 ± 0.01 1.21 ± 0.01 1.38 ± 0.22 0.78 ± 0.06 1.01 ± 0.04
Kin8nm (8192, 8) -1.28 ± 0.01 -1.14 ± 0.01 -1.20 ± 0.02 -1.11 ± 0.01 -1.15 ± 0.01
Naval Propulsion (11934, 16) -4.85 ± 0.06 -4.45 ± 0.00 -5.63 ± 0.05 -10.07 ± 0.01 -10.01 ± 0.01
Power Plant (9568, 4) 2.78 ± 0.01 2.80 ± 0.01 2.79 ± 0.04 2.94 ± 0.01 2.77 ± 0.02
Wine Quality Red (1588, 11) 0.97 ± 0.01 0.93 ± 0.01 0.94 ± 0.12 -0.78 ± 0.07 -0.98 ± 0.06
Yacht Hydrodynamics (308, 6) 1.64 ± 0.02 1.25 ± 0.01 1.18 ± 0.21 0.49 ± 0.06 1.07 ± 0.27

4. Classification as Regression
Formulating classification as regression often leads to good
results, despite being less principled (Rifkin et al., 2003;
Rifkin & Klautau, 2004). By doing so, we can compare
exact inference for GPs to trained NNs on well-studied
image classification tasks. Recently, various studies of infi-
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nite NNs have considered classification as regression tasks,
treating the one-hot labels as independent regression targets
(e.g. (Lee et al., 2018; Novak et al., 2019b; Garriga-Alonso
et al., 2019)). Predictions are then obtained as the argmax
of the mean in Eq. (5), i.e. arg maxk µ(x)k.

However, this approach does not provide confidences cor-
responding to the predictions. Note that the posterior gives
support to all of Rd, including points that are known to
be impossible. Thus, a heuristic is required to extract
meaningful uncertainty estimates from the posterior Eq. (5),
even though these confidences will not correspond to the
Bayesian posterior of any model.

Following (Albert & Chib, 1993; Girolami & Rogers, 2006),
we produce a categorical distribution for each test point x,
denoted px, by defining

px(i) := P[zi = max{y1, . . . , yd}]

=

∫
1(i = argmaxjyj)

K∏
k=1

p(yk|x,X ,Y)dy, (6)

where (y1, . . . , yd) is sampled from the posterior for (x, y)
and we used the independence of the posterior for each class.
Note that we also treat the predictions on different test points
independently. In general, Eq. (6) does not have a analytic
expression, and we resort to Monte-Carlo estimation. We
refer readers to Sec. C for comparison to other heuristics
(e.g. passing the mean predictor through a softmax function
and pairwise comparison). While this is heuristic, we find it
is well calibrated (see Fig. 2). This is perhaps because the
posterior Eq. (5) still represents substantial model averaging,
and most uncertainty in high SNR cases is epistemic rather
than aleatory.

4.1. Benchmark on CIFAR10

We examine the calibration of NNGP-R on increasingly
corrupted images of CIFAR10-C (Hendrycks & Dietterich,
2019) using the benchmark of (Ovadia et al., 2019). The
results are displayed in Fig. 2. While FC-NNGP is similar to
the standard RBF kernel, the C-NNGP is able to outperform
both in terms of calibration and accuracy. Moreover, we
find that at severe corruption levels, the CNN-GP actually
outperforms all methods in (Ovadia et al., 2019) (compare
against their Table G1) in BS and ECE.

5. Discussion
In this work, we explored several methods that exploit neural
networks’ implicit priors over functions in order to generate
uncertainty estimates, using the corresponding Neural Net-
work Gaussian Process (NNGP) as a means to harness the
power of an infinite ensemble of NNs in the infinite-width
limit. Using the NNGP, we performed fully Bayesian clas-
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Figure 2. Uncertainty metrics across shift levels on CIFAR10 using
NNGP-R. CNN kernels perform best as well as being more robust
to corruption. See Table S3 for numerical values at each quartile.
All methods remain well calibrated for all intensities of shifts, with
C-NNGP-R performing best, and significantly better than methods
in (Ovadia et al., 2019); contrast against their Figure 2 and S4.

sification (NNGP-C) and regression (NNGP-R) and also
examined heuristics for generating confidence estimates
when classifying via regression. Across the board, we found
that the NNGP provides good uncertainty estimates and gen-
erally delivers well-calibrated models even on OOD data.
We found that NNGP-R is competitive with SOTA methods
on the UCI regression task and remained calibrated even for
severe levels of corruption. Despite their good calibration
properties, as pure kernel methods, NNGP-C and NNGP-
R cannot always compete with modern NNs in terms of
accuracy.

In Appendix D, we show that adding an NNGP to the last-
layer of a pre-trained model (NNGP-LL), allowed us to
simultaneously obtain high accuracy and improved calibra-
tion. Moreover, we found NNGP-LL to be a simple and effi-
cient way to generate uncertainty estimates with potentially
very little data, and that it outperforms all other last-layer
methods for generating uncertainties we studied.

Overall, we believe that the infinite-width limit provides a
promising direction to improve and better understand uncer-
tainty estimates for NNs.
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Supplementary Material

A. Background
Neal (1994b) identified the connection between infinite-width NNs and Gaussian processes, showing that the outputs of a
randomly initialized one-hidden layer NN converges to a Gaussian process as the number of neurons in the hidden layers
approaches infinity. Let zli(x) describe the ith pre-activation following a linear transformation in the lth layer of a NN. At
initialization, the parameters of the NN are independent and random, so the central-limit theorem can be used to show that
the pre-activations become Gaussian with zero mean and a covariance matrix K(x, x′) = E[zli(x)zli(x

′)].

Knowing the distributions of the outputs, one can apply Bayes theorem to compute the posterior distribution for new
observations, which we detail in Sec. 2 for classification and Sec. 3 for regression.

In this work, we focus on FC and CNN-Vec NNGPs, whose kernels are derived from fully-connected networks and
convolution networks without pooling respectively. When it is required, we prepend FC- or C- to the NNGP to distinguish
between these two variants. We use the Neural Tangents library of Novak et al. (2019a) to automate the transformation of
finite-width NNs to their corresponding Gaussian processes.

A.1. Metrics

We use Negative Log-Likelihood (NLL), Brier Score and Expected Calibration Error (ECE) for metrics for calibration
following definition used in Ovadia et al. (2019). The first two are proper scoring rules, where an optimal score corresponds
to perfect prediction. While ECE is not a proper scoring rule it is commonly used for its intuitive definition.

A.2. Further Detailed Description of the NNGP

In this section, we describe the FC-NNGP and the C-NNGP. Most of the contents are adopted from (Lee et al., 2018; Novak
et al., 2019b; Lee et al., 2019), which we refer readers to for more technical details.

NNGP : Let D ⊆ Rn0 × RK denote the training set and X = {x : (x, y) ∈ D} and Y = {y : (x, y) ∈ D} denote the
inputs and labels, respectively. Consider a fully-connected feed-forward network with L hidden layers with widths nl, for
l = 1, ..., L and a readout layer with nL+1 = K. For each x ∈ Rn0 , we use hl(x), xl(x) ∈ Rnl to represent the pre- and
post-activation functions at layer l with input x. The recurrence relation for a feed-forward network is defined as{

hl+1 = xlW l+1 + bl+1

xl+1 = φ
(
hl+1

) and

{
W l
i,j = σω√

nl
ωlij

blj = σbβ
l
j

, (S1)

where φ is a point-wise activation function, W l+1 ∈ Rnl×nl+1 and bl+1 ∈ Rnl+1 are the weights and biases, ωlij and blj are
the trainable variables, drawn i.i.d. from a standard Gaussian ωlij , β

l
j ∼ N (0, 1) at initialization, and σ2

ω and σ2
b are weight

and bias variances.

As the width of the hidden layers approaches infinity, the Central Limit Theorem (CLT) implies that the outputs at
initialization {f(x)}x∈X converge to a multivariate Gaussian in distribution. Informally, this occurs because the pre-
activations at each layer are a sum of Gaussian random variables (the weights and bias), and thus become a Gaussian random
variable themselves. See (Poole et al., 2016; Schoenholz et al., 2017; Lee et al., 2018; Xiao et al., 2018; Yang & Schoenholz,
2017) for more details, and (Matthews et al., 2018b; Novak et al., 2019b) for a formal treatment.

Therefore, randomly initialized neural networks are in correspondence with a certain class of GPs (hereinafter referred to as
NNGPs), which facilitates a fully Bayesian treatment of neural networks (Lee et al., 2018; Matthews et al., 2018a). More
precisely, let f i denote the i-th output dimension and K denote the sample-to-sample kernel function (of the pre-activation)
of the outputs in the infinite width setting,

Ki,j(x, x′) = lim
min(n1,...,nL)→∞

E
[
f i(x) · f j(x′)

]
, (S2)

then f(X ) ∼ N (0,K(X ,X )), where Ki,j(x, x′) denotes the covariance between the i-th output of x and j-th output of
x′, which can be computed recursively (see Lee et al. (2018, §2.3). For a test input x ∈ XT , the joint output distribution
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f ([x,X ]) is also multivariate Gaussian. Conditioning on the training samples, f(X ) = Y , the distribution of f(x)| X ,Y is
also a Gaussian N

(
µ(x), σ2(x)

)
,

µ(x) = K(x,X )K−1Y, σ2(x) = K(x, x)−K(x,X )K−1K(x,X )T , (S3)

and where K = K(X ,X ). This is the posterior predictive distribution resulting from exact Bayesian inference in an
infinitely-wide neural network.

C-NNGP : The above arguments can be extended to convolutional architectures (Novak et al., 2019b). By taking the
number of channels in the hidden layers to infinity simultaneously, the outputs of CNNs also converge weakly to a Gaussian
process (C-NNGP). The kernel of the C-NNGP takes into account the correlation between pixels in different spatial location
and can also be computed exactly via a recursively formula; e.g., see Eq. (7) in (Novak et al., 2019b, §2.2). Note that for
convolutional architectures, there are two canonical ways of collapsing image-shaped data into logits. One is to vectorlize the
image to a one-dimensional vector (CNN-Vec) and the other is to apply a global average pooling to the spatial dimensions
(CNN-GAP). The kernels induced by these two approaches are very different and so are the C-NNGPs. We refer the readers
to Section 3.2 of (Novak et al., 2019b, §3) for more details. In this paper, we have focused entirely on vectorization since it
is more efficient to compute.

B. Additional Figures for NNGP-C
In this section, we show some additional plots and results comparing NNGP-C against standard NNs. Mainly, we address
the method of hyperparameter tuning considered in the main text, where we fixed the hyperparameters that are common to
both the NNGP and the NN, then only tuned the additional NN hyperparameters. Here, we show results for tuning all of the
NN’s hyperparameter from scratch.

Additional Tuning details. We found the performance of NNGP-C to be sensitive to the kernel hyperparameters. To tune
these parameters we used the Google Vizier service (Golovin et al., 2017) with a budget of 250 trials and selected the setting
with the best log-likelihood on a validation set. We use the same hyperparamters for the NN to make a direct comparison of
the prior. The additional hyperparameters required for the NN, like width and training time, were also tuned using Vizier.
We also compared against the NN performance when all its hyperparameters are tuned, and found the accuracy of the NN
improved but the calibration results were broadly similar.

For any tuning of hyperparameters, we split the original training set of CIFAR10 into a 45K training set and a 5K validation
set. All models were trained using the 45K points, and we then selected the hyperparameters from the validation set
performance. We introduced a constant that multiples the whole NNGP kernel, or equivalently scales the whole latent space
vector or the last layer bias and weight standard deviations—we called this constant the kernel scale. For FC-NNGP-C,
the activation function was tuned over {ReLU, erf}, the weight standard deviation was tuned over [0.1, 2.0] on a linear
scale, the bias standard deviation was tuned over [0.1, 0.5] on a linear scale, the kernel scale was tuned over [10−2, 100] on a
logarithmic scale, the depth was tuned over {1, 2, 3, 4, 5}, and the diagonal regularizer was tuned over [0., 0.01] on a linear
scale.

For the FC-NN, there are additional hyperparameters: the learning rate, training steps, and width. For the NN, we considered
two types of tuning. Either, as in the main text, the hyperparameters that are shared with the NNGP are fixed and the
additional hyperparameters are tuned, or, as we present in Fig. S1 and Table S2, all of the NN’s hyperparameters are tuned
from scratch. In either case, the activation, the weight standard deviation, the bias standard deviation, the kernel scale, and
the depth were tuned as above. The learning rate was tuned over [10−4, 0.1] on a logarithmic scale, the total training steps
was tuned over [105, 107] on a logarithmic, and the width was tuned over {64, 128, 256, 512}.

For the C-NNGP-C, all hypermaramters were treated as for the FC-NNGP-C case, except depth which was limited to
{1, 2}. For the CNN, we again considered the two types of tuning: either fixing common hyperparameters or retuning all
hyperparameters from scratch. The CNN’s learning rate was tuned over [10−4, 0.1] on a logarithmic scale, the total training
steps was tuned over [217, 222] on a logarthimic scale, and the width was tuned over {64, 128, 256, 512}.
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Table S1. Comparing NNs and against the equivalent NNGP-C
on CIFAR-10 and evaluated on several test sets. We observe that
the NNGP-C outperforms its parametric NN counterpart on every
metric. We see particularly significant improvements in ECE and
NLL, implying that NNGP-C is considerably better calibrated.
Data Metric FC-NN FC-NNGP-C CNN C-NNGP-C

CIFAR10
ECE 0.209 0.072 0.283 0.031
Brier Score 0.711 0.629 0.685 0.519
Accuracy 0.487 0.518 0.576 0.609
NLL 17383 14007 21786 11215

Fog 1
ECE 0.178 0.098 0.271 0.042
Brier Score 0.707 0.655 0.685 0.542
Accuracy 0.471 0.496 0.561 0.590
NLL 16702 14671 19716 11755

Fog 2
ECE 0.177 0.073 0.286 0.018
Brier Score 0.758 0.711 0.747 0.620
Accuracy 0.416 0.425 0.507 0.519
NLL 18026 16233 20822 13819

Fog 3
ECE 0.202 0.039 0.320 0.03
Brier Score 0.822 0.759 0.836 0.694
Accuracy 0.358 0.363 0.445 0.445
NLL 20092 17638 23752 16019

Fog 4
ECE 0.236 0.026 0.352 0.071
Brier Score 0.881 0.797 0.914 0.758
Accuracy 0.307 0.311 0.385 0.380
NLL 22589 18867 27055 18353

Fog 5
ECE 0.279 0.057 0.420 0.134
Brier Score 0.961 0.847 1.052 0.846
Accuracy 0.241 0.251 0.287 0.289
NLL 26345 20694 33891 22014

SVHN Mean Confidence 0.537 0.335 0.718 0.463
Entropy 1.230 1.840 0.733 1.403

CIFAR100 Mean Confidence 0.651 0.398 0.812 0.474
Entropy 0.944 1.663 0.493 1.420

Table S2. Performance of NNs, where all of the NN’s hyperpa-
rameters are tuned independently with Vizier. The NaN entropy
measurement is due to the confidence on a specific test point being
1.0 to machine precision.

Data Metric FC-NN (all tuned) CNN (all tuned)

CIFAR10
ECE 0.217 0.265
Brier Score 0.721 0.605
Accuracy 0.478 0.632
NLL 17967 21160

Fog 1
ECE 0.187 0.258
Brier Score 0.726 0.618
Accuracy 0.458 0.617
NLL 17372 19484

Fog 2
ECE 0.189 0.287
Brier Score 0.781 0.712
Accuracy 0.396 0.552
NLL 18930 21657

Fog 3
ECE 0.215 0.333
Brier Score 0.846 0.816
Accuracy 0.336 0.480
NLL 21247 25703

Fog 4
ECE 0.241 0.381
Brier Score 0.902 0.924
Accuracy 0.292 0.409
NLL 23746 30844

Fog 5
ECE 0.282 0.472
Brier Score 0.975 1.104
Accuracy 0.232 0.301
NLL 27493 41058

SVHN Mean Confidence 0.542 0.794
Entropy 1.208 0.524

CIFAR100 Mean Confidence 0.654 0.847
Entropy 0.930 NaN
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Figure S1. Investigating the calibration of Gaussian process classification with NNGP kernels as in Fig. 1, where we find similar results.
(left column) Histogram of the confidence of the posterior distribution for each test point. We compare the NNGP-C and a finite width
NN on an identically distributed test set (CIFAR10) and an OOD test set (SVHN). (middle column) Performance, NNGP-C is solid and
NN dashed, under increasing distributional shift given by the CIFAR10 fog corruption. (right column) We bin the test set into ten bins
sorted by confidence, and we plot mean confidence against mean accuracy. (top row) We compare FC-NNGP-C against a FC-NN with
the same hyperparameters. (middle row) We compare FC-NNGP-C against a FC-NN, where all of the NN’s hyperparameters are tuned
independently with Vizier. (bottom row) We compare C-NNGP-C against a CNN, where all of the CNN’s hyperparameters are tuned
independently with Vizier.
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C. Comparison of Heuristics for Generating Confidences from NNGP-R
In Secs. 3 and D, we utilized a heuristic to generate confidence from exact GPR posterior distribution. Here we denote
the heuristic described in Eq. (6) as exact confidence, which is the probability of a class probit being maximal under an
independent multivariate Gaussian distribution. We consider two more heuristics. One is denoted pairwise, where we take
confidence to be proportional to the probability that the i-th class probit is larger than other probits in pairwise fashion, i.e.

px(i) ∝ P[zi > zj ,∀j 6= i] =
∏
j 6=i

p(yi > yj |x,X ,Y) =
∏
j 6=i

Φ

 µi − µj√
σ2
i + σ2

j

 , (S4)

where Φ(·) is Gaussian cumulative distribution function. In order to obtain confidence, we normalize by the sum so that the
heuristic confidence sums up to 1. This is following the one-vs-one multiclass classification strategy (Hastie & Tibshirani,
1998).

We note that, we introduce temperature scaling with temperature T by replacing posterior variances as

σ2
T = Tσ2 . (S5)

Another heuristic is denoted softmax, where we apply the softmax function to the posterior mean:

px(i) := σ(µ)i =
eµi/

√
T∑

j e
µj/
√
T
. (S6)

In this case, the posterior variance is not used to construct the heuristic confidences.

A comparison for these three-different heuristics for C-NNGP-R is shown in Fig. S2 with and without temperature scaling.
We note that exact and pairwise heuristics remain well calibrated without temperature scaling. However with temperature
scaling the softmax heuristic can be competitive to other heuristics. In Sec. 3 and D, we focused on the exact heuristic.
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Figure S2. Comparison of NNGP-R based confidence measures on CIFAR10 corruptions using C-NNGP-R. Left column uses temperature
scaling based on a validation set whereas right column uses T = 1. We see that softmax confidence requires adjusting temperature which
is equivalent to modifying prior variance to be calibrated whereas exact and pairwise heuristic confidence is calibrated without needing to
modify the prior variance.

D. Bayesian or Infinite-Width Last Layer
As we have seen NNGP-C and NNGP-R are remarkably well-calibrated. However, obtaining high performing models can
be computationally intensive, especially for large datasets. NNGP-C and NNGP-R have running times that are cubic in
the dataset size, due to computation of the kernel’s Cholesky decomposition, with NNGP-C suffering additionally from
potentially slow convergence of MCMC. Moreover, performant NNGP kernels require substantial compute to obtain (Novak
et al., 2019b; Arora et al., 2019; Novak et al., 2019a; Li et al., 2019) in contrast to training a NN to similar accuracies.
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Table S3. Quartiles of Brier score, negative-log-likelihood and ECE over all CIFAR10 corruptions for methods in Figure 2.

Method/Metric RBF FC-NNGP-R C-NNGP-R

Brier Score (25th) 0.568 0.569 0.435
Brier Score (50th) 0.580 0.586 0.464
Brier Score (75th) 0.599 0.613 0.515

Gaussian NLL (25th) 0.147 0.612 0.108
Gaussian NLL (50th) 0.270 0.830 0.457
Gaussian NLL (75th) 0.447 1.099 1.027

NLL (25th) 1.331 1.351 1.002
NLL (50th) 1.363 1.398 1.079
NLL (75th) 1.415 1.466 1.178

ECE (25th) 0.048 0.030 0.022
ECE (50th) 0.052 0.039 0.046
ECE (75th) 0.069 0.065 0.071

Accuracy (75th) 0.573 0.574 0.683
Accuracy (50th) 0.566 0.561 0.659
Accuracy (25th) 0.549 0.541 0.628

Moreover, even though the most performant NNGP kernels are SotA for a kernel method (Shankar et al., 2020), they still
under-perform SotA NNs by a large margin.

To combine the benefits of the NNGP and NNs, obtaining models that are both performant and well calibrated, we propose
stacking an infinite-width sub-network on top of a pre-trained NN. More precisely, we use features obtained from a
pre-trained model as inputs for the NNGP. As such, the outputs of the combined network are drawn from a GP and we may
use Eqs. (5) and (6) for inference. We refer to this as Gaussian process last-layer (NNGP-LL). Mathematically, the model is

y ∼ f(g(x)) + ε, where f ∼ GP(0,K), (S7)

where g is a pre-trained embedding, K is the NNGP kernel, and ε ∼ N (0, σε) is an independent noise term. This draws
inspiration from (Hinton & Salakhutdinov, 2008; Wilson et al., 2016), but with a multi-layer NNGP kernel. Note we are
specifically interested in the calibration properties and so the innovations in computational efficiency obtained in (Wilson
et al., 2016) are complementary to our work.

This setup mirrors an important use case in practice, e.g. for customers of cloud ML services, who may use embeddings
trained on vast amounts of non-domain-specific data, and then fine-tune this model to their specific use case. This fine
tuning consists of either fitting a logisitic regression layer or deeper NNs using the embeddings obtained from their data,
or perhaps training the whole NN generating the embedding by simply initialzing with the pre-trained weights (Kornblith
et al., 2019). These strategies allow practitioners to obtain highly accurate models without substantial data or computation.
However, little is understood about the calibration of these transfer learning approaches.

We consider the EfficientNet-B3 (Tan & Le, 2019) embedding from TF-Hub1 that is trained on ImageNet (Deng et al.,
2009), and perform our evaluations on CIFAR10 and its corruptions. For our experiments, we use a multi-layer FC-NNGP
as the top sub-network since its kernel is very fast to compute and the final FC layer of EfficientNet-B3 removes any spacial
structure that might be exploited by convolutions. We compare our method with other popular last-layer methods for
generating uncertainty estimates (Vanilla logisitic regression, using a deep NN for the last layers, temperature scaling Platt
et al. (1999); Guo et al. (2017), MC-Dropout (Gal & Ghahramani, 2016), ensembles of several last-layer deep NNs). Below
we further investigate these results with a WideResNet (Zagoruyko & Komodakis, 2016) that we can train from scratch,
using the initialization method in (Dauphin & Schoenholz, 2019), which achieves good test performance on CIFAR-10
without BatchNorm (Ioffe & Szegedy, 2015). This allows us to compare against the gold standard ensemble method.

We find that in the transfer learning case, ensembles are quite ineffective alone. The best previous method is given by

1https://www.tensorflow.org/hub
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Table S4. NNGP-LL with EfficientNet-B3 embedding fine tuned on CIFAR10 and evaluated over all corruptions and intensities. We
show the quartiles for these evaluations for several different last-layer methods of obtaining uncertainties. Ensembles refers to (Lak-
shminarayanan et al., 2017) and Ens/Drp/T refers to combining Ensembles, MC-Dropout (Gal & Ghahramani, 2016) and temperature
scaling (Guo et al., 2017). The rightmost columns show that NNGP-LL can be well-calibrated with very little training data. See the
Fig. S3 for a fine-grained box plots for each corruption level.

Method Vanilla Ensembles Ens/Drp/T 100 1K 5K 10K NNGP-LL

Brier Score (25th) 0.230 0.218 0.182 0.363 0.256 0.218 0.203 0.173
Brier Score (50th) 0.351 0.331 0.265 0.448 0.346 0.308 0.288 0.271
Brier Score (75th) 0.521 0.511 0.410 0.572 0.478 0.436 0.409 0.397

NLL (25th) 0.913 0.823 0.382 0.797 0.562 0.474 0.455 0.367
NLL (50th) 1.517 1.411 0.569 0.991 0.746 0.682 0.655 0.586
NLL (75th) 2.662 2.492 0.932 1.326 1.075 0.972 0.921 0.905

ECE (25th) 0.104 0.098 0.016 0.023 0.044 0.018 0.019 0.017
ECE (50th) 0.160 0.154 0.028 0.040 0.062 0.023 0.027 0.025
ECE (75th) 0.247 0.243 0.079 0.081 0.104 0.042 0.057 0.044

Accuracy (75th) 0.869 0.875 0.875 0.742 0.825 0.851 0.860 0.884
Accuracy (50th) 0.802 0.812 0.813 0.674 0.758 0.784 0.798 0.813
Accuracy (25th) 0.714 0.719 0.718 0.582 0.663 0.689 0.704 0.722

combining MC-Dropout, temperature scaling, and ensembles. However, this is still bested by NNGP-LL (see Table S4). We
also examine the effect of tuning dataset size on calibration and performance. Remarkably, NNGP-LL is able to achieve
accuracies and calibration comparable to ensembles with as few as 1000 training points.
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E. Additional Figures for NNGP-LL
The above results focused on a fixed embedding (see Table S4) and we show additional results for this as a box-plot in
Fig. S3 here. However, it is also common in practice to tune all of the embedding’s weights and simply initialize at their
pre-triained values. We explore this setting in Table S5 and Fig. S4 by considering the EfficientNet-B3 embedding and fine
tuning it on CIFAR10. We also show a results comparing the FC-NNGP-LL with using the standard RBF kernel for the
same purpose (see Fig. S5).
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Figure S3. Uncertainty metrics across corruption levels on CIFAR10 using NNGP-LL with EfficientNet-B3 embedding. Baseline NNs
are trained on CIFAR10 with parameters of body network fixed. See Table S4 for quartile comparison and Figure S4 and Table S5 for
comparison with fine tuning of all the embedding’s weights. Figure S5 compares use of NNGP and RBF kernel for NNGP-LL settings.

Table S5. Quartiles of Brier score, negative-log-likelihood, and ECE over all CIFAR10 corruptions for methods in Figure S4 using
EfficientNet-B3 embedding. The first five columns are the same as the methods in Table S4, whereas the last two columns use the same
embedding architecture but where all the weights are fine tuned (FT) on CIFAR10. See Fig. S4 for the corresponding box-plot.

LL
LL

T Scaling LL Ens
LL Ens
Drp T NNGP-LL FT-NN FT-NNGP-LL

Brier Score (25th) 0.230 0.191 0.218 0.182 0.173 0.083 0.081
Brier Score (50th) 0.351 0.281 0.331 0.265 0.271 0.155 0.153
Brier Score (75th) 0.521 0.422 0.511 0.410 0.397 0.341 0.361

NLL (25th) 0.913 0.406 0.823 0.382 0.367 0.166 0.196
NLL (50th) 1.517 0.612 1.411 0.569 0.586 0.320 0.374
NLL (75th) 2.662 0.988 2.492 0.932 0.905 0.730 0.868

ECE (25th) 0.104 0.016 0.098 0.016 0.017 0.005 0.012
ECE (50th) 0.160 0.030 0.154 0.028 0.025 0.015 0.022
ECE (75th) 0.247 0.092 0.243 0.079 0.044 0.051 0.046

Accuracy (75th) 0.869 0.869 0.875 0.875 0.884 0.945 0.947
Accuracy (50th) 0.802 0.802 0.812 0.813 0.813 0.894 0.896
Accuracy (25th) 0.714 0.714 0.719 0.718 0.722 0.758 0.748
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Figure S4. Uncertainty metrics across corruption levels on CIFAR10 using NNGP-LL with EfficientNet-B3 embedding. Baseline NNs are
either last layer (LL) trained on CIFAR10 with parameters for body networks fixed or where all the weights are fine tuned (FT). Quartile
comparisons can be found in Table S5.
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Figure S5. Comparison of NNGP-LL using NNGP head vs RBF GP head on EfficientNet-B3 embedding. While there are slight advantage
of using NNGP head over RBF-GP overall they provide very similar benefits as corruption intensity increase.
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E.1. A comparison of Ensemble and NNGP-LL on WideResnet

To compare the NNGP-LL method against the gold standard ensemble method, we train a WideResnet 28-10 on CIFAR-10
from scratch with 5 different random initialization. The model is trained using MetaInit (Dauphin & Schoenholz, 2019),
Delta-Orthogonal (Xiao et al., 2018), mixup (Zhang et al., 2017) and without BatchNorm (Ioffe & Szegedy, 2015). The
model achieves about 94% accuracy on the clean test set. See Table S6 and Fig. S6 for the comparison. We find the ECE
for NNGP-LL is very competitive, even with small dataset size, compared to baseline methods including ensembles.
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Figure S6. Uncertainty metrics across corruption levels on CIFAR10 using NNGP-LL with MetaInit embedding. Baseline NNs are
compared with vanilla training, temperature scaling and ensembles.
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Table S6. Quartiles of Brier score, negative-log-likelihood, ECE and accuray over all CIFAR10 corruptions for MetaInit Embedding
NNGP-LL and MetaInit trained networks in Figure S6.

Method/Metric Vanilla T Scaling Ensembles 100 1K NNGP-LL

Brier Score (25th) 0.165 0.164 0.141 0.256 0.162 0.152
Brier Score (50th) 0.247 0.244 0.210 0.366 0.257 0.241
Brier Score (75th) 0.397 0.410 0.356 0.567 0.415 0.399

NLL (25th) 0.382 0.391 0.328 0.562 0.381 0.360
NLL (50th) 0.553 0.576 0.483 0.799 0.599 0.570
NLL (75th) 0.864 1.040 0.781 1.214 0.967 0.925

ECE (25th) 0.046 0.025 0.044 0.018 0.011 0.012
ECE (50th) 0.062 0.051 0.066 0.044 0.017 0.017
ECE (75th) 0.079 0.126 0.077 0.101 0.030 0.039

Accuracy (75th) 0.895 0.895 0.916 0.824 0.889 0.896
Accuracy (50th) 0.840 0.840 0.866 0.738 0.821 0.834
Accuracy (25th) 0.726 0.726 0.761 0.586 0.703 0.716
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