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Abstract

We present a probabilistic kernel approach to ordinal regression based on Gaussian pro-
cesses. A threshold model that generalizes the probit function is used as the likelihood func-
tion for ordinal variables. Two inference techniques, based on the Laplace approximation
and the expectation propagation algorithm respectively, are derived for hyperparameter
learning and model selection. We compare these two Gaussian process approaches with
a previous ordinal regression method based on support vector machines on some bench-
mark and real-world data sets, including applications of ordinal regression to collaborative
filtering and gene expression analysis. Experimental results on these data sets verify the
usefulness of our approach.
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1. Introduction

Practical applications of supervised learning frequently involve situations exhibiting an or-
der among the different categories, e.g. a teacher always rates his/her students by giving
grades on their overall performance. In contrast to metric regression problems, the grades
are usually discrete and finite. These grades are also different from the class labels in clas-
sification problems due to the existence of ranking information. For example, grade labels
have the ordering F < D < C < B < A. This is a learning task of predicting variables of
ordinal scale, a setting bridging between metric regression and classification referred to as
ranking learning or ordinal regression.

There is some literature about ordinal regression in the domain of machine learning.
Kramer et al. (2001) investigated the use of a regression tree learner by mapping the ordi-
nal variables into numeric values. However there might be no principled way of devising an
appropriate mapping function. Frank and Hall (2001) converted an ordinal regression prob-
lem into nested binary classification problems that encode the ordering of the original ranks,
and then the results of standard binary classifiers can be organized for prediction. Har-Peled
et al. (2003) proposed a constraint classification approach for ranking problems based on
binary classifiers. Cohen et al. (1999) considered general ranking problems in the form of
preference judgements. Herbrich et al. (2000) applied the principle of Structural Risk Min-
imization (Vapnik, 1995) to ordinal regression leading to a new distribution-independent
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learning algorithm based on a loss function between pairs of ranks. Shashua and Levin
(2003) generalized the formulation of support vector machines to ordinal regression and
the numerical results they presented shows a significant improvement on the performance
compared with the on-line algorithm proposed by Crammer and Singer (2002).

In the statistics literature, most of the approaches are based on generalized linear models
(McCullagh and Nelder, 1983). The cumulative model (McCullagh, 1980) is well-known in
classical statistical approaches for ordinal regression, in which they rely on a specific distri-
butional assumption on the unobservable latent variables and a stochastic ordering of the
input space. Johnson and Albert (1999) described Bayesian inference on parametric models
for ordinal data using sampling techniques. Tutz (2003) presented a general framework for
semiparametric models that extends generalized additive models (Hastie and Tibshirani,
1990) by incorporating nonparametric parts. The nonparametric components of the regres-
sion model are fitted by maximizing penalized log likelihood, and model selection is carried
out using AIC.

Gaussian processes (O’Hagan, 1978; Neal, 1997) have provided a promising non-parametric
Bayesian approach to metric regression (Williams and Rasmussen, 1996) and classification
problems (Williams and Barber, 1998). The important advantage of Gaussian process mod-
els (GPs) over other non-Bayesian models is the explicit probabilistic formulation. This not
only provides probabilistic predictions but also gives the ability to infer model parameters
such as those that control the kernel shape and the noise level. The GPs are also different
from the semiparametric approach of Tutz (2003) in several ways. First, the additive mod-
els (Fahrmeir and Tutz, 2001) are defined by functions in each input dimension, whereas
the GPs can have more general non-additive covariance functions; second, the kernel trick
allows to use infinite basis function expansions; third, the GPs perform Bayesian inference
in the space of the latent functions.

In this paper, we present a probabilistic kernel approach to ordinal regression in Gaus-
sian processes. We impose a Gaussian process prior distribution on the latent functions,
and employ an appropriate likelihood function for ordinal variables which can be regarded
as a generalization of the probit function. Two Bayesian inference techniques are applied
to implement model adaptation by using the Laplace approximation (MacKay, 1992) and
the expectation propagation (Minka, 2001) respectively. Comparisons of the generaliza-
tion performance against the support vector approach (Shashua and Levin, 2003) on some
benchmark and real-world data sets, such as movie ranking and gene expression analysis,
verify the usefulness of this approach.

The paper is organized as follows: in section 2, we describe the Bayesian framework in
Gaussian processes for ordinal regression; in section 3, we discuss the Bayesian techniques
for hyperparameter inference; in section 4, we present the predictive distribution for prob-
abilistic prediction; in section 5, we give some extensive discussion on these techniques; in
section 6, we report the results of numerical experiments on some benchmark and real-world
data sets; we conclude this paper in section 7.

2. Bayesian framework

Consider a data set composed of n samples. Each of the samples is a pair of input vector
xi ∈ Rd and the corresponding target yi ∈ Y where Y is a finite set of r ordered cat-
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egories. Without loss of generality, these categories are denoted as consecutive integers
Y = {1, 2, . . . , r} that keep the known ordering information. The main idea is to assume
an unobservable latent function f(xi) ∈ R associated with xi in a Gaussian process, and
the ordinal variable yi dependent on the latent function f(xi) by modelling the ranks as
intervals on the real line. A Bayesian framework is described with more details in the
following.

2.1 Gaussian process prior

The latent functions {f(xi)} are usually assumed as the realizations of random variables
indexed by their input vectors in a zero-mean Gaussian process. The Gaussian process can
then be fully specified by giving the covariance matrix for any finite set of zero-mean random
variables {f(xi)}. The covariance between the functions corresponding to the inputs xi and
xj can be defined by Mercer kernel functions (Wahba, 1990; Schölkopf and Smola, 2001),
e.g. Gaussian kernel which is defined as

Cov[f(xi), f(xj)] = K(xi, xj) = exp

(

−κ

2

d
∑

ς=1

(xςi − xςj)
2

)

(1)

where κ > 0 and xςi denotes the ς-th element of xi.
1 Thus, the prior probability of these

latent functions {f(xi)} is a multivariate Gaussian

P(f) = 1

Zf
exp

(

−1

2
fTΣ−1f

)

(2)

where f = [f(x1), f(x2), . . . , f(xn)]
T , Zf = (2π)

n
2 |Σ| 12 , and Σ is the n×n covariance matrix

whose ij-th element is defined as in (1).

2.2 Likelihood for ordinal variables

The likelihood is the joint probability of observing the ordinal variables given the latent
functions, denoted as P(D|f) where D denotes the target set {yi}. Generally, the likelihood
can be evaluated as a product of the likelihood function on individual observation:

P(D|f) =
n
∏

i=1

P(yi|f(xi)) (3)

where the likelihood function P(yi|f(xi)) could be intuitively defined as

Pideal(yi|f(xi)) =
{

1 if byi−1 < f(xi) ≤ byi ,

0 otherwise
(4)

where b0 = −∞ and br = +∞ are defined subsidiarily, b1 ∈ R and the other threshold
variables can be further defined as bj = b1 +

∑j
ι=2∆ι with positive padding variables ∆ι

and ι = 2, . . . , r − 1. The role of b1 < b2 < . . . < br−1 is to divide the real line into

1. Other Mercer kernel functions, such as polynomial kernels and spline kernels etc., can also be used in
the covariance function.
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r contiguous intervals; these intervals map the real function value f(xi) into the discrete
variable yi while enforcing the ordinal constraints. The likelihood function (4) is used for
ideally noise-free cases. In the presence of noise from inputs or targets, we may explicitly
assume that the latent functions are contaminated by a Gaussian noise with zero mean and
unknown variance σ2.2 N (δ;µ, σ2) is used to denote a Gaussian random variable δ with
mean µ and variance σ2 henceforth. Then the ordinal likelihood function becomes

P(yi|f(xi)) =
∫

Pideal(yi|f(xi) + δi)N (δi; 0, σ
2)dδi = Φ

(

zi1
)

− Φ
(

zi2
)

(5)

where zi1 =
byi−f(xi)

σ
, zi2 =

byi−1−f(xi)
σ

, and Φ(z) =
∫ z

−∞N (ς; 0, 1)dς. Note that binary
classification is a special case of ordinal regression when r = 2, and in this case the likelihood
function (5) becomes the probit function. The quantity − lnP(yi|f(xi)) is usually referred
to as the loss function `(yi, f(xi)). The derivatives of the loss function with respect to f(xi)
are needed in some approximate Bayesian inference methods. The first order derivative of
the loss function can be written as

∂`(yi, f(xi))

∂f(xi)
=

1

σ

N (zi1; 0, 1)−N (zi2; 0, 1)

Φ(zi1)− Φ(zi2)
(6)

and the second order derivative can be given as

∂2`(yi, f(xi))

∂2f(xi)
=

1

σ2

(N (zi1; 0, 1)−N (zi2; 0, 1)

Φ(zi1)− Φ(zi2)

)2

+
1

σ2
zi1N (zi1; 0, 1)− zi2N (zi2; 0, 1)

Φ(zi1)− Φ(zi2)
. (7)

We present graphs of the ordinal likelihood function (5) and the derivatives of the loss func-
tion in Figure 1 as an illustration. Note that the first order derivative (6) is a monotonically
increasing function of f(xi), and the second order derivative (7) is always a positive value
between 0 and 1

σ2 . Given the facts that Pideal(yi|f(xi)+ δi) is log-concave in (f(xi), δi) and
N (δi; 0, σ

2) is also log-concave, as pointed out by Pratt (1981), the convexity of the loss
function follows, because the integral of a log-concave function with respect to some of its
arguments is a log-concave function of its remaining arguments (Brascamp and Lieb, 1976,
Cor. 3.5).

2.3 Posterior probability

Based on Bayes’ theorem, the posterior probability can then be written as

P(f |D) = 1

P(D)
n
∏

i=1

P(yi|f(xi))P(f) (8)

where the prior probability P(f) is defined as in (2), the likelihood function P(yi|f(xi)) is
defined as in (5), and P(D) =

∫

P(D|f)P(f)df .
The Bayesian framework we described above is conditional on the model parameters in-

cluding the kernel parameters κ in the covariance function (1) that control the kernel shape,
the threshold parameters {b1,∆2, . . . ,∆r−1} and the noise level σ in the likelihood function

2. In principle, any distribution rather than a Gaussian can be assumed for the noise on the latent functions.
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Figure 1: The graph of the likelihood function for an ordinal regression problem with r = 3,
along with the first and second order derivatives of the loss function (negative
logarithm of the likelihood function), where the noise variance σ2 = 1, and the
two thresholds are b1 = −3 and b2 = +3.

(5). All these parameters can be collected into θ, which is the hyperparameter vector. The
normalization factor P(D) in (8), more exactly P(D|θ), is known as the evidence for θ, a
yardstick for model selection. In the next section, we discuss techniques for hyperparameter
learning.

3. Model adaptation

In a full Bayesian treatment, the hyperparameters θ must be integrated over the θ-space.
Monte Carlo methods (Neal, 1997) can be adopted here to approximate the integral effec-
tively. However these might be prohibitively expensive to use in practice. Alternatively, we
consider model selection by determining an optimal setting for θ. The optimal values of
hyperparameters θ can be simply inferred by maximizing the posterior probability P(θ|D),
where P(θ|D) ∝ P(D|θ)P(θ). The prior distribution on the hyperparameters P(θ) can
be specified by domain knowledge, or alternatively some vague uninformative distribution.
The evidence is given by a high dimensional integral, P(D|θ) =

∫

P(D|f)P(f) df . A pop-
ular idea for computing the evidence is to approximate the posterior distribution P(f |D)
as a Gaussian, and then the evidence can be calculated by an explicit formula (MacKay,
1992; Csató et al., 2000; Minka, 2001). In this section, we describe two Bayesian techniques
for model adaptation by using the Laplace approximation and the expectation propagation
respectively.

3.1 MAP approach with Laplace approximation

The evidence can be calculated analytically after applying the Laplace approximation at
the maximum a posteriori (MAP) estimate, and gradient-based optimization methods can
then be used to infer the optimal hyperparameters by maximizing the evidence. The MAP
estimate on the latent functions is referred to fMAP = argmaxf P(f |D), which is equivalent
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to the minimizer of negative logarithm of P(f |D), i.e.

S(f) =
n
∑

i=1

`(yi, f(xi)) +
1

2
fTΣ−1f (9)

where `(yi, f(xi)) = − lnP(yi|f(xi)) is known as the loss function. Note that ∂2S(f)

∂f∂fT
=

Σ−1 + Λ is a positive definite matrix, where Λ is a diagonal matrix whose ii-th entry is
∂2`(yi,f(xi))

∂2f(xi)
given as in (7). Thus, this is a convex programming problem with a unique

solution.3 The Laplace approximation of S(f) refers to carrying out the Taylor expansion
at the MAP point and retaining the terms up to the second order (MacKay, 1992). Since
the first order derivative with respect to f vanishes at fMAP, S(f) can also be written as

S(f) ≈ S(fMAP) +
1

2
(f − fMAP)T

(

Σ−1 + ΛMAP
)

(f − fMAP) (10)

where ΛMAP denotes the matrix Λ at the MAP estimate. This is equivalent to approximating
the posterior distribution P(f |D) as a Gaussian distribution centered on fMAP with the
covariance matrix (Σ−1 + ΛMAP)

−1, i.e. P(f |D) ≈ N (f ;fMAP, (Σ
−1 + ΛMAP)

−1). Using
the Laplace approximation (10) and Zf defined as in (2), the evidence can be computed
analytically as follows

P(D|θ) = 1

Zf

∫

exp(−S(f)) df ≈ exp(−S(fMAP))|I+ΣΛMAP|−
1
2 (11)

where I is an n × n identity matrix. The gradients of the logarithm of the evidence (11)
with respect to the hyperparameters θ can be derived analytically. Then gradient-based
optimization methods can be employed to search for the maximizer of the evidence. Refer
to Appendix A for the detailed gradient formulae and the outline of our algorithm for model
adaptation.

3.2 Expectation propagation with variational methods

The expectation propagation algorithm (EP) is an approximate Bayesian inference method
(Minka, 2001), which can be regarded as an extension of assumed-density-filter (ADF).
The EP algorithm has been applied in Gaussian process classification along with varia-
tional methods for model selection (Seeger, 2002; Kim and Ghahramani, 2003). In the
setting of Gaussian processes, EP attempts to approximate P(f |D) as a product distribu-
tion in the form of Q(f) =

∏n
i=1 t̃i(f(xi))P(f) where t̃i(f(xi)) = si exp(−12pi(f(xi)−mi)

2).
The parameters {si,mi, pi} in {t̃i} are successively optimized by minimizing the following
Kullback-Leibler divergence,

t̃newi = argmin
t̃i

KL

(

Q(f)

t̃oldi
P(yi|f(xi))

∥

∥

∥

∥

Q(f)

t̃oldi
t̃i

)

. (12)

Since Q(f) is in the exponential family, this minimization can be simply solved by moment
matching up to the second order. A detailed updating scheme can be found in Appendix B.

3. The Newton-Raphson formula can be used to find the solution for simple cases.
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At the equilibrium of Q(f), we obtain an approximate posterior distribution as P(f |D) ≈
N (f ; (Σ−1 + Π)−1Πm, (Σ−1 + Π)−1) where Π is a diagonal matrix whose ii-th entry is pi
and m = [m1,m2, . . . ,mn]

T .
Variational methods can be used to optimize the hyperparameters θ by maximizing the

lower bound on the logarithm of the evidence. By applying Jensen’s inequality, we have

logP(D|θ) = log
∫ P(D|f)P(f)

Q(f) Q(f)df ≥
∫

Q(f) log P(D|f)P(f)
Q(f) df

=
∫

Q(f) logP(D|f)df +
∫

Q(f) logP(f)df −
∫

Q(f) logQ(f)df = F(θ).
(13)

The lower bound F(θ) can be written as an explicit expression at the equilibrium of Q(f),
and then the gradients with respect to θ can be derived by neglecting the possible depen-
dency of Q(f) on θ. The detailed formulation can be found in Appendix C.

4. Prediction

We have described two techniques, the MAP approach and the EP approach, to infer the
optimal model. At the optimal hyperparameters we inferred, denoted as θ∗, let us take a test
case x for which the target yx is unknown. The latent variable f(x) and the column vector
f containing the n zero-mean random variables {f(xi)}ni=1 have the prior joint multivariate
Gaussian distribution, i.e.

[

f

f(x)

]

∼ N
[(

0
0

)

,

(

Σ k

k
T K(x, x)

)]

where k = [K(x, x1),K(x, x2), . . . ,K(x, xn)]T . The conditional distribution of f(x) given f
is a Gaussian too, denoted as P(f(x)|f ,θ∗) with mean f TΣ−1k and variance K(x, x) −
k
TΣ−1k . The predictive distribution of P(f(x)|D,θ∗) can be computed as an integral over
f -space, which can be written as

P(f(x)|D,θ∗) =
∫

P(f(x)|f ,θ∗)P(f |D,θ∗) df . (14)

The posterior distribution P(f |D,θ∗) can be approximated as a Gaussian by the MAP
approach or the EP approach (refer to Section 3). The predictive distribution (14) can then
be simplified as a Gaussian N (f(x);µx, σ

2
x) with mean µx and variance σ2x. In the MAP

approach, we reach

µx = kTΣ−1fMAP and σ2x = K(x, x)− kT (Σ + Λ−1MAP)
−1k. (15)

While in the EP approach, we get

µx = kT (Σ + Π−1)−1m and σ2x = K(x, x)− kT (Σ + Π−1)−1k. (16)

The predictive distribution over ordinal targets yx is

P(yx|x,D,θ∗) =
∫

P(yx|f(x),θ∗)P(f(x)|D,θ∗) df(x)
= Φ

(

byx−µx√
σ2+σ2

x

)

− Φ

(

byx−1−µx√
σ2+σ2

x

)

.

The predictive ordinal scale can be decided as argmax
i
P(yx = i|x,D,θ∗).
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5. Discussion

In the MAP approach, the mean of the predictive distribution depends on the MAP esti-
mate fMAP, which is unique and can be found by solving a convex programming problem.
Evidence maximization is useful if the Laplace approximation around the mode point fMAP
gives a good summary of the posterior distribution P(f |D). While in the approach of ex-
pectation propagation, the mean of the predictive distribution depends on the approximate
mean of the posterior distribution. When the true shape of P(f |D) is far from a Gaussian
centered on the mode, the EP approach can have a great advantage over the Laplace ap-
proximation. However the EP algorithm cannot guarantee convergence, though it usually
works well in practice.

The gradient-based optimization method usually requests evidence evaluation at tens
of different settings of θ before the minimum is found. For each θ, the inversion of the
matrix Σ is required that costs time at O(n3), where n is the number of training samples.
Recently, Csató and Opper (2002) proposed a fast training algorithm for Gaussian processes
in which the set of basis vectors are determined on-line for sparse representation. Lawrence
et al. (2003) proposed a greedy selection with criteria based on information-theoretic prin-
ciples for sparse Gaussian processes (Seeger, 2003). Tresp (2000) proposed the Bayesian
committee machines to divide and conquer large datasets, while using infinite mixtures of
Gaussian Processes (Rasmussen and Ghahramani, 2002) is another promising technique.
These algorithms can be applied directly in the settings of ordinal regression for speedup.

Feature selection is an essential part in modelling. In Gaussian processes, the automatic
relevance determination (ARD) method proposed by MacKay (1994) and Neal (1996) can
be embedded into the covariance function (1) as follows:

Cov[f(xi), f(xj)] = K(xi, xj) = exp

(

−1

2

d
∑

ς=1

κς(x
ς
i − xςj)

2

)

(17)

where κς > 0 is the ARD parameter.4 The gradients with respect to the variables {lnκς}
can also be derived analytically for model adaptation. The optimal value of the ARD pa-
rameter κς indicates the relevance of the ς-th input feature to the target. The form of feature
selection we use here results in a type of feature weighting. Furthermore, the linear combi-
nation of heterogeneous kernels with positive coefficients is still a valid covariance function.
Lanckriet et al. (2004) suggest to learn the kernel matrix with semidefinite programming.
In the Bayesian framework, these positive coefficients for kernels could be treated as hyper-
parameters, and optimized using the evidence as a criterion for optimization.

Note that binary classification is a special case of ordinal regression with r = 2, and the
likelihood function (5) becomes the probit function when r = 2. Both of the probit function
and the logistic function can be used as the likelihood function in binary classification,
while they have different origins. Due to the dichotomous nature in the classes of multi-
classification, discriminant functions are constructed for each class and then compete again
others via the softmax function to determine the likelihood. The logistic function, as a
special case of the softmax function, comes from general classification problems.

4. These ARD parameters control the covariance length-scale of the Gaussian process along each input
dimension.
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In metric regression, warped Gaussian processes (Snelson et al., 2004) assume that
there is a nonlinear, monotonic, and continuous warping function relating the observed
targets and some latent variables in a Gaussian process. The warping function, which is
learned from the data, can be thought of as a pre-processing transformation applied before
modelling with a Gaussian process. A different (and very common) approach to dealing
with this preprocessing is to discretize the target values into r different bins. These discrete
values are clearly ordinal, and applying ordinal regression to these discrete values seems
the natural choice. Interestingly, as the number of discretization bins r is increased, the
ordinal regression model becomes very similar to the warped Gaussian processes model. In
particular, by varying the thresholds in our ordinal regression model, it can approximate
any continuous warping function.

6. Numerical experiments

We start this section with a simple synthetic dataset to visualize the behavior of these
algorithms, and report the experimental results on sixteen benchmark datasets.5 Then
we perform experiments on a collaborative filtering problem using the “EachMovie” data,
and on Gleason score prediction from gene microarray data related to prostate cancer.
Shashua and Levin (2003) generalized the support vector formulation by finding multiple
thresholds to define parallel discriminant hyperplanes for ordinal scales, and reported that
the performance of the support vector approach is better than that of the on-line algorithm
(Crammer and Singer, 2002). The problem size in the large-margin ranking algorithm of
Herbrich et al. (2000) is a quadratic function of the training data size making the algorithmic
complexity O(n4)–O(n6). This makes the experiments on large datasets computationally
difficult. Thus, we decide to limit our comparisons to the support vector approach (SVM)
of Shashua and Levin (2003) and the two versions of our approach, the MAP approach with
Laplace approximation (MAP) and the EP algorithm with variational methods (EP). In our
implementation,6 we used the routine L-BFGS-B (Byrd et al., 1995) as the gradient-based
optimization package, and started from the initial values of hyperparameters to infer the
optimal values in the criterion of the approximate evidence (11) for MAP or the variational
lower bound (13) for EP respectively.7 The improved SMO algorithm (Keerthi et al., 2001)
was adapted to implement the SVM approach (refer to Chu and Keerthi (2005) for detailed
description and extensive discussion),8 and 5-fold cross validation was used to determine the
optimal values of model parameters (the kernel parameter κ and the regularization factor
C) involved in the problem formulations. The initial search was done on a 7 × 7 coarse
grid linearly spaced in the region {(log10 C, log10 κ)| − 3 ≤ log10C ≤ 3,−3 ≤ log10 κ ≤ 3},
followed by a fine search on a 9×9 uniform grid linearly spaced by 0.2 in the (log10C, log10 κ)
space. We have utilized two evaluation metrics which quantify the accuracy of predictive
ordinal scales {ŷ1, . . . , ŷt} with respect to true targets {y1, . . . , yt}:

5. These datasets are publicly available at http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html.
6. The two versions of our proposed approach were implemented in ANSI C, and the source code is accessible

at http://www.gatsby.ucl.ac.uk/∼chuwei/code/gpor.tar.
7. In numerical experiments, the initial values of the hyperparameters were usually chosen as σ2 = 1,

κ = 1/d for Gaussian kernel, the threshold b1 = −1 and ∆ι = 2/r. We suggest to try several starting
points in practice, and then choose the best model by the objective functional.

8. The source code in ANSI C is available at http://www.gatsby.ucl.ac.uk/∼chuwei/code/svorim.tar.
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Figure 2: The performance of the three algorithms on a synthetic three-rank ordinal regres-
sion problem. The discriminant function values of the SVM approach, and the
predictive mean values of the two Gaussian process approaches are presented as
contour graphs indexed by the two thresholds. The upper graphs are for the case
of lower noise level, while the lower graphs are for the case of higher noise level.
The training samples we used are presented in these graphs. The dots denote the
training samples of rank 1, the crosses denote the training samples of rank 2 and
the circles denote the training samples of rank 3.

• Mean absolute error is the average deviation of the prediction from the true target,
i.e. 1

t

∑t
i=1 |ŷi − yi|, in which we treat the ordinal scales as consecutive integers;

• Mean zero-one error gives an error of 1 to every incorrect prediction that is the
fraction of incorrect predictions.

6.1 Artificial data

Figure 2 presents the behavior of the three algorithms using the Gaussian kernel (1) on a
synthetic 2D data with three ordinal scales. In the support vector approach, the optimal
thresholds were determined by the SMO algorithm and 5-fold cross validation was used to
decide the optimal values of the kernel parameter and the regularization factor. As for the
Gaussian process algorithms, model adaptation (see Section 3) was used to determine the
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Table 1: Datasets and their characteristics. “Attributes” state the number of nu-
merical and nominal attributes. “Training Instances” and “Instances for
Test” specify the size of training/test partition. The partitions we gen-
erated and the test results on individual partitions can be accessed at
http://www.gatsby.ucl.ac.uk/∼chuwei/ordinalregression.html.

Datasets Attributes(Numeric,Nominal) Training Instances Instances for Test
Diabetes 2(2,0) 30 13
Pyrimidines 27(27,0) 50 24
Triazines 60(60,0) 100 86
Wisconsin Breast Cancer 32(32,0) 130 64

Set I Machine CPU 6(6,0) 150 59
Auto MPG 7(4,3) 200 192
Boston Housing 13(12,1) 300 206
Stocks Domain 9(9,0) 600 350
Abalone 8(7,1) 1000 3177
Bank Domains(1) 8(8,0) 50 8142
Bank Domains(2) 32(32,0) 75 8117
Computer Activity(1) 12(12,0) 100 8092

Set II Computer Activity(2) 21(21,0) 125 8067
California Housing 8(8,0) 150 15490
Census Domains(1) 8(8,0) 175 16609
Census Domains(2) 16(16,0) 200 16584

optimal values of the kernel parameter, the noise level and the thresholds automatically.
The figure shows that all the algorithms are working reasonably well on this task.

6.2 Benchmark data

We collected nine benchmark datasets (Set I in Table 1) that were used for metric regression
problems. The target values were discretized into ordinal quantities using equal-length
binning. These bins divide the range of target values into a given number of intervals that
are of same length. The resulting rank values are ordered, representing these intervals of
the original metric quantities. For each dataset, we generated two versions by discretizing
the target values into five and ten intervals respectively. We randomly partitioned each
dataset into training/test splits as specified in Table 1. The partition was repeated 20
times independently. The Gaussian kernel (1) was used in these three algorithms. The test
results are recorded in Table 2 and 3. The performance of the MAP and EP approaches
are closely matching. Our Gaussian process algorithms often yield better results than the
support vector approach on the average value, especially when the number of training
samples is small.

In the next experiment, we selected seven very large metric regression datasets (Set II in
Table 1). The input vectors were normalized to zero mean and unit variance coordinate-wise.
The target values of these datasets were discretized into 10 ordinal quantities using equal-
frequency binning. For each dataset, a small subset was randomly selected for training and
then tested on the remaining samples, as specified in Table 1. The partition was repeated
100 times independently. To show the advantage of explicitly modelling the ordinal nature
of the targets, we also employed the standard Gaussian process algorithm (Williams and

11
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Table 2: Test results of the three algorithms using a Gaussian kernel. The targets of these
benchmark datasets were discretized by 5 equal-length bins. The results are the
averages over 20 trials, along with the standard deviation. We use the bold face to
indicate the cases in which the average value is the lowest in the results of the three
algorithms. The symbols ? are used to indicate the cases in which the indicated
entry is significantly worse than the winning entry; A p-value threshold of 0.01 in
Wilcoxon rank sum test was used to decide statistical significance.

Mean zero-one error Mean absolute error
Data SVM MAP EP SVM MAP EP
Diabetes 57.31±12.09% 54.23±13.78% 54.23±13.78% 0.7462±0.1414 0.6615±0.1376 0.6654±0.1373
Pyrimidines 41.46±8.49% 39.79±7.21% 36.46±6.47% 0.4500±0.1136 0.4271±0.0906 0.3917±0.0745

Triazines 54.19±1.48% 52.91±2.15% 52.62±2.66% 0.6977±0.0259 0.6872±0.0229 0.6878±0.0295
Wisconsin ?70.78±3.73% 65.00±4.71% 65.16±4.65% 1.0031±0.0727 1.0102±0.0937 1.0141±0.0932
Machine 17.37±3.56% 16.53±3.56% 16.78±3.88% 0.1915±0.0423 0.1847±0.0404 0.1856±0.0424
Auto MPG ?25.73±2.24% 23.78±1.85% 23.75±1.74% 0.2596±0.0230 0.2411±0.0189 0.2411±0.0186

Boston 25.56±1.98% 24.88±2.02% 24.49±1.85% 0.2672±0.0190 0.2604±0.0206 0.2585±0.0200

Stocks 10.81±1.70% 11.99±2.34% 12.00±2.06% 0.1081±0.0170 0.1199±0.0234 0.1200±0.0206
Abalone 21.58±0.32% 21.50±0.22% 21.56±0.36% 0.2293±0.0038 0.2322±0.0025 ?0.2337±0.0072

Table 3: Test results of the three algorithms using a Gaussian kernel. The targets of these
benchmark datasets were discretized by 10 equal-length bins. The results are the
averages over 20 trials, along with the standard deviation. We use the bold face to
indicate the cases in which the average value is the lowest in the results of the three
algorithms. The symbols ? are used to indicate the cases in which the indicated
entry is significantly worse than the winning entry; A p-value threshold of 0.01 in
Wilcoxon rank sum test was used to decide statistical significance.

Mean zero-one error Mean absolute error
Data SVM MAP EP SVM MAP EP
Diabetes ?90.38±7.00% 83.46±5.73% 83.08±5.91% 2.4577±0.4369 2.1385±0.3317 2.1423±0.3314
Pyrimidines 59.37±7.63% 55.42±8.01% 54.38±7.70% 0.9187±0.1895 0.8771±0.1749 0.8292±0.1338

Triazines ?67.91±3.63% 63.72±4.34% 64.01±3.78% 1.2308±0.0874 1.1994±0.0671 1.2012±0.0680
Wisconsin ?85.86±3.78% 78.52±3.58% 78.52±3.51% 2.1250±0.1500 2.1391±0.1797 2.1437±0.1790
Machine 32.63±3.84% 33.81±3.91% 33.73±3.64% 0.4398±0.0688 0.4746±0.0727 0.4686±0.0763
Auto MPG 44.01±2.30% 43.96±2.81% 43.88±2.60% 0.5081±0.0263 0.4990±0.0352 0.4979±0.0340

Boston 42.06±2.49% 41.53±2.77% 41.26±2.86% 0.4971±0.0305 0.4920±0.0330 0.4896±0.0346

Stocks 17.74±2.15% ?19.90±1.72% ?19.44±1.91% 0.1804±0.0213 ?0.2006±0.0166 ?0.1960±0.0184
Abalone 42.84±0.86% 42.60±0.91% 42.27±0.46% 0.5160±0.0087 0.5140±0.0075 0.5113±0.0053

Rasmussen, 1996) for metric regression (GPR)9 to tackle these ordinal regression tasks,
where the ordinal targets were naively treated as continuous values and the predictions for
test cases were rounded to the nearest ordinal scale. The Gaussian kernel (1) was used
in the four algorithms. From the test results in Table 4, the ordinal regression algorithms
are clearly superior to the naive approach of applying standard metric regression. We also
observed that the performance of Gaussian process algorithms are significantly better than
that of the support vector approach on six of the seven datasets. This verifies our judgement
in the previous experiment that our Gaussian process algorithms yield better performance

9. In the GPR, the type-II maximum likelihood was used for model selection.
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Table 4: Test results of the four algorithms using a Gaussian kernel. The targets of these
benchmark datasets were discretized by 10 equal-frequency bins. The results are
the average over 100 trials, along with the standard deviation. “GPR” denotes the
standard algorithm of Gaussian process metric regression that treats the ordinal
scales as continuous values. “NLL” denotes the negative logarithm of the likelihood
in prediction. We use the bold face to indicate the cases in which the average value
is the lowest mean zero-one error of the four algorithms. The symbols ? are used
to indicate the cases in which the indicated entry is significantly worse than the
winning entry; A p-value threshold of 0.01 in Wilcoxon rank sum test was used to
decide statistical significance.

Mean zero-one error NLL
Data GPR SVM MAP EP MAP EP
Bank(1) ?59.43 ± 2.80 % 49.07 ± 2.69 % 48.65 ± 1.93 % 48.35 ± 1.91 % 1.14 ± 0.07 1.14 ± 0.07
Bank(2) ?86.37 ± 1.49 % ?82.26 ± 2.06 % 80.96 ± 1.51 % 80.89 ± 1.52 % 2.20 ± 0.09 2.20 ± 0.09
CompAct(1) ?65.52 ± 2.31 % ?59.87 ± 2.25 % 58.52 ± 1.73 % 58.51 ± 1.53 % 1.65 ± 0.16 1.64 ± 0.14
CompAct(2) ?59.30 ± 2.27 % ?54.79 ± 2.10 % 53.80 ± 1.84 % 53.92 ± 1.68 % 1.49 ± 0.11 1.48 ± 0.09
California ?76.13 ± 1.27 % ?70.63 ± 1.40 % 69.60 ± 1.12 % 69.58 ± 1.11 % 1.89 ± 0.08 1.89 ± 0.09
Census(1) ?78.06 ± 0.81 % ?74.69 ± 0.94 % 73.71 ± 0.77 % 73.71 ± 0.77 % 2.04 ± 0.08 2.05 ± 0.08
Census(2) ?78.02 ± 0.85 % ?76.01 ± 1.03 % 74.53 ± 0.81 % 74.48 ± 0.84 % 2.03 ± 0.06 2.03 ± 0.07

than the support vector approach on small datasets. Although the EP approach often yields
better results of mean zero-one error than the MAP approach on these tasks, we have not
detected any statistically significant difference on their performance. In Table 4 we also
report their negative logarithm of the likelihood in prediction (NLL). The performance
of the MAP and EP approaches are closely matching too with no statistically significant
difference.

For these datasets, the overall training time of MAP and EP approaches was substan-
tially less than that of the SVM approach. This is because the MAP and EP approaches
can tune the model parameters by gradient descent that usually required evidence evalua-
tions at tens of different settings of θ, whereas k-fold cross validation for the SVM approach
required evaluations at 130 different nodes of θ on the grid for every fold. For larger data
sets, the SVM approach may still have an advantage on training time due to the sparseness
property in its computation.

6.3 Collaborative filtering

Collaborative filtering exploits correlations between ratings across a population of users.
The goal is to predict a person’s rating on new items given the person’s past ratings on
similar items and the ratings of other people on all the items (including the new item).
The ratings are ordered, making collaborative filtering an ordinal regression problem. We
carried out ordinal regression on a subset of the EachMovie data (Compaq, 2001).10 The
rates given by the user with ID number “52647” on 449 movies were used as the targets,
in which the numbers of zero-to-five star are 40, 20, 57, 113, 145 and 74 respectively. We
selected 1500 users who contributed the most ratings on these 449 movies as the input

10. The Compaq System Research Center ran the EachMovie service for 18 months. 72916 users entered a
total of 2811983 numeric ratings on 1628 movies, i.e. about 2.4% are rated by zero-to-five star.
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features. The ratings given by the 1500 users on each movie were used as the input vector
accordingly. In the 449 × 1500 input matrix, about 40% elements were observed. We
randomly selected a subset with size {50, 100, . . . , 300} of the 449 movies for training, and
then tested on the remaining movies. At each size, the random selection was carried out 20
times independently.

Pearson correlation coefficient is the most popular correlation measure (Basilico and
Hofmann, 2004), which corresponds to a dot product between normalized rating vectors.
For instance, if applied to the movies, we can define the so-called z-scores as

z(v, u) =
r(v, u)− µ(v)

σ(v)

where u indexes users, v indexes movies, and r(v, u) is the rating on the movie v given by
the user u. µ(v) and σ(v) are the movie-specific mean and standard deviation respectively.
This correlation coefficient, defined as

K(v, v′) =
∑

u

z(v, u)z(v′, u)

where
∑

u denotes summing over all the users, was used as the covariance/kernel function
in our experiments for the three algorithms. As not all ratings are observed in the input
vectors, we consider two ad hoc strategies to deal with missing values: mean imputation and
weighted low-rank approximation. In the first case, unobserved values are identified with the
mean value, that means their corresponding z-score is zero. In the second case, we applied
the EM procedure described by Srebro and Jaakkola (2003) to fill in the missing data with
the estimate. In the input matrix, observed elements were weighted by one and missing data
were given weight zero. The low rank was fixed at 2. In Figure 3, we present the test results
of the two cases at different training data size. Using mean imputation, SVM produced a
bit more accurate results than Gaussian processes on mean absolute error. In the cases
with low rank approximation as preprocessing, the performance of the three algorithms are
highly competitive, and more interestingly, we observed about 0.08 improvement on mean
absolute error for all the three algorithms. A serious treatment on the missing data could
be an interesting research topic for future work.

6.4 Gene expression analysis

Singh et al. (2002) carried out microarray expression analysis on 12600 genes to identify
genes that might anticipate the clinical behavior of prostate cancer. Fifty-two samples of
prostate tumor were investigated. For each sample, the Gleason score ranging from 6 to 10,
was given by the pathologist reflecting the level of differentiation of the glands in the prostate
tumor. Predicting the Gleason score from the gene expression data is thus a typical ordinal
regression problem. Since only 6 samples had a score greater than 7, we merged them as
the top level, leading to three levels {= 6,= 7,≥ 8} with 26, 20 and 6 samples respectively.
We randomly partitioned the data into 2 folds for training and test and repeated this
partitioning 20 times independently. An ARD linear kernel K(xi, xj) =

∑d
ς=1 κςx

ς
ix

ς
j was

used to evaluate feature relevance. These ARD parameters {κς} were optimized by evidence
maximization. According to the optimal values of these ARD parameters, the genes were
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Figure 3: The test results of the three algorithms on the subset of EachMovie data over 20
trials. The grouped boxes represent the results of SVM (left), MAP (middle) and
EP (right) respectively at different training data size. The notched-boxes have
lines at the lower quartile, median, and upper quartile values. The whiskers are
lines extending from each end of the box to the most extreme data value within
1.5·IQR(Interquartile Range) of the box. Outliers are data with values beyond
the ends of the whiskers, which are displayed by dots. The higher graphs are for
the results of mean absolute error and the lower graphs are for mean zero-one
error. The cases of mean imputation are presented in the left graphs, and the
cases with weighted low-rank approximation as preprocessing are presented in the
right graphs.
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Figure 4: The test results of the three algorithms using a linear kernel on the prostate
cancer data of selected genes. The horizonal axes are indexed on log2 scale. The
rungs in these boxes indicate the mean values, and the heights of these vertical
boxes indicate the standard deviations over the 20 trials.
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ranked from irrelevant to relevant. We then removed the irrelevant genes gradually based
on the rank list. The gene number was reduced from 12600 to 1. At each number of
selected genes, a linear kernel K(xi, xj) =

∑d
ς=1 x

ς
ix

ς
j was used in the three algorithms for

a fair comparison. Figure 4 presents the test results of the three algorithms for different
numbers of selected genes. We observed great and steady improvement using the subset of
genes selected by the ARD technique. The best validation output is achieved around 40
top-ranked features. In this case, with only 26 training samples, the Bayesian approaches
perform much better than the SVM, and the EP approach is generally better than the MAP
approach but the difference is not statistically significant.

7. Conclusion

Ordinal regression is an important supervised learning problem with properties of both met-
ric regression and classification. In this paper, we proposed a simple yet novel nonparametric
Bayesian approach to ordinal regression based on a generalization of the probit likelihood
function for Gaussian processes. Two approximate inference procedures were derived in de-
tail for evidence evaluation and model adaptation. The approach intrinsically incorporates
ARD feature selection and provides probabilistic prediction. The existent fast algorithms
for Gaussian processes can be adapted directly to tackle relatively large datasets. Experi-
ments on benchmark and real-world data sets show that the generalization performance is
competitive and often better than support vector methods.
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Appendix A. Gradient formulae for evidence maximization

Evidence maximization is equivalent to finding the minimizer of the negative logarithm of
the evidence which can be written in an explicit expression as follows

− lnP(D|θ) ≈
n
∑

i=1

`(yi, fMAP(xi)) +
1

2
fTMAPΣ

−1fMAP +
1

2
ln |I+ΣΛMAP|.

We usually collect {lnκ, lnσ, b1, ln∆2, . . . , ln∆r−1} as the set of variables to tune. This
definition of tunable variables is helpful to convert the constrained optimization problem into
an unconstrained optimization problem. The outline of our algorithm for model adaptation
is described in Table 5.
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Table 5: The outline of our algorithm for model adaptation using the MAP approach with
Laplace approximation.

Initialization choose a favorite gradient-descent optimization package
select the starting point θ for the optimization package

Looping while the optimization package requests evidence/gradient evaluation at θ
1. find the MAP estimate by solving the convex programming problem (9)
2. evaluate the negative logarithm of the evidence (18) at the MAP
3. calculate the gradients with respect to θ (18)–(18)
4. feed the evidence and gradients to the optimization package

Exit Return the optimal θ found by the optimization package

The derivatives of − lnP(D|θ) with respect to these variables can be derived as follows:

∂ − lnP(D|θ)
∂ lnκ

=
κ

2
trace

[

(Λ−1MAP +Σ)−1
∂Σ

∂κ

]

− κ

2
fTMAPΣ

−1∂Σ

∂κ
Σ−1fMAP

+
κ

2
trace

[

Λ−1MAP(Λ
−1
MAP +Σ)−1Σ

∂ΛMAP
∂κ

]

;

∂ − lnP(D|θ)
∂ lnσ

= σ

n
∑

i=1

∂`(yi, fMAP(xi))

∂σ
+

σ

2
trace

[

Λ−1MAP(Λ
−1
MAP +Σ)−1Σ

∂ΛMAP
∂σ

]

;

∂ − lnP(D|θ)
∂b1

=
n
∑

i=1

∂`(yi, fMAP(xi))

∂b1
+

1

2
trace

[

Λ−1MAP(Λ
−1
MAP +Σ)−1Σ

∂ΛMAP
∂b1

]

;

∂ − lnP(D|θ)
∂ ln∆ι

= ∆ι

n
∑

i=1

∂`(yi, fMAP(xi))

∂∆ι
+

∆ι

2
trace

[

Λ−1MAP(Λ
−1
MAP +Σ)−1Σ

∂ΛMAP
∂∆ι

]

.

Note that at the MAP estimate Σ−1fMAP = −∑n
i=1

∂`(yi,f(xi))
∂f

∣

∣

∣

f=fMAP

. For more details,

let us define

sρ =
(zi1)

ρN (zi1; 0, 1)

Φ(zi1)− Φ(zi2)

and

vρ =
(zi1)

ρN (zi1; 0, 1)− (zi2)
ρN (zi2; 0, 1)

Φ(zi1)− Φ(zi2)

where ρ runs from 0 to 3, zi1 =
byi−f(xi)

σ
and zi2 =

byi−1−f(xi)
σ

. The ii-th entry of the diagonal
matrix Λ is denoted as Λii, which is defined as in (7), i.e. Λii =

1
σ2 (v0)

2+ 1
σ2 v1. The detailed

derivatives are given in the following:

• ∂Λii
∂κ

= ∂Λii
∂fT

∂f
∂κ

.

• ∂Λii
∂f(xi)

= 1
σ3 (2(v0)

3 + 3v0v1 + v2 − v0).

• ∂f
∂κ

= Λ−1(Λ−1 +Σ)−1 ∂Σ
∂κ

Σ−1f .
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• ∂`(yi,f(xi))
∂σ

= v1
σ
.

• ∂Λii
∂σ

= − 2
σ
Λii +

1
σ3 (2v0v2 + 2(v0)

2v1 − v1 + (v1)
2 + v3) +

∂Λii
∂fT

∂f
∂σ

.

• ∂f
∂σ

= Λ−1(Λ−1+Σ)−1Σψσ, where ψσ is a column vector whose i-th element is 1
σ2 (v0−

v0v1 − v2).

• ∂Λii
∂b1

= − ∂Λii
∂f(xi)

+ ∂Λii
∂fT

∂f
∂b1

.

• ∂f
∂b1

= Λ−1(Λ−1 +Σ)−1Σψb, where ψb is a column vector whose i-th element is Λii.

• ∂`(yi,f(xi))
∂∆ι

=







−v0
σ

if yi > ι;
− s0

σ
if yi = ι;

0 otherwise.

• ∂Λii
∂∆ι

=















− ∂Λii
∂f(xi)

+ ∂Λii
∂fT

∂f
∂∆ι

if yi > ι;

ϕi +
∂Λii
∂f

∂fT

∂∆ι
if yi = ι;

∂Λii
∂f

∂fT

∂∆ι
otherwise.

• ϕi =
∂Λii
∂∆ι

= 1
σ3 (s0 − 2v0s1 − 2(v0)

2s0 − s2 − v1s0).

• ∂f
∂∆ι

= Λ−1(Λ−1 + Σ)−1Σψ∆, where ψ∆ is a column vector whose i-th element is

defined as ψi
∆ =







Λii i.e.
1
σ2 ((v0)

2 + v1) if yi > ι;
1
σ2 (v0s0 + s1) if yi = ι;

0 otherwise.

Appendix B. Approximate posterior distribution by EP

The expectation propagation algorithm attempts to approximate P(f |D) in form of a prod-
uct of Gaussian distributionsQ(f) =

∏n
i=1 t̃(f(xi))P(f) where t̃(f(xi)) = si exp(−12pi(f(xi)−

mi)
2). The updating scheme is given as follows.

The initial states:

• individual mean mi = 0 ∀i ;

• individual inverse variance pi = 0 ∀i ;

• individual amplitude si = 1 ∀i ;

• posterior covariance A = (Σ−1 +Π)−1, where Π = diag(p1, p2, . . . , pn) ;

• posterior mean h = AΠm, where m = [m1,m2, . . . ,mn]
T .

Looping i from 1 to n until there is no significant change in {mi, pi, si}ni=1:

• t̃(f(xi)) is removed from Q(f) to get a leave-one-out posterior distribution Q\i(f)
having
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– variance of f(xi): λ
\i
i = Aii

1−Aiipi
;

– mean of f(xi): h
\i
i = hi + λ

\i
i pi(hi −mi) ;

– others with j 6= i: λ
\i
j = Ajj and h

\i
j = hj .

• t̃(f(xi)) in Q(f) is updated by incorporating the message P(yi|f(xi)) into Q\i(f):

– Zi =
∫

P(yi|f(xi))N (f(xi);h
\i
i , λ

\i
i )df(xi) = Φ(z̃1)− Φ(z̃2)

where z̃1 =
byi−h

\i
i

√

λ
\i
i +σ

2
and z̃2 =

byi−1−h
\i
i

√

λ
\i
i +σ

2
.

– βi =
∂ logZi

∂λ
\i
i

= − 1

2(λ
\i
i +σ

2)

(

z̃1N (z̃1;0,1)−z̃2N (z̃2;0,1)
Φ(z̃1)−Φ(z̃2)

)

.

γi =
∂ logZi

∂h
\i
i

= − 1
√

λ
\i
i +σ

2

(

N (z̃1;0,1)−N (z̃2;0,1)
Φ(z̃1)−Φ(z̃2)

)

. (18)

– υi = γ2i − 2βi .

– hnewi = h
\i
i + λ

\i
i γi .

– pnewi = υi

1−λ
\i
i υi

.

– mnew
i = h

\i
i + γi

υi
.

– snewi = Zi

√

λ
\i
i p

new
i + 1 exp

(

γ2
i

2υi

)

.

• Note that pnewi > 0 all the time, because 0 < υi <
1

λ
\i
i +σ

2
and then λ

\i
i υi < 1.

• if pnewi ≈ pi, skip this sample and this updating; otherwise update {pi,mi, si}, the
posterior mean h and covariance A as follows:

– Anew = A− ρaia
T
i where ρ =

pnewi −pi
1+(pnewi −pi)Aii

and ai is the i-th column of A.

– hnew = h+ ηai where η = γi+pi(hi−mi)
1−Aiipi

and γi is defined as in (18).

As a byproduct, we can get the approximate evidence P(D|θ) at the EP solution, which
can be written as

n
∏

i=1

si
det

1
2 (Π−1)

det
1
2 (Σ + Π−1)

exp

(

B

2

)

where B =
∑

ij Aij(mipi)(mjpj)−
∑

i pim
2
i .

Appendix C. Gradient formulae for variational bound

At the equilibrium of Q(f), the variational bound F(θ) can be analytically calculated as
follows:

F(θ) =
n
∑

i=1

∫

N (f(xi);hi,Aii) ln(P(yi|f(xi)))df(xi)−
1

2
ln |I + ΣΠ|

−1

2
trace((I + ΣΠ)−1)− 1

2
mT (Σ + Π−1)−1Σ(Σ + Π−1)−1m+

n

2
.
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Note that (Σ+Π−1)−1m can be directly obtained by {γi} defined as in (18). The gradient
of F(θ) with respect to the variables {lnκ, lnσ, b1, ln∆2, . . . , ln∆r−1} can be given in the
following:

∂F(θ)
∂ lnκ = κ

∫

Q(f)
∂ logP(f)

∂κ
df

= −κ

2
trace

(

Σ−1
∂Σ

∂κ

)

+
κ

2
hTΣ−1

∂Σ

∂κ
Σ−1h+

κ

2
trace

(

Σ−1
∂Σ

∂κ
Σ−1A

)

= −κ

2
trace

(

(Π−1 +Σ)−1
∂Σ

∂κ

)

+
κ

2
mT (Π−1 +Σ)−1

∂Σ

∂κ
(Π−1 +Σ)−1m ,

∂F(θ)
∂ lnσ = σ

∑n
i=1

∫

N (f(xi);hi,Aii)
∂ lnP(yi|f(xi))

∂σ
df(xi)

= −∑{1≤yi<r}

∫

N
(

f(xi);
hiσ

2+Aiibyi
σ2+Aii

, σ2Aii
σ2+Aii

)

byi
−f(xi)√

2π(σ2+Aii)
exp

(

−
(hi−byi )

2

2(σ2+Aii)

)

P(yi|f(xi))
df(xi)

+
∑

{1<yi≤r}

∫

N
(

f(xi);
hiσ

2+Aiibyi−1

σ2+Aii
, σ2Aii
σ2+Aii

)

byi−1−f(xi)√
2π(σ2+Aii)

exp

(

−
(hi−byi−1)2

2(σ2+Aii)

)

P(yi|f(xi))
df(xi) ,

∂F(θ)
∂b1

=
∑n

i=1

∫

N (f(xi);hi,Aii)
∂ lnP(yi|f(xi))

∂b1
df(xi)

=
∑

{1≤yi<r}

∫

N (f(xi);
hiσ

2+Aiibyi
σ2+Aii

, σ2Aii
σ2+Aii

)

1√
2π(σ2+Aii)

exp

(

−
(hi−byi )

2

2(σ2+Aii)

)

P(yi|f(xi)
df(xi)

−∑{1<yi≤r}

∫

N (f(xi);
hiσ

2+Aiibyi−1

σ2+Aii
, σ2Aii
σ2+Aii

)

1√
2π(σ2+Aii)

exp

(

−
(hi−byi−1)2

2(σ2+Aii)

)

P(yi|f(xi))
df(xi) ,

∂F(θ)
∂ ln∆ι

= ∆ι

∑n
i=1

∫

N (f(xi);hi,Aii)
∂ lnP(yi|f(xi))

∂∆ι
df(xi)

= ∆ι

∑

{ι≤yi<r}

∫

N (f(xi);
hiσ

2+Aiibyi
σ2+Aii

, σ2Aii
σ2+Aii

)

1√
2π(σ2+Aii)

exp

(

−
(hi−byi )

2

2(σ2+Aii)

)

P(yi|f(xi)
df(xi)

−∆ι

∑

{ι<yi≤r}

∫

N (f(xi);
hiσ

2+Aiibyi−1

σ2+Aii
, σ2Aii
σ2+Aii

)

1√
2π(σ2+Aii)

exp

(

−
(hi−byi−1)2

2(σ2+Aii)

)

P(yi|f(xi))
df(xi) ,

where
∑

{ι<yi≤r}
means summing over all the samples whose targets satisfy ι < yi ≤ r,

and these one-dimensional integrals can be approximated using Gaussian quadrature or
calculated by Romberg integration at some appropriate accuracy.
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