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Summary

In this thesis, we develop Bayesian support vector machines for regression and classification. Due

to the duality between reproducing kernel Hilbert space and stochastic processes, support vector

machines can be integrated with stationary Gaussian processes in a probabilistic framework.

We propose novel loss functions with the purpose of integrating Bayesian inference with support

vector machines smoothly while preserving their individual merits, and then in this framework

we apply popular Bayesian techniques to carry out model selection for support vector machines.

The contributions of this work are two-fold: for classical support vector machines, we follow

the standard Bayesian approach using the new loss function to implement model selection, by

which it is convenient to tune a large number of hyperparameters automatically; for standard

Gaussian processes, we introduce sparseness into Bayesian computation through the new loss

function which helps to reduce the computational burden and hence makes it possible to tackle

large-scale data sets.

For regression problems, we propose a novel loss function, namely soft insensitive loss func-

tion, which is a unified non-quadratic loss function with the desirable characteristic of differ-

entiability. We describe a Bayesian framework in stationary Gaussian processes together with

the soft insensitive loss function in likelihood evaluation. Under this framework, the maximum

a posteriori estimate on the function values corresponds to the solution of an extended support

vector regression problem. Bayesian methods are used to implement model adaptation, while

keeping the merits of support vector regression, such as quadratic programming and sparseness.

Moreover, we put forward error bar in making predictions. Experimental results on simulated

and real-world data sets indicate that the approach works well. Another merit of the Bayesian

approach is that it provides a feasible solution to large-scale regression problems.

For classification problems, we propose a novel differentiable loss function called trigonometric

loss function with the desirable characteristic of natural normalization in the likelihood function,

and then follow standard Gaussian processes techniques to set up a Bayesian framework. In this
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framework, Bayesian inference is used to implement model adaptation, while keeping the merits

of support vector classifiers, such as sparseness and convex programming. Moreover, we put

forward class probability in making predictions. Experimental results on benchmark data sets

indicate the usefulness of this approach.

In this thesis, we focus on regression problems in the first four chapters, and then extend

our discussion to binary classification problems. The thesis is organized as follows: in Chapter

1 we review the current techniques for regression problems, and then clarify our motivations

and intentions; in Chapter 2 we review the popular loss functions, and then propose a new loss

function, soft insensitive loss function, as a unified loss function and describe some of its useful

properties; in Chapter 3 we review Bayesian designs on generalized linear models that include

Bayesian neural networks and Gaussian processes; a detailed Bayesian design for support vector

regression is discussed in Chapter 4; we put forward a Bayesian design for binary classification

problems in Chapter 5 and we conclude the thesis in Chapter 6.
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Nomenclature

AT transposed matrix (or vector)

A−1 inverse matrix

Aij the ij-th entry of the matrix A

C a parameter in likelihood, C > 0

Cov[·, ·] covariance of two random variables

E[·] expectation of a random variable

K(·, ·) kernel function

V ar[·] variance of a random variable

α,α∗ column vectors of Lagrangian multipliers

αi, α
∗
i Lagrangian multipliers

δ the noise

δij the Kronecker delta

det the determinant of the matrix

`(·) loss function

η the column vector of Lagrangian multipliers

ηi Lagrangian multiplier

λ regularization parameter, λ > 0

R the set of reals

H Hessian matrix

I Identity matrix

w weight vector in column

D the set of training samples, {(xi, yi) | i = 1, . . . , n}

F(·) distribution function

L the likelihood

N (µ, σ2) normal distribution with mean µ and variance σ2

P(·) probability density function or probability of a set of events

| · | the determinant of the matrix

∇w differential operator with respect to w
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‖ · ‖ the Euclidean norm

θ model parameter (hyperparameter) vector

ξ, ξ∗ vectors of slack variables

ξi, ξ
∗
i slack variables

b bias or constant offset, b ∈ R

d the dimension of input space

i, j indices

n the number of training samples

x an input vector, x ∈ Rd

xι the ι-th dimension (or feature) of x

x the set of input vectors, {x1, x2, . . . , xn}

y target value y ∈ R, or class label y ∈ {±1}

y target vector in column or the set of target, {y1, y2, . . . , yn}

(x, y) a pattern

fx, f(x) the latent function at the input x

f the column vector of latent functions

z ∈ (a, b) interval a < z < b

z ∈ (a, b] interval a < z ≤ b

z ∈ [a, b] interval a ≤ z ≤ b

i imaginary unit
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Chapter 1

Introduction and Review

There are many problems in science, statistics and technology which can be effectively modelled

as the learning of an input-output mapping given some data set. The mapping usually takes

the form of some unknown function between two spaces as f :Rd → R. The given data set D

is composed of n independent, identically distributed (i.i.d.) samples, i.e., the pairs (x1, y1),

. . . , (xn, yn) which are obtained by randomly sampling the function f in the input-output space

Rd × R according to some unknown joint probability density function P(x, y). In the presence

of additive noise, the generic model for these pairs can be written as

yi = f(xi) + δi, i = 1, . . . , n, (1.1)

where xi ∈ Rd, yi ∈ R, and the δi are i.i.d. random variables, whose distributions are usually

unknown. Regression aims to infer the underlying function f , or an estimate of it from the finite

data set D.1

In trivial cases, the parametric model of the underlying function is known, and is therefore

determined uniquely by the value of a parameter vector θ. We denote the parametric form as

f(x; θ), and assume that the additive noise δ in measurement (1.1) has some known distribution

with probability density function P(δ), which is usually Gaussian. Due to the dependency of

P(δ) on θ, we explicitly rewrite P(δ) as P(δ; θ) or P(y−f(x; θ)).2 Our problem becomes the use

of the information provided by the samples to obtain good estimates of the unknown parameter

vector θ in the parametric model f(x; θ). For regular models, the method of maximum likelihood

1Classification or pattern recognition could be regarded as a special case of regression problems in which the
targets y take only limited values, usually binary values {−1,+1}. We will discuss the case later in a separate
chapter.

2We prefer to write P(δ; θ) here, since the θ is treated as ordinary parameters for maximum likelihood analysis.
The notation P(δ|θ) implies that θ is random variables, which is suitable for Bayesian analysis.
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could be used to find the values θ̂ of the parameters which is “most likely” to have produced the

samples. Suppose that the data D = {(xi, yi) | i = 1, . . . , n} have been independently drawn.

The probability of observing target values y = {y1, y2, . . . , yn} at corresponding input points

x = {x1, x2, . . . , xn} can be stated as a conditional probability P(y|x; θ). Here each pair (xi, yi)

is associated with a noise value δi. For any θ, the probability of observing these discrete points

D can be given as

P(D; θ) = P(y|x; θ)P(x). (1.2)

where P(y|x; θ) =
∏n

i=1 P(δ = δi; θ) =
∏n

i=1 P(yi − f(xi; θ)) and P(x) is independent of θ.

Viewed as a function of θ, P(y|x; θ) is called the likelihood of θ with respect to the set of

samples. The maximum likelihood estimate of θ is, by definition, the value θ̂ that maximizes

P(y|x; θ). Thus the value θ̂ can be obtained from the set of equations
∂P(y|x; θ)

∂θ
|θ=θ̂ = 0.

1.1 Generalized Linear Models

In general, the model of the underlying function is unknown. We have to develop a regression

function from some universal approximator, which has sufficient capacity to arbitrarily closely

approximate any continuous input-output mapping function defined on a compact domain. The

universal approximation theorem (Park and Sandberg, 1991; Cybenko, 1989) states that both

multilayer perceptrons (MLP) with single hidden layer and radial basis function (RBF) networks

are universal approximators.

1. MLP: the regression function given by a MLP network with single hidden layer can be

written as

f(x; Θ) =

m∑

i=1

wiϕ(x; νi) + b (1.3)

where m is the number of hidden neurons, ϕ(x; νi) is the activation function, and νi is

the weight vector in the i-th hidden neuron. Θ denotes the set of all parameters that

include hidden-to-output weights {wi}mi=1, input-to-hidden weights {νi}mi=1 and the bias b.

Logistic function ϕ(x; ν) = 1
1+exp(−ν·x) or hyperbolic tangent function ϕ(x; ν) = tanh(ν ·x)

is commonly used as the activation function in the hidden neurons.

2. RBF: the regression function given by a RBF network can be written as

f(x; Θ) =

m∑

i=1

wiϕ(x;µi, σi) + b (1.4)
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where ϕ(x;µi, σi) is a radial basis function, µi is the center of the radial basis function and

σi denotes other parameters in the function. Green’s functions (Courant and Hilbert, 1953),

especially the Gaussian function G(‖x − µ‖;σ) = exp
(

−‖x−µ‖2

2σ2

)

which is translationally

and rotationally invariant, are widely used as radial basis functions. In the Gaussian

function, the parameter σ is usually called the spread (Haykin, 1999). As a particular

case, the number of hidden neurons is chosen same as the size of training data, i.e. m = n,

and the centers are fixed at µi = xi ∀i, which is known as generalized RBF (Poggio and

Girosi, 1990).

The regression function of the two networks could be generalized into a unified formulation

as

f(x; Θ) =

m∑

i=1

wiϕ(x; θi) + b =

m∑

i=0

wiϕ(x; θi) (1.5)

where w0 = b, ϕ(x; θi) is a set of basis functions with ϕ(x; θ0) = 1, and Θ denotes the set

of free parameters in the model. The regression function in (1.5) is a parameterized linear

superposition of basis functions, which is usually referred to as generalized linear models. We

give a architectural graph of generalized linear models in Figure 1.1. Depending on the choice

of the basis function, different networks, such as MLP with single hidden layer and RBF, could

be obtained.

In order to choose the best available regression function for the given data, we usually measure

the discrepancy between the target y to a given input x and the response f(x; Θ) by some loss

function `(y, f(x; Θ)),3 and consider the expected value of the loss, given by the risk functional

R(Θ) =

∫ ∫

`(y, f(x; Θ))P(x, y) dx dy. (1.6)

Since only finite samples are available, the risk functional R(Θ) is usually replaced by the so-

called empirical risk functional

Remp(Θ) =
1

n

n∑

i=1

`(yi, f(xi; Θ)). (1.7)

The solution to the minimization ofRemp(Θ) could be selected as the desired regression function.

This principle of minimizing the empirical risk functional (1.7) on the basis of empirical data is

referred to as the empirical risk minimization (ERM) inductive principle.

3Usually, there is a close relationship between the loss function `(y|f(x; Θ)) and the likelihood function
P(y|f(x; Θ)), which is P(y|f(x; Θ)) ∝ exp(−C · `(y, f(x; Θ))) where C is a parameter greater than zero.

3



2 mi    . . .

   . . .

Σ

1x jx

( )
0

( ; ) ;
m

i i i
i

f x w xϕ θ
=

Θ =∑

   . . .1
( )1 1;xϕ θ

1w iw mw

0w

dx
   . . .

0 1ϕ =

2w

( );m mxϕ θ( );i ixϕ θ( )2 2;xϕ θ

Figure 1.1: A architectural graph for generalized linear models.

However, for a universal approximator that has sufficient power to represent any arbitrary

continuous function, the minimization problem in ERM is obviously ill-posed, because it will

yield an infinite number of solutions that give a zero value for Remp(Θ). A more complex

model that is of more powerful representational capacity typically fits the empirical data better.

Preferring these “best fit” models leads us to choose implausibly over-parameterized models,

which might provide poor prediction for future data.

1.2 Occam’s Razor

There is a general philosophical principle known as Occam’s razor for model selection, which is

highly influential when applied to various scientific theories.

No more things should be presumed to exist than are absolutely necessary.

—“Occam’s razor” principle attributed to W. Occam (c. 1285−1349).

In the light of the Occam’s razor, unnecessary complex models should not be preferred to simpler

ones. This intuitive principle could be applied quantitatively in several ways.
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1.2.1 Regularization

Regularization theory, which was proposed by Tikhonov (1963) to solve the ill-posed problems,4

could incarnate the Occam’s razor principle as an optimization problem on the tradeoff between

model complexity and the empirical risk. This optimal trade-off is realized by minimizing the

regularized functional

R(f) =
1

n

n∑

i=1

`(yi, f(xi; Θ)) + λ · Φ(f) (1.8)

The L2 loss function ‖y − f(x; Θ)‖2 is widely used for the empirical risk in the first data-

dependent term; Φ(f) is a stabilizer with certain properties (Tikhonov and Arsenin, 1977; Girosi

et al., 1995) to measure the model complexity; and the positive constant λ is a regularization

parameter, which represents the relative importance of the model complexity with respect to the

performance measure.

Regression problem in classical regularization theory (Evgeniou et al., 1999) could be formu-

lated as a variational problem of finding the function f in a reproducing kernel Hilbert space

(RKHS)5 that minimizes the regularized functional

R(f) =
1

n

n∑

i=1

`(yi, f(xi; Θ)) + λ · ‖f‖2RKHS (1.9)

where ‖f‖2RKHS is a norm in the RKHS. The RKHS is defined by the positive-definite function

K(xi, xj), namely reproducing kernel, on Rd × Rd.6

Mercer-Hilbert-Schmidt theorem (Wahba, 1990; Riesz and Sz.-Nagy, 1955) says that there

exists an orthonormal sequence of continuous eigenfunctions, φ1, φ2, . . . on Rd and eigenvalues

υ1 ≥ υ2 ≥ . . . ≥ 0, with

∫

Rd

K(xi, xj)φτ (xj) dxj = υτφτ (xi), τ = 1, 2, . . . ,

K(xi, xj) =
∞∑

τ=1

υτφτ (xi)φτ (xj), (1.10)

∫

Rd

∫

Rd

K2(xi, xj) dxi dxj =

∞∑

τ=1

υ2τ <∞,

under the condition that the positive-definite function K(xi, xj) is continuous and

4The ill-posed problem is of the type Af = D, where A is an (linear) operator, f is the desired solution in a
metric space E1, and D is the ’data’ in a metric space E2. Even if there exists a unique solution to this equation,
a small deviation on the right-hand side of this equation can cause large deviations in the solutions.

5For a modern account on the theory of RKHS, please refer to Saitoh (1988) or Small and McLeish (1994).
6A kernel functionK(xi, xj) can be any symmetric function satisfying Mercer’s condition (Courant and Hilbert,

1953)
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∫

Rd

∫

Rd K
2(xi, xj) dxi dxj <∞.

In the RKHS, the function f possesses a unique representation (Wahba, 1990)

f(x) =

∞∑

τ=1

γτφτ (x), (1.11)

where γτ =
∫

Rd f(t)φτ (t) dt, and its norm ‖f‖2RKHS =

∞∑

τ=1

γ2τ
υτ

. Thus, the functional R(f) in

(1.9) could be regarded as a function of the coefficients γτ . Suppose that the partial derivative

of the loss function ` in (1.9) with respect to γτ exists. In order to minimize R(f) we take its

derivative with respect to γτ and set it equal to zero, obtaining the following

1

n

n∑

i=1

∂`(yi, f(xi; Θ))

∂f(xi; Θ)
· φτ (xi) + 2λ · γτ

υτ
= 0.

where ∂`(yi,f(xi;Θ))
∂f(xi;Θ) denotes the partial derivative of the loss function with respect to f(xi; Θ).

Let us define the following set of unknowns: wi = − 1
2nλ ·

∂`(yi,f(xi;Θ))
∂f(xi;Θ) . Then the coefficients γτ

could be expressed as a function of the wi:

γτ = υτ

n∑

i=1

wi · φτ (xi).

Together with (1.10) and (1.11), the solution of the variational problem (1.9), therefore, has the

dual form:

f(x) =

∞∑

τ=1

γτφτ (x) =

∞∑

τ=1

υτ

n∑

i=1

wi · φτ (xi) · φτ (x) =
n∑

i=1

wiK(xi, x).

This shows that, for any differentiable loss function, the solution of the regularization func-

tional R(f), is always a linear superposition of kernel functions, one for each data point. This

elegant form of a minimizer of (1.9) is also known as the representer theorem (Kimeldorf and

Wahba, 1971). A generalized representer theorem can be found in Schölkopf et al. (2001), in

which the loss function is merely required as any strictly monotonically increasing function

` : R → [0,+∞).

The choice of the optimal regularization parameter λ and other free parameters in kernel

functions is an important issue in regularization techniques and typically cross validation (Kearns

et al., 1995; Wahba, 1990) or other heuristic schemes are used for that. We will further discuss

this issue in Chapter 4 and Chapter 5.
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1.2.2 Bayesian Learning

Bayesian methods could also quantify Occam’s razor automatically (Gull, 1988; MacKay, 1992c).

The fundamental concept of Bayesian analysis is that the plausibility of alternative hypotheses is

represented by probability, and inference is performed by evaluating those probabilities. Suppose

that we have collected a set of hypothesis classes,M1,M2, . . .,ML, that compete to account for

the data we are given. Our initial knowledge about the plausibility of these models is quantified

by a list of prior probability, P(M1), P(M2), . . ., P(ML), which sum to 1. Each model Mi

makes predictions about how probable different data sets are, if this model is the true. The

accuracy of the model’s predictions is evaluated by a conditional probability P(D|Mi), the

probability of D givenMi. When we observe the actual data D, Bayes’ theory describes how we

should update our beliefs of the model on the basis of the data D. Bayes’ theory can be written

as

P(Mi|D) =
P(D|Mi)P(Mi)

P(D) (1.12)

where P(Mi|D), the posterior probability, represents our final beliefs about the model Mi

given that we have observed D; the denominator P(D) is a normalizing constant which makes

P(Mi|D) of all the models add up to 1, and the data-dependent term P(D|Mi) is the evidence

for the modelMi. Notice that the subjective prior probability P(Mi) expresses how plausible we

thought the alternative models were before the observational data arrived. Since we usually have

no reason to assign strongly different P(Mi), the posterior probability P(Mi|D) will typically

be overwhelmed by the objective term, the evidence. Thus, in these cases the evidence could be

used as a criterion to assign a preference to the alternative models Mi.

As the quantity for comparing alternative models for Bayesians, the evidence naturally em-

bodies Occam’s razor that has been elucidated by MacKay (1992c). Let us use MLP networks

with a single hidden layer (1.3) as the model (hypothesis class) to account for the training

data D. A MLP network with m hidden neurons is denoted as Mm. The model set is com-

posed by MLP networks with different hidden neurons {Mm}. Each model Mm is defined by

a set of the weight vector w, which includes hidden-to-output weights {wi}mi=1, input-to-hidden

weights {νi}mi=1 and the bias b as in (1.3), and associated two probability distributions: a prior

distribution P(w|Mm) which expresses what values the model’s weights might plausibly take;

and the model’s descriptions to the data set D when its weights have been specified a partic-

ular value w, P(D|w,Mm). The evidence of the model Mm can be obtained by an integral

over all weights: P(D|Mm) =
∫
P(D|w,Mm)P(w|Mm) dw.7 It is common for the posterior

7In the cases that the integral cannot be computed analytically, Monte Carlo sampling methods (Gelman et al.,
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P(w|D,Mm) ∝ P(D|w,Mm)P(w|Mm) to have a strong peak at the most probable weights

wMP in many problems. Then the posterior distribution could be approximated by Laplacian

approximation, i.e., second-order Taylor-expansion of the log posterior:

P(w|D,Mm) ∼= P(wMP|D,Mm) · exp
(

−1

2
(w −wMP)

T ·H · (w −wMP)

)

(1.13)

where the Hessian H = −∇w∇w logP(w|D,Mm)|w=wMP
. If w is a W -dimensional vector, and

if the posterior is well approximated by the Gaussian (1.13), the evidence can be approximated

by multiplying the best fit likelihood by the Occam’s factor as follows8

P(D|Mm)
︸ ︷︷ ︸

Evidence

∼= P(D|wMP,Mm)
︸ ︷︷ ︸

Best fit likelihood

· P(wMP|Mm) · (2π)W
2 (detH)−

1
2

︸ ︷︷ ︸

Occam’s factor

. (1.14)

Here, the Occam’s factor is obtained from the normalization factor of the Gaussian (1.13) and

the prior probability at wMP. Typically, a complex model with many free parameters will be

penalized with a smaller Occam’s factor than a simpler model. The Occam’s factor is therefore a

measure of the model complexity. Which model achieves the greatest evidence is determined by

a tradeoff between minimizing this natural complexity measure and minimizing the data misfit.

So far, we have introduced two inductive principles for learning from finite samples that

provide different quantitative formulation of Occam’s razor. Constructive implementations of

these inductive principles bring into being various learning techniques.

1.3 Modern Techniques

In modern techniques for supervised learning, support vector machines are computationally

powerful, while Gaussian processes provide promising non-parametric Bayesian approaches. We

will introduce the two techniques in two subsections separately.

1995) can be used to approximate the integral. These work by constructing a Markov chain whose equilibrium
distribution is the desired distribution P(w|Mm), and the integral is then approximated using samples from the
Markov chain. More complicated schemes sampling from the posterior (Neal, 1997a) are necessarily applied in
practice.

8This formulation could be derived as follows. Taking integration over w on the both sides (1.13), we ob-

tain
∫
P(w|D,Mm)dw = 1 ∼= P(wMP|D,Mm) · (2π)

W
2 (detH)−

1
2 , where we notice that P(wMP|D,Mm) =

P(D|wMP,Mm) · P(wMP|Mm)/P(D|Mm). By moving the evidence term P(D|Mm) to the left-side, we can
then obtain the formulation (1.14).
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1.3.1 Support Vector Machines

In the early 1990s, Vapnik and his coworkers invented a computationally powerful class of super-

vised learning networks, called support vector machines (SVMs) for solving pattern recognition

(Boser et al., 1992). The new algorithm design is firmly grounded in the framework of statistical

learning theory developed by Vapnik, Chervonenkis and others (Vapnik, 1995), in which VC

dimension (Vapnik and Chervonenkis, 1971) provides a measure for the capacity of a neural

network to learn from a set of samples. The basic idea of Vapnik’s theory is closely related to

regularization, nevertheless capacity control is employed for model selection. Later, SVMs were

adapted to tackle density estimate and regression (Vapnik, 1998).

A novel loss function with insensitive zone, known as the ε-insensitive loss function (ε-ILF),

has been proposed for regression problems by Vapnik (1995). ε-ILF is defined as

`ε(y, f(x; Θ)) =







0 if |y − f(x; Θ)| ≤ ε

|y − f(x; Θ)| − ε otherwise

where ε ≥ 0. The loss is equal to zero if the absolute value of the deviation of the regression

function output f(x; Θ) from the target y is less than ε, and it is equal to the absolute value of

the deviation minus ε otherwise. SVMs for regression (SVR) exploits the idea of mapping input

data into a high dimensional RKHS (often infinite) where a linear regression is performed. In

order to estimate f from a given training data set D, classical SVR minimizes the regularized

risk functional (1.9) with ε-ILF

min
f∈RKHS

R(f) =
1

n

n∑

i=1

`ε(yi, f(xi; Θ)) + λ · ‖f‖2RKHS (1.15)

where ε ≥ 0, λ > 0 and ‖f‖2RKHS =

∞∑

τ=1

γ2τ
υτ

. The regression function in the RKHS takes the

general form (1.11). In addition, a single constant function φ0(x) = 1 is introduced as an offset

in classical SVR, and then

f(x; Θ) =

∞∑

τ=1

γτφτ (x) + b (1.16)

where the offset b ∈ R. The constant feature is not considered in the RKHS and therefore it is

not penalized in the stabilizer as model complexity (Evgeniou et al., 1999).9

The regularized functional can be minimized by solving a convex quadratic programming

optimization problem. Two sets of slack variables ξ and ξ∗ are introduced: ξi ≥ yi−b−f(xi)−ε
9The offset term could also be encapsulated into the kernel function.
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and ξ∗i ≥ f(xi)+b−yi−ε ∀i. The regularized functional (1.15) could be rewritten as the following

equivalent optimization problem, which we refer to as the primal problem:

min
γ, b, ξ, ξ∗

C ·
n∑

i=1

(ξi + ξ∗i ) +
1

2

∞∑

τ=1

γ2τ
υτ

subject to







yi − b−
∞∑

τ=1

γτφτ (xi) ≤ ε+ ξi

∞∑

τ=1

γτφτ (xi) + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0 ∀i

(1.17)

where C = 1
2nλ . To solve the optimization problem with constraints of inequality type we have

to find a saddle point of the Lagrange functional

L(γ, b, ξ, ξ∗;α,α∗,η,η∗) = C ·
n∑

i=1

(ξi + ξ∗i ) +
1

2

∞∑

τ=1

γ2τ
υτ
−

n∑

τ=1

(ηiξi + η∗i ξ
∗
i )

−
∞∑

i=1

αi

(

ε+ ξi − yi + b+

∞∑

τ=1

γτφτ (xi)

)

−
∞∑

i=1

α∗i

(

ε+ ξ∗i + yi − b−
∞∑

τ=1

γτφτ (xi)

) (1.18)

where αi, α
∗
i , ηi, η

∗
i ≥ 0 ∀i are the Lagrange multipliers corresponding to the inequalities in

the primal problem. Maximization with respect to γ, b, ξ and ξ∗ implies the following three

conditions:

γτ =
n∑

i=1

(αi − α∗i )υτφτ (xi) (1.19)

n∑

i=1

(αi − α∗i ) = 0 (1.20)

αi + ηi = C and α∗i + η∗i = C ∀i (1.21)

Let us we collect all terms involving ξi or ξ∗i in the Lagrangian (1.18) respectively, and these

terms could be grouped into two terms, (C − ηi − αi)ξi and (C − η∗i − α∗i )ξ∗i . Due to the KKT

condition (1.21), these terms vanish. All terms involving b in (1.18) are b
∑n

i=1(αi − α∗i ), which

will vanish due to the KKT condition (1.20). Together with (1.10) and the KKT condition

(1.19), the remaining terms in the Lagrangian yield the dual optimization problem:

max
α,α∗

−1

2

n∑

i=1

n∑

j=1

(αi − α∗i )(αj − α∗j )K(xi, xj) +

n∑

i=1

yi(αi − α∗i )− ε
n∑

i=1

(αi + α∗i ) (1.22)

subject to

n∑

i=1

(αi − α∗i ) = 0, 0 ≤ αi ≤ C and 0 ≤ α∗i ≤ C ∀i.

Obviously, the dual optimization problem (1.22) is a constrained quadratic programming
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problem. There are lots of “general purpose” algorithms as well as softwares available in the

optimization literature for quadratic programming. But they are not very suitable for solving

(1.22) because they cannot take the linear constraint
∑n

i=1(αi − α∗i ) = 0 and the implicit

constraint αi · α∗i = 0 into account effectively.10 Special designs on the numerical solution

for support vector classifier can be adapted to solve (1.22). The idea to fix the size of active

variables at two is known as Sequential Minimal Optimization (SMO), which was first proposed

by Platt (1999) for support vector classifier design. The merit of this idea is that the sub-

optimization problem can be solved analytically. Smola and Schölkopf (1998) applied Platt’s

SMO for classifier to regression. Later, Keerthi et al. (2001) put forward improvements on SMO

for classifier. Shevade et al. (2000) adapted these improvements into the regression algorithm

by introducing two thresholds to determine the bias. Keerthi and Gilbert (2002) proved the

convergence of SMO algorithm for SVM classifier design. Joachims (1998) proposed SVMLight

that is a general decomposition algorithm for classifier. Laskov (2000) proposed a decomposition

method for regression with working set selection principles. SVMTorch in Collobert and Bengio

(2001) adapted the idea to tackle large-scale regression problems, and Lin (2001) proved the

asymptotic convergence for decomposition algorithms. These contributions make SVMs training

efficient even on large-scale non-sparse data sets.

The regression function contributed by SVR takes the dual form by introducing (1.19) into

(1.16):

f(x; Θ) =

∞∑

τ=1

γτφτ (x) + b =

n∑

i=1

(αi − α∗i )K(x, xi) + b (1.23)

where the bias b could be obtained as a byproduct in the solution of the dual problem. In most

of the cases, only some of the Lagrange multipliers, i.e., (αi − α∗i ) in (1.22), differ from zero

at the optimal solution. They define the support vectors (SVs) of the problem. The training

samples (xi, yi) associated with |αi − α∗i | satisfying 0 < |αi − α∗i | < C are called off-bound SVs,

the samples with |αi − α∗i | = C are called on-bound SVs, and the samples with |αi − α∗i | = 0

are called non-SVs. Note that the non-SVs do not involve in the solution representation (1.22).

This is usually referred to as the sparseness property.

From the regression function (1.23), we can see that SVR belongs to the generalized linear

model in Figure 1.1. It is also interesting to compare SVR with RBF. It is possible that they

possess the same structure, but their training methods are quite different. SVR enjoy the training

via solving a convex quadratic programming problem, in the solution of which the number of

10The implicit constraint αi · α
∗
i = 0 comes from the fact that αi and α∗i , associated with the i-th training

sample, are corresponding to the inequality constraints in (1.17) respectively, and only one of the inequalities
holds at any time.
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hidden neurons and the associated weights are determined uniquely.

The performance of SVR crucially depends on the parameters in kernel function and other

two parameters, the tradeoff C (i.e. the regularization parameter λ) and the insensitive zone

ε in ε-ILF. Some generalization bounds, such as Vγ dimension (Evgeniou and Pontil, 1999) or

entropy numbers on capacity control (Williamson et al., 1998), could provide a principled way

to select model. However, most of the generalization bounds in existence are either not tight

enough to determine some elemental parameters, or computationally difficult to implement in

practice. Currently, cross validation (Wahba, 1990) is widely used in practice to pick the best

parameters, though it would appear difficult to be used when a large number of parameters are

involved.

1.3.2 Stationary Gaussian Processes

The application of Bayesian techniques to neural networks was pioneered by Burtine andWeigend

(1991), MacKay (1992c) and Neal (1992), and reviewed by Bishop (1995), MacKay (1995) and

Lampinen and Vehtari (2001). Bayesian techniques for neural networks specify a hierarchical

model with a prior distribution over hyperparameters, and specify a prior distribution of the

weights relative to the hyperparameters. This induces a posterior distribution over the weights

and hyperparameters for a given data set. Neal (1996) observed that a Gaussian prior for

hidden-to-output weights results in a Gaussian process prior for functions as the number of

hidden units goes to infinity. Inspired by Neal’s work, Williams and Rasmussen (1996) extended

the use of Gaussian process prior to higher dimensional problems that have been traditionally

tackled with other techniques, such as neural networks, decision trees etc., and good results have

been obtained. The important advantage of Gaussian process models for supervised learning

(Williams, 1998; Williams and Barber, 1998) over other non-Bayesian models is the explicit

Bayesian formulation. This not only builds up Bayesian framework to implement hyperparameter

inference but also provides us with confidence intervals in prediction.

Assume that we are observing function values f(xi) at locations xi. These observed function

values {f(xi)|i = 1, . . . , n} are regarded as the realizations of random variables in a stationary

stochastic process. It is natural to assume that the f(xi) are correlated, depending on their

location xi merely, i.e., the adjacent observations should convey information about each other to

some degree. This is the basis on which we would be able to perform inference. In practice, we

usually make a further stringent assumption regarding the distribution of the f(xi). We could

of course assume any arbitrary distribution for the f(xi). For computational convenience, we
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assume they are random variables in a stationary Gaussian process, namely that they form a

Gaussian distribution with mean µ and a n × n covariance matrix Σ whose ij-th element is a

covariance function Cov[f(xi), f(xj)]. The covariance function Cov[f(xi), f(xj)] is a function of

two locations xi and xj , i.e. Cov(xi, xj), and returns the covariance between the corresponding

outputs f(xi) and f(xj). Formally, the covariance function Cov(xi, xj) is well-defined, symmetric

and the covariance matrix Σ is positive definite. In classical settings, the mean is specified at zero,

which implies that we have no prior knowledge about the particular value of the estimate, but

assume that small values are preferred.11 Now let us formulate the prior distribution resulting

from these assumptions. For the given set of random variables f = [f(x1), f(x2), . . . , f(xn)]
T ,

an explicit expression of the prior density function P(f ) could be given as

P(f) = 1

(2π)
n
2 (detΣ)

1
2

exp

(

−1

2
fT · Σ−1 · f

)

(1.24)

which is a multivariate joint Gaussian.

In regression problems, we can observe target values yi which is f(xi) corrupted by additive

noise δi as in (1.1), rather than observing f(xi) directly. The additive noise variables δi are

independent random variables with unknown distribution. We could assume that δi are drawn

from different distributions, δi ∼ Pi(δi). This follows that we can state the likelihood P(y|f) as

P(y|f) =
n∏

i=1

Pi(δi) =
n∏

i=1

Pi (yi − f(xi))

where the vector of random variables y = [y1, y2, . . . , yn]
T . The posterior distribution is then

given as:12

P(f |y) ∝ P(y|f)P(f) =
n∏

i=1

Pi (yi − f(xi)) ·
1

(2π)
n
2 (detΣ)

1
2

exp

(

−1

2
fT · Σ−1 · f

)

To perform inference, we have to further specify the noise distribution that connects f and y. For

computational convenience, we usually assume that all δi are drawn from a same distribution,

and the distribution is a Gaussian with zero-mean and variance σ2, i.e., δi ∼ N (0, σ2), ∀i. The

advantage of this assumption is that all the distributions involved in the process of inference

11In regression problems as in (1.1), to prevent the scalar in target values yi from impairing this assumption,
we usually normalize the targets into zero mean and unit variance in pre-processing.

12In the notation of these distributions, there is an implicit condition that the input locations x =
{x1, x2, . . . , xn} are already given.
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remain normal, namely conjugate. Thus, the posterior distribution is

P(f |y) ∝ exp

(

− 1

2σ2
‖y − f‖2 − 1

2
fT · Σ−1 · f

)

, exp

(

−1

2
(f − fm)

T
(
Σ−1 +

1

σ2
I
)
(f − fm)

)

(1.25)

where fm is a vector of posterior mean. The posterior distribution (1.25) is again Gaussian

with the variance
(
Σ−1 + 1

σ2 I
)−1

. For normal distributions, the maximum a posteriori (MAP)

estimate of f that maximizes the posterior distribution P(f |y), i.e., argmax
f
P(f |y), is identical

with the mean fm, which can consequently found by differentiation

∂P(f |y)
∂f

∣
∣
∣
∣
f=fm

= 0 =⇒ fm = Σ · (Σ + σ2I)−1 · y

Summarily, in standard Gaussian processes for regression (Williams and Rasmussen, 1996),

a Gaussian process prior for the function values is combined with a likelihood evaluated by a

Gaussian noise model with zero mean and a standard deviation σ2 that does not depend on the

inputs, to yield a posterior over functions that can be computed exactly using matrix operations.

In the prediction using the Gaussian process, we are interested in calculating the distribution

of the random variable f(x) indexed by the new test case x. The n + 1 random variables

{y1, . . . , yn, f(x)} have a joint Gaussian distribution as follows

P(y, f(x)) ∝ exp






−1

2






y

f(x)






T 




Σ+ σ2I k

kT Cov(x, x)











y

f(x)












where k = [Cov(x1, x), Cov(x2, x), . . . , Cov(xn, x)]
T and Σ is the n×n covariance matrix. Since

we have already observed targets y = [y1, y2, . . . , yn]
T , we can obtain the conditional distribution

P(f(x)|y) (Anderson, 1958). Let us keep y intact and make a non-singular linear transformation

to f(x):

y = y

f∗ = f(x) + yT · L

where L is an unknown column vector. In order to make y and f ∗ uncorrelated, we set E[(y −

E(y))(f∗ − E(f∗))] = 0 that leads to k + (Σ + σ2I) · L = 0, i.e. L = −(Σ + σ2I)−1 · k.13 The

mean of f∗ is zero, and the variance of f∗ is given as

E
[
(f(x)− yT (Σ + σ2I)−1k)T · (f(x)− yT (Σ + σ2I)−1k)

]
= Cov(x, x)− kT (Σ + σ2I)−1k

13On the basis of our assumption of zero-mean Gaussian processes, we know that E[y] = 0, E[f(x)] = 0,
E[y · f(x)] = k, E[f(x) · f(x)] = Cov(x, x), and E[y · yT ] = (Σ + σ2 · I)−1.
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Therefore, P(f(x)|y) is a Gaussian distribution with

Ef(x)|y[f(x)] = yT (Σ + σ2I)−1k

V arf(x)|y[f(x)] = Cov(x, x)− kT (Σ + σ2I)−1k
(1.26)

i.e., P(f(x)|y) = N
(

yT (Σ + σ2I)−1k, Cov(x, x)− kT (Σ + σ2I)−1k
)

.

Given a covariance function, it is straightforward to make a linear combination of the obser-

vational targets as the prediction for new test points. However, we are unlikely to know which

covariance function to use in practical situations. Thus, it is necessary to choose a paramet-

ric family of covariance function (Neal, 1997a; Williams, 1998). We collect the parameters in

covariance function as θ, the hyperparameter vector, and then either to estimate these hyperpa-

rameters θ via type II maximum likelihood or to use Bayesian approaches in which a posterior

distribution over these hyperparameters θ is obtained. This calculations are facilitated by the

fact that the distribution P(y|θ) can be formulated analytically as

P(y|θ) = 1

(2π)
n
2 (det(Σ + σ2I))

1
2

exp

(

−1

2
yT (Σ + σ2I)−1y

)

(1.27)

where Σ and σ are functions of θ.

The probability P(y|θ) expresses how likely we observe the target values {y1, y2, . . . , yn} as

the realization of random variables y if θ is given. Thus, the probability P(y|θ) is the likelihood

of θ, which is also called the evidence of θ popularly. Since the logarithm is monotonic, likelihood

maximization is equivalent to minimize the negative log likelihood L(θ) = − lnP(y|θ), which can

be given as

L(θ) = − lnP(y|θ) = 1

2
ln det(Σ + σ2I) +

1

2
yT (Σ + σ2I)−1y +

n

2
ln 2π (1.28)

It is also possible to analytically express the partial derivatives of the log likelihood with respect

to the hyperparameters, using the shorthand H = Σ+ σ2I, as

∂L(θ)
∂θ

=
1

2
trace

(

H−1 ∂H

∂θ

)

− 1

2
yTH−1 ∂H

∂θ
H−1y (1.29)

Note that the evaluation of the likelihood and the partial derivatives takes time O(n3), since it

involves the inversion of H, which is a n× n matrix. This is a heavy computational burden for

large data sets.

Given L(θ) (1.28) and its gradients (1.29), the standard gradient-based optimization pack-
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ages could be applied to update these hyperparameters towards a minimum of − lnP(y|θ), i.e.,

a maximum of the likelihood (1.27). This is the type II maximum likelihood approach for

hyperparameter adaptation.

In general, some hyperparameters could be poorly determined in the maximum likelihood

estimation when there might be local minima in the likelihood surface. We may concern about the

uncertainty in hyperparameter inference while making predictions. The full Bayesian treatment

is attractive for erasing the uncertainty. A prior distribution over the parameters P(θ) is required

to be specified and then a posterior distribution once the target data y has been given P(θ|y)

could be obtained as P(θ|y) ∝ P(y|θ)P(θ). While making a prediction for a new test case x, we

simply average over the posterior distribution P(θ|y), i.e.,

P(f(x)|y) =
∫

P
(
f(x)|θ,y

)
P(θ|y) dθ (1.30)

It is not possible to do this integration analytically in general, but hybrid Monte Carlo (MCMC)

methods (Neal, 1997a) can be used to approximate the integral by using the gradients of P(y|θ)

to choose search directions which favor the regions of high posterior probability of θ.

1.4 Motivation

Support vector machines for regression (SVR), as an elegant tool for regression problem, ex-

ploit the idea of mapping input data into a high dimensional (often infinite) reproducing kernel

Hilbert space (RKHS) where a linear regression is performed. The advantages of SVR are: a

global minimum solution as the minimization of a convex programming problem; relatively fast

training speed; and sparseness in solution representation. However, the performance of SVR

crucially depends on the shape of the kernel function and other hyperparameters that repre-

sent the characteristics of the noise distribution in the training data. Re-sampling approaches,

such as cross-validation, are commonly used in practice to decide values of these hyperparame-

ters, but such approaches are very expensive when a large number of parameters are involved.

Typically, Bayesian methods are regarded as suitable tools to determine the values of these

hyperparameters.

The important advantage of regression with Gaussian processes (GPR) over other non-

Bayesian models is the explicit probabilistic formulation. This not only builds the ability to

infer hyperparameters in Bayesian framework but also provides confidence intervals in predic-

tion. However, the inversion of the covariance matrix, whose size is equal to the number of
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training samples, must be carried out when the hyperparameters are being adapted. The com-

putational cost of this approach for large data set is very expensive. This drawback of GPR

models makes it difficult to deal with over one thousand training samples.

For every RKHS there corresponds a zero-mean stationary Gaussian process with the co-

variance function defined by the reproducing kernel. The duality between RKHS and stochas-

tic processes is known as the Isometric Isomorphism Theorem (Parzon, 1970; Wahba, 1990).

Therefore, with the assumption that a priori P(f) ∝ exp(−λ‖f‖2RKHS) and the likelihood

P(D|f) ∝ exp(−∑n
i=1 `ε(yx, f(xi; Θ))), the minimizer of the SVR regularized functional (1.15)

could be directly interpreted as maximum a posteriori estimate of the function f in the RKHS

(Evgeniou et al., 1999). The function f could also be explained as a family of random variables

in a Gaussian process due to the Isometric Isomorphism Theorem.

Our intention is to integrate support vector machines with Gaussian processes tightly, while

preserving their individual advantages as more as possible. Hence, the contributions of this

work might be two-fold: for classical support vector machines, we apply the standard Bayesian

techniques to implement model selection, which is convenient to tune large number of hyperpa-

rameters automatically; for standard Gaussian processes, we introduce sparseness into Bayesian

computation that helps to reduce the computational cost and makes it possible to tackle reason-

ably large-scale data sets.

1.5 Organization of This Thesis

In this thesis, we focus on regression problems in the first four chapters, and then in Chapter

5 extend our discussion to binary classification problems. The thesis is organized as follows: in

Chapter 2 we review the popular loss functions, and then propose soft insensitive loss function

as a unified loss function and describe some of its useful properties; in Chapter 3 we review

Bayesian designs on generalized linear models that include Bayesian neural networks and Gaus-

sian processes; a detailed Bayesian design for support vector regression is discussed in Chapter

4; we put forward a Bayesian design for binary classification problems in Chapter 5 and we

conclude the thesis in Chapter 6.
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Chapter 2

Loss Functions

The most general and complete description of the generator of the data is in terms of the

probability distribution P(x, y) in the joint input-target space. For regression problems, it is

convenient to decompose the joint probability into the product of the conditional density of the

target y, conditioned on the input x, and the unconditional density of the input x, i.e.,

P(x, y) = P(y|x)P(x), (2.1)

where P(y|x) denotes the probability density function of y given the fact that x takes a particular

value, while P(x) represents the unconditional density of x. Although the density P(x) plays

an important role in the joint distribution, for the purpose of making prediction of y for new

input location x, it is only the conditional distribution of the output variable y, conditioned on

x, i.e., P(y|x), which we need to model. The distribution P(x) is not taken into account in the

modelling process. As a framework for modelling the conditional probability density P(y|x),

Bayesian neural networks or Gaussian processes can yield the distribution of the target y when

the trained framework is subsequently presented with a new value for the input vector x.

In the modelling (or training) process, the likelihood could be generally defined as

L =
n∏

i=1

P(xi, yi) =
n∏

i=1

P(yi|xi)P(xi), (2.2)

where we have assumed that each pair of data (xi, yi) is drawn independently from the same

distribution. Instead of maximizing the likelihood directly, it is generally more convenient to
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minimize the negative logarithm of the likelihood. We therefore minimize

− lnL = −
n∑

i=1

lnP(yi|xi)−
n∑

i=1

lnP(xi). (2.3)

As we have mentioned, a Bayesian neural network or a Gaussian process is the model for P(y|x).

The second term in the right-hand side of (2.3) does not depend on the model parameters, and

so represents an additive constant which could be dropped from the negative logarithm of the

likelihood. For this reason, we can simply state

− lnL = −
n∑

i=1

lnP(yi|xi). (2.4)

Note that (2.4) takes the form of a sum over all patterns of an error term for each patterns. This

comes from the assumed independence of the data points in the given distribution.

For regression problems, the conditional distribution P(yi|xi) is equivalent to the distribution

of the additive noise in measurement, i.e., the δi in (1.1). The likelihood about model parameters

is essentially a model of the noise, and if the additive noise δi is i.i.d. with common probability

distribution P(δ), it can be written as:

n∏

i=1

P(yi|xi) =
n∏

i=1

P
(
yi − f(xi; Θ)

)
=

n∏

i=1

P(δi), (2.5)

where f(xi; Θ) is the output given by the regression function at the input location xi and Θ

denotes the set of the parameters of the regression function. Furthermore, any P(δ) can always

be written in the exponential form

P(δ) = 1

Z(C) exp
(
− C · `(δ)

)
, (2.6)

where `(δ) is called the loss function, C is a parameter greater than zero and the normalization

factor Z(C) =
∫
exp (−C · `(δ)) dδ. Note that with this notation, (2.4) can be also written as

the sum of loss functions over patterns1

− lnL = C

n∑

i=1

`(δi) + n lnZ. (2.7)

Thus, different choices of the loss function arise from various assumptions about the distribution

1We could assume different distribution Pi(δi) =
1

Zi(Ci)
exp

(
− Ci · `(δi)

)
for the additive noise δi, and then

we have − lnL =
∑n

i=1 Ci`(δi)+
∑n

i=1 lnZi(Ci). However, it is usually hard to determine the optimal parameter
Ci for each sample in practice.
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of the additive noise P(δ).

2.1 Review of Loss Functions

The assumption about the distribution of the additive noise P(δ) equivalently determines the

form of the loss function `(δ). Gaussian distribution is the traditional assumption for the noise,

which is extensively used due to its nice properties in statistical analysis. The loss function

associated with Gaussian distribution is a quadratic loss function, whereas non-quadratic loss

functions acquire more attention recently.

2.1.1 Quadratic Loss Function

The most popular assumption about the distribution of the additive noise δ is a Gaussian noise

model with zero mean, and a variance σ2 that does not depend on the inputs, i.e.,

PG(δ) =
1√
2πσ

exp

(

− δ2

2σ2

)

. (2.8)

The loss function corresponding to Gaussian distribution is the quadratic loss function, which

can be defined as

`q(δ) =
1

2
δ2 =

1

2

(
y − f(x; Θ)

)2
, (2.9)

where Θ denotes the set of the parameters of the regression function. The relationship between

PG(δ) and `q(δ) can be given as PG(δ) ∝ exp
(
− C · `q(δ)

)
, where C =

1

σ2
. The quadratic loss

function, which is also called the L2 loss function. In the following, we relate some well-known

results about the statistical analysis on the learning process.

2.1.1.1 Asymptotical Properties

Consider the limit in which the size n of the training data set goes to infinity. In the limit, we

can replace the finite sum over patterns in quadratic loss with an integral as follows

lim
n→∞

1

n

n∑

i=1

1

2
δ2i = lim

n→∞
1

n

n∑

i=1

1

2

(
yi − f(xi; Θ)

)2
=

1

2

∫ ∫
(
y − f(x; Θ)

)2P(x, y) dy dx, (2.10)

where we introduce an extra factor 1/n into the definition of the quadratic loss in order to make

the limiting process meaningful. Note that the integral in (2.10) is just the risk functional R(Θ)

(1.6) using the quadratic loss function (2.9).
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We now factor the joint distribution P(x, y) into the product of the unconditional density

function for the input data P(x), and the conditional density function of target data on the

input vector P(y|x), to give

R(Θ) =
1

2

∫ ∫
(
y − f(x; Θ)

)2P(y|x)P(x) dy dx, (2.11)

Let us define the following conditional averages of the target data

E[y|x] =
∫

yP(y|x) dy, (2.12)

E[y2|x] =
∫

y2 P(y|x) dy. (2.13)

We can write the loss term in (2.11) in the form

(
y − f(x; Θ)

)2
=

(
y − E[y|x] + E[y|x]− f(x; Θ)

)2

= (y − E[y|x])2 + 2(y − E[y|x])
(
E[y|x]− f(x; Θ)

)

+
(
E[y|x]− f(x; Θ)

)2
.

(2.14)

Next we substitute (2.14) into (2.11) and make use of (2.12) and (2.13). The second term of

(2.14) then vanishes as a consequence of the integration over y. The risk functional (2.11) can

then be written in the form

R(Θ) =
1

2

∫
(
f(x; Θ)− E[y|x]

)2P(x) dx+
1

2

∫
(
E[y2|x]− (E[y|x])2

)
P(x) dx. (2.15)

We now note that the second term in (2.15) is independent of the regression function f(x; Θ).

For the purpose of modelling the regression function by risk minimization, this term can be

ignored. Since the integral in the first term of (2.15) is nonnegative, the minimum of the risk

function occurs when the first term vanishes, which corresponds to the following result about

the regression function

f(x; Θ∗) = E[y|x] (2.16)

where Θ∗ is the set of free parameters at the minimum of the risk function. This is a key result

and says that the regression function should be given as the conditional average of the target

data conditioned on x. Another important result could be obtained when we notice that the
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second term in (2.15) can be written in the form

1

2

∫

σ2(x)P(x) dx, (2.17)

where σ2(x) represents the variance of the target data, as a function of x, and is defined as

σ2(x) = E[y2|x]− (E[y|x])2 =

∫

(y − E[y|x])2P(y|x) dy. (2.18)

The variance of the target data essentially comes from the variance of the additive noise. In

regression problems as defined in (1.1), we usually assume that the target data are collected by

y = f(x) + δ where the additive noise δ is regarded as a zero-mean random variable, and the

function f(x) is an x-dependent value. The target y, as the sum of f(x) and δ, is a random

variable with an x-dependent mean f(x) and a variance of δ. In the case that the optimal regres-

sion function is chosen as the conditional expectation (2.16), the first term in (2.15) vanishes,

and then the residual risk is given by (2.17). The value of the residual risk is a measure of the

average variance of the target data, which is also equivalent to the estimate on the variance of

the additive noise as the size of the training data goes to infinity.

Before we go further to discuss the consequences of these important results, we emphasize

that what we have obtained are dependent on two key assumptions. First, the data set must be

sufficiently large that it could approximate an infinite data set. Second, the model of regression

functions f(x; Θ) must be sufficiently general that there exists a choice of free parameters Θ which

makes the first term in (2.15) sufficiently small. The second assumption would be easily satisfied if

universal approximators are used for modelling the regression function, but the first assumption

is usually not satisfied in a practice situation, since we must deal with the problems arising

from finite-size data set. The finiteness of training data brings forth a weakness for maximum

likelihood in modelling universal approximators, which is same as the ill-posed problem of the

ERM principle we have mention in Section 1.1. The issue arising from modelling on finite data

set is also known as bias/variance dilemma (Geman et al., 1992). In the following, we consider

this issue and then discuss its implications.

2.1.1.2 Bias/Variance Dilemma

Suppose we consider a training set D consisting of n patterns which we can use to determine

the regression function f(x; Θ). Now consider the whole ensemble of possible data sets, each

containing n patterns, and each drawn from the same joint distribution P(x, y). We have already
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argued that the optimal regression function is given by the conditional average E(y|x). The

second term in (2.15) represents the intrinsic error because it is independent of the regression

function, which could be ignored here. A measure of the effectiveness of f(x; Θ) as a predictor of

the desired one is given by the first term in (2.15), i.e., the integral of the term
(
f(x; Θ)−E(y|x)

)2
.

The value of the quantity will depend on the particular data set D on which the regression

function is trained. We can eliminate the dependency by considering an average over the complete

ensemble of data sets, which we write as

ED
[(
f(x; Θ)− E(y|x)

)2]
, (2.19)

where ED[·] denotes the expectation, or ensemble average. Let the symbol ED[f(x; Θ)] denote

the regression function evaluated over the entire ensemble of data sets. Notice that the term
(
f(x; Θ)− E(y|x)

)2
can be equivalently rewritten as

(
f(x; Θ)− E(y|x)

)2
=
(
f(x; Θ)− ED[f(x; Θ)] + ED[f(x; Θ)]− E(y|x)

)2
, (2.20)

where we have simply added and subtracted the average ED[f(x; Θ)]. By proceeding in a manner

similar to that in deriving (2.15), we can decompose the expectation of (2.19) over the ensemble

of data sets D into bias and variance explicitly as follows:

ED
[(
f(x; Θ)− E(y|x)

)2
]

=
(
ED[f(x; Θ)]− E(y|x)

)2

︸ ︷︷ ︸

(bias)2

+ED
[(
f(x; Θ)− ED[f(x; Θ)]

)2]

︸ ︷︷ ︸

variance

. (2.21)

The expressions for bias and variance in (2.21) are functions of the input vector x. We can

introduce the corresponding average values for bias and variance by integrating over all x, so

that

(bias)2 =
1

2

∫
(
ED[f(x; Θ)]− E(y|x)

)2P(x) dx, (2.22)

variance =
1

2

∫

ED
[(
f(x; Θ)− ED[f(x; Θ)]

)2]P(x) dx, (2.23)

It is necessary to explain the meaning of the expressions in (2.22) and (2.23). The bias measures

the discrepancy between the average result of regression functions over all data sets and the

desired function E(y|x). This term represents the inability of the regression function f(x; Θ) to

accurately describe the desired function defined by E(y|x). Conversely, the variance measures

the extent to which the regression function is sensitive to the particular choice of data set. To
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Figure 2.1: Two extreme cases for the choice of regression function f(x; Θ) to illustrate the
bias/variance dilemma. The diamonds denote training samples generated by the underlying
model d(x) (dotted curves), and the solid curves denote the regression functions.

achieve good overall performance, the bias term and the variance term of the regression function

should both have to be small.

Let us consider two extreme cases for the choice of regression function f(x; Θ) to illustrate

the bias/variance dilemma (Bishop, 1995). We shall suppose that the target data for training is

generated from a smooth function d(x) = sin(x) to which zero mean random variable δ is added,

so that y = d(x) + δ. The optimal regression function in this case is given by E(y|x) = d(x).

One choice on f(x; Θ) would be some fixed function g(x) which is completely independent of the

data set D, as shown in the left graph of Figure 2.1. It is clear that the variance term (2.23)

will vanish, since ED[f(x; Θ)] = g(x) = f(x; Θ). However, the bias term (2.22) will be high

since no attention at all was paid to fitting the data. We are making wild guess, unless we have

some prior knowledge which helps us choose the regression function g(x). The opposite extreme

is to make regression functions which fit the training data perfectly, as indicated in the right

graph of Figure 2.1. In this case the bias term vanishes at the data points themselves since

that ED[f(x; Θ)] = ED[d(x) + δ] = d(x) = E[y|x]. The variance, however, will be significant,

because each regression function heavily depend on its particular training data which have been

corrupted by noise, and the variation of their prediction in the neighborhood of the data points

will be typically even greater. We see that there is a natural trade-off between bias and variance.

A regression function which is complex and has the capability to closely describe the training

data set will tend to suffer a large variance and hence give a large expected risk. We can decrease

the variance by smoothing the model, but if we go too far then the bias will become large and the
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expected risk again large. The analysis on the trade-off between bias and variance is consistent

with the principle of Occam’s razor, which is the basic principle for model selection and motivates

numerous applications in neural networks, such as weight decay (Hinton, 1987), optimal brain

damage (LeCun et al., 1990), optimal brain surgeon (Hassibi et al., 1991) and so on.

2.1.1.3 Summary of properties of quadratic loss function

Let us summarize the analysis obtained from the principle of maximum likelihood by assuming

that the distribution of the target data could be described by a Gaussian function with an x-

dependent mean, and a single global noise variance. In statistics, the optimal regression function

should be the conditional average E(y|x). The residual value (2.15) is an estimate on the variance

of the additive noise as the size of the training data goes to infinity. Furthermore, there is a

trade-off between bias and variance, which is also known as under-fitting for too simple models

and over-fitting for too complex models.

In addition, we note that the quadratic loss function does not require that the distribution

of target variables or the additive noise be Gaussian. If quadratic loss function is used, the

quantities which can be determined in training are the x-dependent mean of the distribution

given by the output of the regression function, and the global average noise variance given by

the residual value of the risk functional at its minimum. Thus, the quadratic loss function

cannot distinguish between the true distribution and the Gaussian distribution with the same

x-dependent mean and average variance. This observation indicates that non-quadratic loss

functions could also be used in the risk function in place of quadratic loss function to retrieve

the x-dependent mean and the noise variance, even when the underlying noise distribution is

actually Gaussian.

2.1.2 Non-quadratic Loss Functions

One of the potential difficulties of the standard quadratic loss function is that it receives large

contributions from outliers that have particularly large errors. If there are long tails on the

distributions then the solution can be dominated by a very small number of outliers, which is

an undesirable result. Techniques that attempt to solve this problem are referred to as robust

statistics (Huber, 1981). Several non-quadratic loss functions have been introduced to reduce

the sensitivity to the outliers, such as the Laplacian loss function (Bishop, 1995) and the Huber’s

loss function.
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2.1.2.1 Laplacian Loss Function

If we assume that the additive noise is distributed as PL(δ) =
C

2
exp (−C|δ|), then the loss

function is called Laplacian loss function

`l(δ) = |δ|, (2.24)

which is also known as L1 loss function. With Laplacian loss function, the minimum risk solution

computes the conditional median2, rather than the conditional mean. The reason for this can be

seen by considering the expectation of |y − f(x,Θ)| over the distribution P(y|x). Let us denote

c as the median of P(y|x), and notice that

E
[
|y − f(x,Θ)|

]
= E

[
|y − c|

]
+ 2

∫ f(x,Θ)

c
(c− y)P(y|x) dy

+
(
c− f(x,Θ)

)(

P
(
y ≥ f(x,Θ)

)
− P

(
y < f(x,Θ)

))

,
(2.25)

when c < f(x,Θ). It is easy to see that the minimum of E
[
|y − f(x,Θ)|

]
is reached when we

choose f(x,Θ) = c. Similar logic applies to the case of c > f(x,Θ).

We study a simple example of fitting a linear polynomial through a set of noisy data points

to illustrate the advantage of linear loss function to outliers, where an extra data point being

added artificially lies well away from the other data points, as shown in Figure 2.2. Comparing

with the results of the case without outlier, we find that the extra outlier greatly changes the

result of quadratic loss function, but slightly influences the result of Laplacian loss function.

2.1.2.2 Huber’s Loss Function

Huber’s loss function was proposed by Huber (1981) for robust estimators, which is defined as

`h(δ) =







δ2

4ε
if |δ| ≤ 2ε

|δ| − ε otherwise.
(2.26)

where ε > 0. It is a hybrid of quadratic and linear loss functions. The loss is equal to the

absolute noise value minus ε if the noise value is greater than 2ε, and it is quadratic to the noise

value otherwise.

2For a random variable ζ, the value c satisfying P(ζ ≥ c) ≥ 1
2
and P(ζ ≤ c) ≥ 1

2
is called the median of the

distribution of ζ.
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Figure 2.2: An example of fitting a linear polynomial through a set of noisy data points with an
outlier.

2.1.2.3 ε-insensitive Loss Function

The ε-insensitive loss function (ε-ILF), introduced by Vapnik (1995), is defined as

`ε(δ) =







0 if |δ| ≤ ε

|δ| − ε otherwise.
(2.27)

It is a linear loss function with a flat zero region. The loss is equal to zero if the absolute noise

value is less than ε, and it is equal to the absolute noise value minus ε otherwise.

From their definitions and Figure 2.3, we notice that Huber’s loss function and ε-ILF approach

the Laplacian loss function as ε → 0. In addition, Laplacian loss function and ε-ILF are non-

smooth, while Huber’s loss function is a C1 smooth function which can be thought of as a

mixture between Gaussian and Laplacian loss function.

ε-ILF is special in that it gives identical zero penalty to small noise values. Because of

this, training samples with small noise that fall in this flat zero region are not involved in the

representation of regression functions, as known in SVR. This simplification of computational

burden is usually referred to as the sparseness property. All the other loss functions mentioned

above do not enjoy this property since they contribute a positive penalty to all noise values other

than zero. On the other hand, quadratic and Huber’s loss function are attractive because they

are differentiable, a property that allows appropriate approximations to be used in the Bayesian

approach. Based on these observations, we blend their desirable features together and propose

a novel loss function, namely soft insensitive loss function, in the next section.
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Figure 2.3: Graphs of popular loss functions, where ε is set at 1.

2.2 A Unified Loss Function

In this section, we propose a new loss function, namely soft insensitive loss function, as a unified

version of the popular loss functions we reviewed in the previous section.

2.2.1 Soft Insensitive Loss Function

The soft insensitive loss function (SILF) (Chu et al., 2001b) is defined as:

`ε,β(δ) =







−δ − ε if δ ∈ ∆C∗ =
(
−∞,−(1 + β)ε

)

(δ + (1− β)ε)2
4βε

if δ ∈ ∆M∗ = [−(1 + β)ε,−(1− β)ε]

0 if δ ∈ ∆0 = (−(1− β)ε, (1− β)ε)
(δ − (1− β)ε)2

4βε
if δ ∈ ∆M = [(1− β)ε, (1 + β)ε]

δ − ε if δ ∈ ∆C =
(
(1 + β)ε,+∞

)

(2.28)

where 0 < β ≤ 1 and ε > 0. The profile of SILF is shown in Figure 2.4. The properties of SILF

are entirely controlled by two parameters, β and ε. For a fixed ε, SILF approaches the ε-ILF as
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Figure 2.4: Graphs of soft insensitive loss function (solid curve) and its corresponding noise
density function (dotted curve), where ε = 0.5, β = 0.5 and C = 2.0 in the noise model.

β → 0; on the other hand, as β → 1, it approaches the Huber’s loss function. In addition, SILF

becomes the Laplacian loss function as ε → 0. Held ε at some large value and let β → 1, the

SILF approach the quadratic loss function for all practical purposes. The derivatives of the loss

function are needed in Bayesian methods. The first order derivative of SILF can be written as

d`ε,β(δ)

dδ
=







−1 if δ ∈ ∆C∗

δ + (1− β)ε
2βε

if δ ∈ ∆M∗

0 if δ ∈ ∆0

δ − (1− β)ε
2βε

if δ ∈ ∆M

1 if δ ∈ ∆C

(2.29)

where 0 < β ≤ 1 and ε > 0. The loss function is not twice continuously differentiable, but the

second order derivative exists almost everywhere:

d2`ε,β(δ)

dδ2
=







1

2βε
if δ ∈ ∆M∗ ∪∆M

0 otherwise

(2.30)
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where 0 < β ≤ 1 and ε > 0.

The density function of the additive noise in measurement corresponding to the choice of

SILF is

PS(δ) =
1

ZS
exp

(
− C · `ε,β(δ)

)
(2.31)

where
1

ZS
=

∫

exp
(
− C · `ε,β(δ)

)
dδ. It is possible to evaluate the integral and write ZS as:

ZS = 2(1− β)ε+ 2

√

πβε

C
· erf

(√

Cβε
)

+
2

C
exp

(
− Cβε

)
(2.32)

where erf(z) =
2√
π

∫ z

0

exp(−t2) dt. The mean of the noise is zero, and the variance of the noise

σ2n can be written as:

σ2n =
2

ZS

{
(1− β)3ε3

3
+

√

πβε

C

(
2βε

C
+ (1− β)2ε2

)

erf
(√

Cβε
)

+
4(1− β)βε2

C
+

(
ε2(1− β)2

C
+

2ε(1 + β)

C2
+

2

C3

)

exp(−Cβε)
} (2.33)

2.2.2 A Model of Gaussian Noise

Pontil et al. (1998) have shown that the use of Vapnik’s ε-insensitive loss function is equivalent

to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are

i.i.d. random variables. Following their approach, we derive the corresponding Gaussian noise

model for SILF now.

If the uncertainties in measurement conditions are taken into account, it seems reasonable to

discard the popular assumption that noise variables δi are identically distributed. In particular,

we assume that the noise variables δi have probability distributions Pi(δi) which are Gaussians,

but do not necessarily have zero means and identical variances. Thus, the noise distributions

Pi(δi) can be assumed to be

Pi(δi) =
1√
2πδi

exp

(

− (δi − ti)2
2σ2i

)

(2.34)

where σi denotes the standard deviation of the noise associated with the i-th sample and ti

denotes the noise mean of the i-th sample.

Here, we allow for the fact that the noise could be biased in this model, and consider σi and

ti as i.i.d. random variables to model the uncertainties in measurement. Therefore, Pi(δi) can

be interpreted as Pi(δi|σi, ti), the conditional probability of δi given σi and ti. Then we compute
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the marginal of the likelihood (2.5), integrating over σ = {σ1, . . . , σn} and t = {t1, . . . , tn}:

n∏

i=1

Pi(δi) =
∫

dσ dt

n∏

i=1

Pi(δi|σi, ti)P(σ, t) (2.35)

On the assumption that σ and t are i.i.d. random variables, we obtain that

P(σ, t) =
n∏

i=1

P(σi, ti) =
n∏

i=1

µ(σi)λ(ti) (2.36)

where µ(·) and λ(·) denote the density distribution of σ and t respectively. Finally the likelihood

(2.5) can be given as

n∏

i=1

Pi(δi) =
n∏

i=1

∫

dσi dtiPi(δi|σi, ti)µ(σi)λ(ti) (2.37)

where Pi(δi|σi, ti) is defined as in (2.34). Let us choose SILF as the loss function. Then, from

(2.5) and (2.31), the likelihood can also be written as

n∏

i=1

P(yi|xi) =
1

Zn
S

exp

(

−C
n∑

i=1

`ε,β(δi)

)

(2.38)

where `ε,β(·) is defined as in (2.28). Since (2.37) and (2.38) are equal, we can easily see that the

loss function can also be expressed in the form as follow:

`ε,β(δ) = −
1

C
ln

∫ +∞

0

dσ

∫ +∞

−∞
dt

ZS√
2πσ

exp

(

− (δ − t)2
2σ2

)

λ(t)µ(σ) (2.39)

where we drop off the subscript i in σi and ti, as they are identical random variables. Thus,

using a loss function with an integral representation of the form (2.39) is equivalent to assuming

that the noise is Gaussian, but the mean and the variance of the noise are random variables with

individual probability density functions.

2.2.2.1 Density Function of Standard Deviation

We derive the density function for σ in the following. By rearranging the integral in (2.39), we

obtain:

exp
(
− C · `ε,β(δ)

)
=

∫ +∞

−∞
dtλ(t)G(δ − t) (2.40)

where

G(τ) =

∫

dσ
ZS√
2πσ

µ(σ) exp

(

− τ2

2σ2

)

. (2.41)
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We notice that the function SILF becomes the Laplacian loss function (2.24) when ε = 0. In

this case, the noise distribution becomes Laplacian distribution:

P(δ) = 1

ZS
exp(−C|δ|) = 1

ZS
exp (−C · `0,β(δ)) (2.42)

where ZS = 2
C . It is also known that this Laplacian distribution is an unbiased noise distribution,

i.e., the density function of its mean t is a delta function at zero (Pontil et al., 1998). Using this

fact and the expression in (2.41), (2.40) can be simplified as:

exp (−C`0,β(δ)) = G(δ) =

∫ +∞

0

√

2

π

µ(σ)

Cσ
exp

(

− δ2

2σ2

)

dσ. (2.43)

Such a class of loss function defined by (2.43) is an extension of the model discussed by Girosi

(1991). Since 2
√
π exp(−√τ) =

∫ +∞

0

dη exp

(

− 1

4η

)

exp(−τη)η− 3
2 holds for any τ , it follows

that by setting η = 1
2C2σ2 and τ = C2σ2, we get

exp(−C|δ|) =
∫ +∞

0

√

2

π
C exp

(

−C
2σ2

2

)

exp

(

− δ2

2σ2

)

dσ. (2.44)

Comparing (2.44) with (2.43), we find that the density function of the standard deviation is a

Rayleigh distribution of the form:

µ(σ) = C2σ exp

(

−C
2σ2

2

)

(2.45)

2.2.2.2 Density Distribution of Mean

So far, we know G(δ) = exp(−C|δ|) from (2.43) and λ(t) is a delta function at zero when ε = 0.

It remains to obtain the explicit expression of λ(t) for ε > 0. Taking Fourier transformation on

(2.40), we have

F̃ [exp(−C`ε,β(δ))] = λ̃(ω)G̃(ω) (2.46)

where λ̃(ω) and G̃(ω) are the Fourier transformation of λ(t) and G(t) respectively. From (2.43),

we get G̃(ω) =
2C

C2 + ω2
. Thus, the Fourier transformation of λ(t) shall be

λ̃(ω) =
C2 + ω2

2C
F̃ [exp(−C`ε,β(δ))] (2.47)
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Figure 2.5: Graphs of the distribution on the mean λ(t) for Huber’s loss function (β = 1.0) and
ε-insensitive loss function (β → 0), where ε = 0.5 and C = 2.0.

Using the differential property of F̃(λ(n)(t)) = (iω)nλ̃(ω) and changing the variable δ into t, we

find that λ(t) is:

λ(t) =
1

2C

[
C2 exp

(
− C`ε,β(t)

)
− ∂2

∂t2
exp

(
− C`ε,β(t)

)]
(2.48)

i.e.

λ(t) =
1

2

[

C +
∂2`ε,β(t)

∂t2
− C

(
∂`ε,β(t)

∂t

)2
]

(2.49)

From the definitions (2.28), (2.29) and (2.30), the density distribution of mean λ(t) can be

written in explicit form without normalization as follows:

λ(t) ∝







1 if t ∈ ∆0
[

1 + 1
2βεC − C

(
|t|−(1−β)ε

2βε

)2
]

if t ∈ ∆M∗ ∪∆M

0 if t ∈ ∆C∗ ∪∆C

(2.50)

Finally notice that for the class of loss function, SILF, the noise distribution (2.40) can be

written as the convolution between the distributions of the mean λ(t) (2.50) and the Laplacian

distribution (2.43):

P(δ) =
∫ (1+β)ε

−(1+β)ε

λ(t) exp(−C|δ − t|)dt (2.51)

The statement (2.51) establishes a representation of the noise distribution P(δ) as a continuous

superposition of Laplacian functions in the interval [−(1 + β)ε, (1 + β)ε].
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2.2.2.3 Discussion

In summary, the noise model for SILF can be interpreted as Gaussian, but it could be biased,

where the standard deviation and the mean of the Gaussian are i.i.d. random variables with

specific probability distributions stated in (2.45) and (2.50) respectively. The parameter C deter-

mines the distribution of standard deviation entirely, while parameter ε controls main properties

of the distribution of the mean. Huber’s loss function and ε-ILF can be regarded as special

cases of SILF that are wholly controlled by the parameter β only. All the three loss functions

share the same distribution of standard deviation σ in their noise models, but the distributions

of the mean t are different. For a fixed ε, as β → 0, ∆M∗ and ∆M shrink to points ±ε, and the

distribution becomes the delta function at ±ε. Thus, the distribution of mean for ε-ILF can be

stated as uniform in the interval (−ε, ε) and with two delta functions at ±ε. On the contrary,

as β → 1, ∆0 shrinks. When β = 1, the distribution of mean for Huber’s loss function can be

stated as

λ(t) ∝
(

1 +
1

2εC
−
(
t

2ε

)2
)

exp

(

−C · t
2

4ε

)

t ∈ [−2ε, 2ε] (2.52)

The two special cases are presented in Figure 2.5. We find that this formulation (2.50) and the

graphs are consistent with the results given by Pontil et al. (1998). Thus, the Gaussian noise

model is an extension of the noise model discussed by Pontil et al. (1998).

So far, we have given a brief review of popular loss functions, and also put forward a unified

version for the popular loss functions, known as the soft insensitive loss function. The form of the

loss function we choose is completely specified by our assumption about the noise distribution,

and then the likelihood of the observed data can be evaluated for any given regression function.

Together with our prior knowledge, the observed data and the likelihood could be used to refresh

our knowledge to the posterior in Bayesian frameworks. In the next chapter, we shall review

the Bayesian frameworks for regression, that include Bayesian neural networks and Gaussian

processes.
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Chapter 3

Bayesian Frameworks

The task of designing a model for a particular system occurs in many areas of research. The

system serves as a mapping function, whose inner mechanism is usually unknown. For an input

vector, the system yields a unique corresponding output. These pairs of data collected from

the system represent the information of the system. We design a mathematical model based

on these observational data to represent our beliefs about the system. The model, as a result

of learning from data, can then be used to make inference. Figure 3.1 shows a block diagram

that illustrates this form of learning, which is usually referred to as supervised learning. Here,

we need a consistent framework within which to construct our model, incorporating our prior

knowledge and within which to consistently update our knowledge of the optimal model. We

choose the Bayesian framework in the thesis.

The Bayesian approach is based upon the expression of knowledge in terms of probability

distributions. Given the data and a specific model, we can deterministically make inferences using

the rules of probability theory. In principle, a unique optimal solution to our data modelling

problem exists in the Bayesian framework. However, such a solution may be difficult to find

in practice due to prohibitive computational cost. The key to a successful implementation of

Bayesian methods is the choice of the model and the mathematical techniques we shall use.

In this chapter, we shall review the Bayesian frameworks for regression that include Bayesian

neural networks and Gaussian processes.
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Figure 3.1: Block diagram of supervised learning.

3.1 Bayesian Neural Networks

Neural networks (Bishop, 1995; Haykin, 1999) are widely used in data modelling. The appli-

cation of Bayesian techniques to back-propagation neural networks was pioneered by Buntine

and Weigend (1991), MacKay (1992c), Neal (1992). We focus on the MLP with single hidden

layer to relate the basic idea for simplicity. Of course, the Bayesian approach can be extended

in a straightforward way to the MLP with any hidden layers. Suppose there is a regression

task to model the mapping function f : Rd → R as in (1.1) given a set of training samples

D = {(xi, yi)|i = 1, . . . , n}. We prepare a set of MLP models with different sizes of hidden

neuron {Mm} to account for the training data D we are given, where m denotes the number of

hidden neurons in the MLP model. In Figure 3.2, we present a structural graph for the MLP

model Mm with m hidden neurons. The prior probability P(Mm) is assigned to model Mm

which expresses our initial preference on the model Mm before the observational data arrive.

If there is no reason to assign strongly different P(Mm), we can simply give an equal value for

each model that makes
∑

m

P(Mm) = 1.

Let us collect all the weights as w, the weight vector, and then regard w as random vari-

ables with some probability distribution. In general, we can write this prior distribution in an

exponential form

P(w|A) = 1

Zw(A)
exp(−AEw) (3.1)
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Figure 3.2: The structural graph of MLP with single hidden layer.
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where the parameter A > 0. Since the parameter A itself controls the distribution of the weight

vector w, it is also called a hyperparameter. To begin with, we assume that the value of A

is known. We shall discuss how to adjust A as part of the modelling process later. For any

specified weight vector w, the model’s descriptions to the training data D could be evaluated

by a likelihood function, which is essentially a noise model discussed in previous chapter. The

likelihood function could be generally written in an exponential form

P(D|w, C) = 1

ZD(C)
exp(−CED) (3.2)

where the parameter C > 0 controls the noise distribution and ZD is a normalizing factor. To

continue, we assume the value of C is known at present. As another hyperparameter, C will be

treated later along with the hyperparameter A. Using the prior distribution in (3.1) and the

likelihood function in (3.2), we can write the posterior distribution of the weights in the form,1

P(w|D, C,A) = P(D|w, C)P(w|A)
P(D|C,A) (3.3)

where the denominator is a normalizing factor which can be written as

P(D|C,A) =
∫

P(D|w, C)P(w|A) dw. (3.4)

which ensures that the left-hand side of (3.3) gives unity when it is integrated over all weight

space.

In a Bayesian framework, we also regard the hyperparameters A and C as random variables.

To complete the specification of this hierarchical prior, we must define a prior distribution over

the hyperparameters A and C. The hyperprior P(C,A) could be specified subjectively to express

our initial idea about the hyperparameter choice before the observational data arrive. As random

variables, they are positive and independently distributed. Thus suitable priors could be Gamma

distributions (Berger, 1985):

P(A) = Gamma(A|pa, qa) (3.5)

P(C) = Gamma(C|pc, qc) (3.6)

where Gamma(A|p, q) = Γ(p)−1qpAp−1 exp(−qA) with Γ(p) =
∫∞
0
tp−1 exp(−t) dt. To make

these priors non-informative (i.e. flat distributed), we might fix their parameters to small values.

Notice that as an extreme limit of setting these parameters to zero pa = qa = pc = qc = 0, we

1It is possible that A or C could be composed of a set of parameters.
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obtain P(A) ∝ 1/A and P(C) ∝ 1/C and then find that lnA and lnC are uniformly distributed.

A pleasing consequence of the use of such “improper” hyperpriors is having the property of

invariance of inferences. That is, if the parameter A or C is transformed, posterior inference

based upon the new parameter will be consistent with those based upon the old parameter

(Press, 1988).

3.1.1 Hierarchical Inference

So far, we have set up a general Bayesian framework in weight-space. In the framework, hierar-

chical Bayesian inference at three different levels can then be carried out step by step (MacKay,

1995).

3.1.1.1 Level 1: Weight Inference

The posterior distribution P(w|D, C,A) (3.3) can also be written as

P(w| D, C,A) = 1

ZH
exp

(
− S(w)

)
(3.7)

where

S(w) = CED +AEw (3.8)

and

ZH(A,C) =

∫

exp
(
− S(w)

)
dw (3.9)

Consider first the problem of finding the weight vector wMP corresponding to the maximum

of the posterior distribution P(w|D, C,A) with fixed hyperparameters. This can be found by

minimizing the negative logarithm of (3.7) with respect to the weights. Since the normalizing

factor ZH in (3.7) is independent of the weights, it is equivalent to minimizing S(w) given by

(3.8), i.e. wMP = argmin
w

S(w).

Prior Distribution on Weight It is common to choose zero-mean Gaussian distribution

with variance A−1 for the prior distribution

P(w|A) =
(
A

2π

)W
2

exp

(

−A
2
‖w‖2

)

(3.10)

where W is the total number of weights (including the bias w0). This Gaussian distribution

expresses our initial knowledge about the weight w in the data modelling task before any data
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are available. When ‖w‖2, i.e. wTw, is large, P(w|A) is small, and so the choice of prior

distribution says that we expect the weight values to be small rather than large. Smaller weight

values result in a simpler model with smooth output. A major advantage of the choice on

the prior distribution (3.10) is that the Gaussian is of nice properties to simplify some of the

analysis. Many other choice for the prior can also be considered, such as the Laplacian prior with

Ew =
∑W

i=1 |wi| (Williams, 1995) and entropy-based priors discussed by Burtine and Weigend

(1991). The appropriate selection of priors for very large networks is discussed by Neal (1996).

Likelihood Evaluation We can rewrite the likelihood given the weight w as

P(D|w, C) =
n∏

i=1

P(xi, yi|w, C) =
n∏

i=1

P(yi|w, C, xi)P(xi|w, C) (3.11)

Since the probability of input vector xi does not depend on the weight vector w and the hyper-

parameter C, the conditional likelihood is equal to

P(D|w, C) =
n∏

i=1

P(yi|w, C, xi)P(xi) (3.12)

Furthermore, as we have pointed out in Chapter 2, the MLP networks trained in supervised

learning do not model the distribution P(x) of the input data at all. As a constant term

independent of the weights and the hyperparameters, P(xi) in the conditional likelihood (3.12)

could be ignored to simplify the notation. In other words, we can always assume that the input

vectors x appear as conditioning variables from now on. The other term P(yi|w, C, xi) in (3.12)

represents a model for the noise on the target data as in (2.5), i.e.

P(yi|w, C, xi) =
1

Z(C) exp
(

− C · `
(
yi − f(xi;w)

))

. (3.13)

where Z(C) is a normalizing factor, `(·) could be any loss function we have discussed in Chapter

2 and f(x;w) is the output of the MLP model. With a given weight vector w, we can get the

model output for input vector x (see Figure 3.2) as

f(x;w) =

m∑

i=1

wi · ϕ





d∑

j=1

wj
i · xj



+ w0 (3.14)

where the actuation function ϕ(·) is usually the logistic (sigmoid) function or the hyperbolic

tangent (odd sigmoid) function (Haykin, 1999). Thus, using (3.13), P(D|w, C) can be written
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in the form of loss function

P(D|w, C) =
(

1

Z(C)

)n

exp

(

−C
n∑

i=1

`
(
yi − f(xi;w)

)

)

(3.15)

Discussion For the particular prior distribution given by (3.10) and the quadratic loss function

(2.9) in likelihood (3.15), we can get an optimization problem for weight inference as

min
w

S(w) =
C

2

n∑

i=1

(
yi − f(xi;w)

)2
+
A

2
wTw (3.16)

We can see that, apart from an overall multiplicative factor, S(w) as in (3.16) is precisely the

usual sum-of-square error function with a weight decay regularization term (Hinton, 1987). Note

that, in finding the weight vector wMP, the effective regularization parameter depends only on

the ratio A/C, since the overall multiplicative factor is trivial.

Now let us consider a succession of training sets with increasing numbers n of patterns. We

can see that the first term in (3.16) or (3.8) increases, while the second term does not. If the

hyperparameters A and C are fixed, then as n training data size increases, the first term becomes

more and more dominant and the second term becomes eventually insignificant. The maximum

likelihood solution is then a very good approximation to the solution wMP. Conversely, for very

small data sets the prior term plays an important role in the solution of wMP that prevents the

data modelling from over-fitting.

3.1.1.2 Level 2: Hyperparameter Inference

So far, we have assumed that the hyperparameters are fixed parameters with known values in the

model Mm. However, these hyperparameters A and C should be regarded as random variables

too in Bayesian frameworks. Let us collect C and A as θ, the hyperparameter vector. Once

we observe the training data D, we can write down an expression for the posterior probability

distribution for the hyperparameter vector θ, which we denote by P(θ|D), using Bayes’ theorem,

P(θ|D) = P(D| θ)P(θ)
P(D) (3.17)

where the denominator is a normalizing factor can be written as

P(D) =
∫

P(D|θ)P(θ) dθ (3.18)
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To fully evaluate the posterior distribution (3.17), the prior probability distribution P(θ) is

required. The choice on P(θ) is quite subjective. The facts we exactly know may be that these

hyperparameters are independent and greater than zero. One possible choice is the Gamma

distribution as in (3.5) and (3.6). If we have no further idea of what would be suitable values for

A and C, then we should choose a prior which in some sense gives equal weight to all possible

values. Such priors are called non-informative and are discussed at length in Berger (1985).2

The maximum a posteriori (MAP) estimate of θ refers to argmax
θ
P(θ|D).

To find AMP and CMP corresponding to the maximum of the posterior distribution, MacKay

(1992c) proposed an approach known as evidence approximation. As we typically have little idea

about the suitable values of θ before the training data are available, we assume a flat distribution

for P(θ), i.e., P(θ) is greatly insensitive to the values of θ. Therefore, the likelihood P(D| θ) can

be used to assign a preference to alternative values of the hyperparameters θ, which is called

the evidence of θ. Notice that the normalizing factor P(D| θ) in (3.4)3 is just the likelihood

term P(D| θ) in (3.17). The evidence (3.4) can be calculated by an explicit formula after using

a Laplacian approximation at wMP. Using (3.1) and (3.2) in (3.4), we can get

P(D|θ) = 1

Zw(A)

1

ZD(C)

∫

exp
(
− S(w)

)
dw (3.19)

where S(w) is defined as in (3.8). At the wMP, a Laplacian approximation on S(w) can be

carried out by the Taylor expansion and retaining terms up to second order, i.e.

S(w) ≈ S(wMP) +
1

2
(w −wMP)

T ·H · (w −wMP) (3.20)

where H = ∇∇S(w)|w=wMP
= A∇∇Ew|w=wMP

+ B∇∇ED|w=wMP
. The marginalization in

(3.19) can then be analytically calculated as

P(D|θ) ≈ exp
(
− S(wMP)

)
(2π)

W
2 (detH)−

1
2

Zw(A)ZD(C)
(3.21)

We have shown that the evidence could quantify Occam’s razor automatically in Section 1.2.2.

To find the optimal θMP that maximizes the evidence P(D|θ), we can make use of the gradient

information of P(D|θ) (3.21) with respect to θ, and then a standard iterative training algorithm

can be used to infer θMP (MacKay, 1992c; Bishop, 1995). 4

2Non-informative priors for scale parameters, such as A and C, are generally chosen to be uniform on a
logarithmic scale.

3The modelMm is an implicit conditional random variable on the right-hand side of the probabilities in (3.3).
4Based on the above evidence approximation, it is straightforward to find the MAP estimate, i.e.,

argmax
θ
P(D|θ)P(θ), where P(D|θ) is approximated by (3.21).
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There is a potential difficulty in the evidence approximation. For a general non-linear network

mapping function f(x;w) as in (3.14), there may be numerous local minima of the error function

ED, some of which may be associated with symmetries in the network (Chen et al., 1993).

The single-Gaussian approximation at one local minimum given by (3.21) clearly does not take

multiple minima into account. Thus maximization of the evidence quantity could be a poor

solution if the Laplacian approximation failed to give a good summary of the distribution.

3.1.1.3 Level 3: Model Comparison

Recall that we have prepared a set of models with different hidden neurons {Mm} for the data

modelling task. To rank alternative models in the light of the training data D, we examine the

posterior probabilities of alternative models Mm:

P(Mm|D) ∝ P(D|Mm)P(Mm) (3.22)

The data-dependent term, the evidence of Mm, appeared earlier as the normalizing factor in

(3.18).5 Assuming that we have no reason to assign strongly differing priors P(Mm), alternative

modelsMm are ranked just by examining the evidence. The model evidence P(D|Mm) is exactly

an integral over weight space and hyperparameter space

P(D|Mm) =

∫ ∫

P(D|w, C)P(w|A)P(θ) dw dθ (3.23)

that can not be calculated analytically. Some approximation approaches have been discussed in

MacKay (1992c); Bishop (1995). Hybrid Mente Carlo methods (Duane et al., 1987; Neal, 1996)

could also be applied to approximate the integral.

We have introduced the classical three levels of inference in the Bayesian framework. The

Bayesian techniques for neural networks specify a hierarchical model with a prior distribution

over hyperparameters, and then a prior distribution for the weights governed by the hyperpa-

rameters. This induces a posterior distribution over the weight and the hyperparameters for a

given data set. We can simply pick up the most probable points in these posterior distributions

as the optimal solution, or integrate over these distributions for higher level inference or the

future predictions.

5The model Mm is an implicit conditioning variable on the right-hand side of the distributions in (3.18).
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3.1.2 Distribution of Network Outputs

Suppose that we have determined the most plausible model in the model set {Mm}, and then

found the most probable hyperparameter vector θMP in the posterior distribution (3.17). As we

have seen, in the Bayesian formalism a “trained” network is described in terms of the posterior

probability distribution of weight values. If we present a new input vector x to such a network,

then the distribution of weights gives rise to a distribution of network outputs. In addition, there

will be a contribution to the output distribution arising from the assumed noise on the output

variables.

Using a selected network Mm with the given hyperparameter vector θ, we can write the

distribution of outputs, for a given input vector x, in the form

P(y|x, θ,Mm,D) =
∫

P(y|x,w, θ,Mm,D)P(w|θ,Mm,D) dw (3.24)

where P(w|θ,Mm,D) is the posterior distribution of weights evaluated by (3.7), and the distri-

bution P(y|x,w, θ,Mm,D) is the model for the additive noise on the target given in (3.13).

If we choose the quadratic loss function (2.9) in noise model, then a Gaussian distribution

could be used to approximately evaluate (3.24). Using the Laplacian approximation of S(w) at

wMP as in (3.20), there is a single-Gaussian approximation for (3.7)

P(w|θ,Mm,D) ∝ exp

(

−1

2
(w −wMP)

T ·H · (w −wMP)

)

(3.25)

With the quadratic loss function (2.9) and the single-Gaussian approximation (3.25), (3.24) can

be written as

P(y|x, θ,Mm,D) ∝
∫

exp

(

−C
2

(
y − f(x;w)

)2 − 1

2
(w −wMP)

T ·H · (w −wMP)

)

dw (3.26)

where we have dropped any factors independent of y. In addition, we shall assume that the width

of the posterior distribution P(w|θ,Mm,D) is sufficiently narrow that we may approximate the

network function f(x;w) by its linear expansion around wMP

f(x;w) ≈ f(x;wMP) + g
T4w (3.27)

where g = ∇wf(x;w)|w=wMP
. Introducing (3.27) into (3.26), the integral is easily evaluated to
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give a Gaussian distribution of the form (Bishop, 1995)

P(y|x, θ,Mm,D) =
1

(2πσ2y)
1/2

exp

(

−
(
y − f(x;wMP)

)2

2σ2y

)

(3.28)

where we have restored the normalization factor explicitly and the variance of the Gaussian

distribution is given by

σ2y =
1

C
+ gTH−1g (3.29)

We see that the Bayesian formalism allows us to calculate error bars (3.29) on the network

outputs, instead of just providing a single best guess output as other deterministic approaches

do. The error bar in (3.29) has two contributions: one comes from the intrinsic noise on the

target data, corresponding to the first term in (3.29),6 and another arising from the width of

the posterior distribution of the network weights, corresponding to the second term in (3.29).

We can also integrate the predictive distribution over the posterior distribution P(θ|Mm,D)

to make predictions

P(y|x,Mm,D) =
∫

P(y|x, θ,Mm,D)P(θ|Mm,D) dθ (3.30)

where P(θ|Mm,D) is the posterior distribution of the hyperparameters given by (3.17) and

P(y|x, θ,Mm,D) is given by (3.24). Comparing with the predictive distribution (3.24) we made

using the optimal hyperparameter vector θMP, the integration over hyperparameter space could

erase the uncertainty in θ by taking all the possible choices of θ into account. However, the

integral can not be done analytically, Monte Carlo methods (Duane et al., 1987; Neal, 1996)

could be used here to approximate the marginalization.

In a full Bayesian treatment, we have to go further to integrate over the model set {Mm},

i.e.

P(y|x,D) =
∑

m

P(y|x,Mm,D)P(Mm|D) (3.31)

where P(Mm|D) is the posterior probability of the modelMm given by (3.22) and P(y|x,Mm,D)

is given by (3.30), and then even further consider the integral

P(y|x) =
∫

P(y|x,D)P(D) dD (3.32)

to erase the randomness in the collection of training data.

6The first term in (3.29), 1
C
, is the variance of the Gaussian noise.
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It should be noted that computational cost could be very expensive to evaluate these marginal-

izations in the strict Bayesian formalism. For a particular learning task, we need to infuse our

prior knowledge into the formalism effectively and then try to simplify the problem at hand by

reasonable approximations.

3.1.3 Some Variants

As a very flexible and powerful framework, standard Bayesian formalism could bring forth lots

of useful variants. For a particular learning task, it is common that some features are more im-

portant than others, or some samples are more useful than others in the prediction of the target.

We now discuss variants of these Bayesian frameworks that can incorporate these properties.

3.1.3.1 Automatic Relevance Determination

In many problems, there is a large number of potential measurable features (or attributes) that

could be included as inputs. However, including more input features must ultimately lead to

poor performance due to over-fitting. The subsequent predictive performance on unseen test

data will then be poor. Accordingly, we need to assess the relevance level of each feature.

If we do include many input features that we think are probably irrelevant, we would like

to use models that can automatically determine the degree of the relevance of each input fea-

ture. Such a model has been developed by MacKay (1995) and Neal (1996), which is known as

Automatic Relevance Determination (ARD) model. In an ARD model, each input variable is

associated with an ARD hyperparameter that controls the magnitudes of the weights on connec-

tions of that input feature. These hyperparameters are given some prior distribution, and then

conditional on the values of these ARD hyperparameters, the weights connected with each input

feature have been specified as independent zero-mean Gaussian prior distributions with standard

deviation given by the corresponding ARD hyperparameter values. If the ARD hyperparameter

associated with a feature specifies a small standard deviation for weights connected with that

feature, all of these weights will likely be very small, and then the feature will have little effect on

the model output; if the ARD hyperparameter specifies a large standard deviation, the weights

could likely be large values and then the effect of the feature in the output will be significant.

The posterior distributions of these ARD hyperparameters will show which hyperparameters are

most plausible in the light of the training data.

We now choose the MLP networks in Figure 3.2 to illustrate how to set up the ARD model.

Let us categorize the weights into d + 1 groups, i.e. the weights associated the input features
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xj as an weight vector wj = [wj
1, w

j
2, . . . , w

j
m]T where m is the number of hidden neurons

and j = 1, 2, . . . , d, and the other weights as w0 = [w0, w1, . . . , wm]T .7 We then specify an

independent Gaussian distribution for each weight vector wi

P(wi|κi) =
√
κi
2π

exp
(

−κi
2
‖wi‖2

)

(3.33)

where i = 0, 1, . . . , d and κi > 0. Here κi is known as the ARD hyperparameter for the i-th

weight class which controls the shape of the Gaussian distribution (3.33). When κi is of a small

value, the standard deviation of the Gaussian is then a large value and that means the Gaussian

is distributed broadly. Thus the weights could likely be realized as large values that make the

effect of the weight class in model output significant. On the contrary, for a narrowly distributed

zero-mean Gaussian, the weights are very likely to be small values around zero that produce

trivial effect on the model. Therefore, the values of these hyperparameters associated weight

groups could be regarded as a measure on the relevance of the corresponding features.

The joint distribution of these weight groups wi is still a Gaussian that is

P(w|κi) =
√
∏d

i=0 κi
(2π)d+1

exp

(

−
d∑

i=0

κi
2
‖wi‖2

)

(3.34)

due to the independence. Notice that (3.34) is just a special case of the general prior distribution

(3.1) in the weight-space. Thus it is straightforward to apply hyperparameter inference and other

higher level inference on the ARD model.

3.1.3.2 Relevance Vector Machines

The ARD model could infer the relevance level of the features of the training samples in the

multilayer perceptron networks as we have discussed, while relevance vector machines (Tipping,

2000) could infer the relevance level of the basis (or kernel) functions in fixed basis function

networks. In the following, we shall give a brief review on this interesting formulation.

Let us first consider the Bayesian approach to fixed basis function networks. The fixed basis

function model is usually defined as

f(x;w) =

m∑

i=1

wi · Φi(x) + w0, (3.35)

7Of course, we might separate this class w0 into more groups. For instance, we could separate the bias and
the weights out of hidden neurons as two different groups. We can even set each of the weights out of hidden
neurons as individual class.
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where {Φi} is a set of basis functions. If the fixed basis functions {Φi} are chosen as a set of

radial-basis functions {Φi(‖x − ui‖)|i = 1, 2, . . . ,m} where ‖ · ‖ denotes a norm that is usually

Euclidean and ui is the center, then (3.35) becomes the model given by RBF networks.

Let us collect the weight vector w = [w0, w1, . . . , wm]T , and specify a prior (3.1) on the

weights w such as

P(w|A) = 1

Zw(A)
exp

(

−A
2
wTw

)

, (3.36)

and then choose a noise model in likelihood function, usually a Gaussian noise model

P(yi|xi,w, C) =
1

Z(C) exp
(

−C
2

(
yi − f(xi;w)

)2
)

(3.37)

where i takes values from 1 to n, and A and C are appropriate hyperparameters. By integrating

over the weight space, we can show the joint probability of the targets given the inputs as

P(y|x, A,C) = (detG)
1
2

(2π)
n
2

exp

(

−1

2
yTGy

)

(3.38)

where y = [y1, y2, . . . , yn]
T and G =

1

A
ΦΦT +

1

C
I with Φij = Φj(xi). Comparing (3.38)

with the normalization factor (3.4), we can see that the joint probability of the data is just the

evidence of these hyperparameters. A gradient based optimization algorithm can then be used

to find the most probable hyperparameters or Monte Carlo sampling methods (such as Hybrid

Monte Carlo) can be used to integral over the hyperparameters approximately.

Relevance vector machine (RVM) proposed by Tipping (2000) is a general Bayesian frame-

work for the basis function model to obtain sparse solutions. Tipping (2001) focused on a

particular specialization that is a model of identical functional form to the popular SVMs, i.e.

m = n and the basis function Φi(x) = φ(x, xi) which could be any form even other than kernel

function K(x, xi). In this approach, a zero-mean Gaussian prior distribution is assigned to each

weight wi as follows:

P(w|A) =
n∏

i=0

P(wi|Ai) =

n∏

i=0

√

Ai

2π
exp

(

−Ai

2
w2
i

)

, (3.39)

with n + 1 hyperparameters A = {Ai|i = 0, 1, . . . , n}. This is just a joint n + 1 multivariate

Gaussian

P(w|A) = |A| 12
(2π)

n+1
2

exp

(

−1

2
wTAw

)

, (3.40)

with the covariance matrix A = diag(A0, Ai, . . . , An) where one hyperparameter associated with
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each weight to control the prior distribution over the weights. Same as the principle of ARD

models, the value of the hyperparameter Ai determines the significance of the associated basis

function Φi(x) in the output of the model. A large value of Ai means the weight wi connected

with Φi(x) is narrowly distributed around zero and then the value of wi is quite likely to be

small value that makes the effect of Φi(x) in the output (3.35) trivial. While a smaller Ai makes

the weight wi widely distributed that implies more importance of Φi(x) in the model output.

In the case that Gaussian noise model (3.37) is used, the evidence of these hyperparameters

(3.38) can then be evaluated with G = ΦA−1ΦT +
1

C
I and Φij = Φ(xi, xj). For the case

of the uniform hyperpriors, i.e. uniform distribution on the logarithmic scale, we need only

maximize the evidence of these hyperparameters, which is known as the type-II maximum like-

lihood method (Berger, 1985). The most probable values of the set of hyperparameters will be

iteratively estimated from the data (Tipping, 2001).

The most compelling feature of the RVM is that it typically utilizes dramatically few kernel

functions. The sparseness is achieved because Tipping (2001) reported that in practice the

posterior distributions of many of the weights are sharply peaked around zero, i.e. the associated

hyperparameter tends to be infinite in the evidence maximization. A threshold is used to prune

these kernel functions associated with “infinite” hyperparameters.8 Due to the sparsity in the

solution, RVM is regarded as a principled Bayesian alternative to SVMs (Schölkopf and Smola,

2001).

3.2 Gaussian Processes

The study of Gaussian processes for regression is far from new. The idea has been used for a

long time in the spatial statistics community under the name “kriging”, see Cressie (1993) for a

review, although it seems to have been concentrated mainly on low-dimensional input space and

largely ignored any probabilistic interpretation of the model. Williams and Rasmussen (1996)

extended the use of Gaussian process prior to higher dimensional regression problems and good

results have been obtained. Regression with Gaussian processes (GPR) is reviewed by Williams

(1998).

The Gaussian process framework encompasses a wide range of different regression models.

O’Hagan (1978) introduced an approach which is essentially similar to Gaussian processes which

are widely used in the analysis of computer experiments, although in this application it is assumed

8The threshold is crucial since it potentially determines the structure of the network and its generalization.
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that the observations are noise free. A connection to neural networks was made by Poggio and

Girosi (1990) with their work on regularization networks. When the covariance function depends

only on ‖xi − xj‖, the predictor derived by Gaussian processes might be same as that made by

generalized radial basis function (or RBF) networks. Wahba (1990) provides a useful overview

on the use of spline techniques for regression problems. Her work dated back to Kimeldorf and

Wahba (1971). Essentially splines correspond to Gaussian processes with a particular choice

of covariance function. The variable metric kernel methods (Lowe, 1995) is also closely related

to Gaussian processes. A comparison of Gaussian processes with other methods such as neural

networks has been done by Rasmussen (1996).

3.2.1 Covariance Functions

Formally, a Gaussian process is a collection of random variables {f(x)} indexed by a set of

x ∈ Rd, where any finite subset of these random variables has a joint Gaussian distribution.

The Gaussian process is fully specified by its mean and its covariance function, Cov[f(x), f(x′)].

The covariance function is defined as Cov[f(x), f(x′)] = E
[(
f(x)−E[f(x)]

)(
f(x′)−E[f(x′)]

)]

where E(f(x)) is the mean of the random variable f(x), which is only a function of the inputs x

and x′, i.e. Cov(x, x′). We follow the classical settings to specify the mean as zero thereafter for

simplicity. Then the covariance becomes E[f(x)f(x′)] which is also known as autocorrelation,

and the matrix of covariances between pairs of input patterns is referred to as covariance matrix.

As we have mentioned before, the covariance function and therefore the covariance matrix

plays a pivotal role in the Gaussian process model. The predictive distributions that are derived

for given data sets are highly dependent on the covariance function and its hyperparameters.

There are some constraints on the form of the covariance function. Formally, we are required to

specify a function which will generate a positive definite covariance matrix for any set of distinct

input patterns in order to ensure that the distribution is normalizable. We also wish to express

our prior beliefs about the modelling task, i.e. the structure of the underlying function. In the

following, we shall discuss various choices for the covariance function and their parameterization.

3.2.1.1 Stationary Components

An stationary covariance function dependents on the relative position of the two input patterns,

that is satisfying Cov(x, x+ h; θ) = Cov(h; θ) for one dimensional case and

Cov(x, x′; θ) = Cov(‖x− x′‖; θ) (3.41)

50



for multidimensional case where θ denotes the vector of the hyperparameters in the covariance

function.

In the light of Bochner’s theorem (Bochner, 1979), a stationary covariance function Cov(x−

x′; θ), that holds

Cov(x− x′; θ) =
∫ ∞

−∞
exp

(
iω(x− x′)

)
υ(ω)dω (3.42)

for a positive symmetric measure υ(ω), must satisfy the positive definite constraint.9 Clearly,

such a covariance function (3.42) is also a Green’s function. The equation (3.42) also provides us

with an representation of the covariance function in the frequency domain. In the following, we

will introduce a wide range of popular kernels that are used not only in support vector machines

but also in covariance functions, along with their frequency representations.

Gaussian Kernels Gaussian radial basis function kernels are widely used in neural networks

(Haykin, 1999) and support vector machines (Vapnik, 1998), which are defined as

K(x− x′;σ) = exp

(

− (x− x′)2
2σ2

)

. (3.43)

For a Fourier representation we need only to compute the Fourier transform of (3.43), which is

given for one dimensional case as

K̃(ω) = υ(ω) = |σ| exp
(

−σ
2ω2

2

)

(3.44)

A profile of Gaussian kernel and its Fourier transform is presented in Figure 3.3. From the

representation in frequency domain (3.44) and the right graph in Figure 3.3, we find that the

contribution of high frequency components in estimates is relatively small, since υ(ω) decays

extremely rapidly. The hyperparameter σ plays the important role to control the band-width in

the low-pass process.

The multidimensional case is completely analogous, since it can be decomposed into a product

of one-dimensional Gaussians (3.43). The Gaussian kernel for multidimensional cases, i.e. x ∈

Rd, is defined as

K(x− x′;σ) = exp

(

−‖x− x
′‖2

2σ2

)

= exp

(

− 1

2σ2

d∑

ι=1

(xι − x′ι)2
)

. (3.45)

9Here, we consider x ∈ R to avoid tedious notation. The result for higher dimensional cases could also be
obtained, for instance by integrating over the individual dimensions.
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Figure 3.3: Gaussian kernel and its Fourier transform, in which σ = 0.5.

ARD Gaussian Kernel It is an interesting application of the ARD idea (MacKay, 1995; Neal,

1996) to construct ARD Gaussian kernel by enhancing the Gaussian kernel for multidimensional

cases as

K(x− x′;σ) = exp

(

−1

2

d∑

ι=1

(xι − x′ι)2
σ2ι

)

, (3.46)

where the set of hyperparameters σ controls the relevance of each dimension to the target. We

see that, for the case of σ2ι → ∞, the ι−th input dimension is neglected in the computation of

the kernel and can therefore be removed in the modelling. The optimal values of σ could be

found later in Bayesian designs.

Bn−Spline of Odd Order Splines are an important tool in interpolation and function ap-

proximation (Wahba, 1990). Bn−Splines was used as kernels in Smola (1996), which is defined

as n+ 1 fold convolutions10 of the centered unit interval [−0.5, 0.5]

K(x− x′; p) = B2p+1(x) =

2p+2
⊗

i=1

I[−0.5,0.5]. (3.47)

Given the B2p+1-Spline kernel, we use (3.42) in order to obtain the corresponding Fourier rep-

resentation. It is well known that convolutions in the original space become products in the

Fourier domain and vice versa. Thus the Fourier representation is conveniently given by the

n+ 1-th power of the Fourier transform of B0. Since F [B0](ω) = sinc(ω2 ) where sinc(x) = sin x
x ,

10A convolution f
⊗

g of two function f, g : X → R is defined as f
⊗

g =
∫

X f(t)g(x − t)dt. Note that
f
⊗

g = g
⊗

f , as can be seen by exchange of variables.
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we obtain

B̃2p+1(ω) = υ(ω) = sinc2p+2
(ω

2

)

(3.48)

A profile of the one-dimensional case is presented in Figure 3.4.11 This illustrates why only Bn

splines of odd order are positive definite kernels, since the even ones have negative components

in the Fourier spectrum that would result in an amplification of the corresponding frequencies

(see the left-bottom graph in Figure 3.4).

Dirichlet Kernels The statement of Bochner’s theorem (3.42) could also be used to generate

practical covariance functions. As a particular choice of υ(ω), Vapnik et al. (1997) used the

11The result for higher dimensional cases could also be obtained, for instance by taking products over the
individual dimensions.
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Fourier expansions

υ(ω) =

k∑

i=−n
δ(ω − i), (3.49)

with δ being Dirac’s delta function to construct a class of kernel

K(x− x′; k) = 2
k∑

j=0

cos jx− 1 =
sin(2n+ 1)x2

sin x
2

. (3.50)

A profile is given in Figure 3.5. This kernel only describes band-limited periodic functions where

no distinction is made between the different components of the frequency spectrum. In some

cases, it might be useful to approximate periodic functions, for instance functions defined on a

circle (Schölkopf et al., 2001).

Note that we could design more covariance functions with specific properties we desire, such

as translation invariance, periodicity etc, since this is convenient way of building covariance

function if the Fourier expansion υ(ω) is known.

3.2.1.2 Non-stationary Components

While many data sets can be effectively modelled using a stationary covariance function, there

are some cases in which we would like some of non-stationarity in our covariance function.

Linear Component Sometimes, we may believe that there is some linear trend in the data.

Consider a plane f(x) =
∑d

ι=1 aιx
ι+ b, in which the {aι} and b have Gaussian distribution with
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zero mean and variance σ2a and σ2b respectively. The plane then has a covariance function

Cov(x, x′;σa, σb) = E
(
f(x), f(x′)

)
= σ2a

d∑

ι=1

xιx′ι + σ2b (3.51)

Notice that the term
∑d

ι=1 x
ιx′ι is just the linear kernel K(x, x′) = 〈x ·x′〉 used in support vector

machines. Using the linear covariance function (3.51) only in modelling will yield a linear plane;

adding (3.51) into the stationary covariance functions will produce a linear component to the

predictions.

We can further assume that the parameters {aι} for each dimension have different variance

σιa
2 instead of the common variance σ2a, and then the ARD linear covariance function is obtained

as

Cov(x, x′;σa, σb) =
d∑

ι=1

σιa
2xιx′ι + σ2b (3.52)

where the ARD hyperparameters {σιa2} determine the relevance of each dimension to the target.

Beyond the popular linear component, we can insert other kinds of non-stationary compo-

nents into the covariance function. For instance, we may get some prior knowledge that the noise

level is varying as we cross the input space. Some input-dependent terms could be introduced

into the diagonal elements of the covariance matrix to express the noise dependency (Gibbs,

1997).

3.2.1.3 Generating Covariance Functions

So far we have listed some widely used covariance functions which could also work as kernels in

support vector methods (or other kernel methods). The sum of any positive definite functions is

also positive definite and the same is also true of the product of two positive definite functions.

Hence we can generate new covariance functions using simpler covariance functions as the build-

ing blocks. For example, it is common to use the sum of ARD Gaussian kernel (3.46) and linear

kernel (3.51) as covariance function in standard Gaussian processes for regression (Williams and

Rasmussen, 1996; Rasmussen, 1996), which is

Cov(x, x′; θ) = κ0 exp

(

−1

2

d∑

ι=1

κι(x
ι − x′ι)2

)

+ κa

d∑

ι=1

xιx′ι + κb (3.53)

where the hyperparameter vector θ = [κ0, κ1, . . . , κd, κa, κb]
T .

The design on the covariance function is pivotal in the techniques of Gaussian processes, since

the covariance function completely determines the prior distribution of the functions {f(xi)}. In
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Figure 3.6: Samples drawn from Gaussian process priors. This figure shows two functions drawn
from each of four Gaussian process priors with different covariance functions given as titles of
each of these graphs. The corresponding prior probabilities of the function values are given by
− lnP(f) in graphs. The smaller − lnP(f) is, the more plausible the model seems.

the following, we show the samples of {f(xi)} from some Gaussian process priors to study the

properties of covariance functions.

In Figure 3.6, we notice that the decrease in the variance of Gaussian kernel κι from 1.0 in (a)

to 0.25 in (b) produces more rapidly fluctuating function curves. That could also be explained

in frequency domain as the expansion of the band-width of the local low-pass filter (3.44). The

linear model is seen as straight lines in (c). The covariance function in (d) contains the linear

kernel that yields a linear trend in function curves. In Figure 3.7, we present the samples of

function values in two-dimensional input space according to the covariance functions given in

titles. We notice that the increase in the variance of Gaussian kernel for x2 from 2.0 in (a) to

10.0 in (b) yields function plane which is quite flat along the axis of x2, i.e., insensitive to the

change of x2. Comparing the joint probabilities of these samples, we can find that the sample
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Figure 3.7: Samples drawn from Gaussian process priors in two-dimensional input space. This
figure shows the functions drawn from each of two Gaussian process priors with different covari-
ance functions given as titles of the graphs. The corresponding prior probabilities of the function
values are given by − lnP(f) in graphs.

which represents flatter curves tends to have a higher joint probability. Thus, the Gaussian

processes prefer flat curves, i.e. simple models, while punish complex models with lower prior

probabilities.

In the one-dimensional case, the input x was 801 linearly equally spaced points between

−4 and +4. The covariance matrix Σ is a symmetric n × n matrix whose ij-th element is

Cov(xi, xj),
12 where n is the size of input data 801. We randomly drew 801 samples in Gaussian

distribution N (0, 1) into a column vector z (We did the sampling twice and kept them same

for the four different covariance functions). The function values for each of the four covariance

functions are obtained by using affine transformation f(x) = A ·z where Σ = A ·AT via Cholesky

factorization. In the two-dimensional case, the input x is the linearly equally spaced 17×17 grid

12Usually a “jitter” term is added in the diagonal entries of the covariance matrix, that contributes additively
to every eigenvalues of the matrix and then reducing the condition number. The “jitter” terms could be fixed at
the square root of floating point relative accuracy, i.e. the the distance from 1.0 to the next largest floating point
number on your system.
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covering [−4,+4]× [−4,+4], other things are similar as that in the one-dimensional case.

3.2.2 Posterior Distribution

In previous section, we have studied some components popularly used in covariance functions of

Gaussian processes, and shown the sampling results in the prior distribution defined by various

covariance functions. The prior distribution of Gaussian processes is completely specified by its

mean and its covariance function. Suppose that we are given a set of data D composed of n

pairs {(xi, yi)}ni=1. For a given covariance function, the prior distribution of the function values

f = [f(x1), f(x2), . . . , f(xn)]
T is defined as

P(f) = 1

(2π)
n
2 (detΣ)

1
2

exp

(

−1

2
(f − f0)

T · Σ−1 · (f − f0)

)

(3.54)

where f0 = E[f ]0 =
[
f0(x1), f0(x2), . . . , f0(xn)

]T
is the prior mean (usually zero), and the

matrix Σ with ij-th entry Cov(xi, xj). The subscript 0 denotes the mean is with respect to the

prior distribution P(f), i.e. when the GP has not see any data pair. Together with the observed

data, the prior distribution of the function values f are converted to posterior distribution

through the use of Bayes’ theorem. The posterior distribution is the result of learning from

data, that is

P(f |D) = P(D|f)P(f)
∫
P(D|f)P(f) df =

P(D|f)P(f)
E[P(D|f)]0

(3.55)

where E[P(D|f)]0 is the average of the likelihood with respect to the prior distribution P(f).

The posterior distribution could be used to not only express posterior expectations as typically

high dimensional integrals, but also account for the joint distribution along with the test samples

in making prediction.

Suppose that the target values in the training samples D have been contaminated by a zero-

mean Gaussian noise with variance σ2, i.e. yi = f(xi) + δi ∀i. Since the noise δi is independent

Gaussian and the function values f have a joint Gaussian as given in (3.54), the target values

y = [y1, y2, . . . , yn]
T have a joint Gaussian with mean f 0 and variance matrix Σ+σ2I where I is

a n× n identity matrix. Now let us consider the joint probability together with m test samples

f t that is indexed by x without target values, which can be written as






y

f t




 ∼ N











f0

f t0




 ,






Σ+ σ2I k

kT Σt









 (3.56)

where f t0 denotes the prior mean for test samples, Σt denotes the m×m covariance matrix of
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Figure 3.8: Samples drawn from the posterior distribution of the zero-mean Gaussian process
defined with covariance function Cov(x, x′) = exp

(
− 1

2 (x− x′)2
)
. The circles denotes the train-

ing pairs we drew from sinc(x) in presence of additive zero-mean Gaussian noise with variance
0.22. Five cases (b) ∼ (f) are presented along with the underlying function (a), in which we are
given the 0, 1, 2, 5 and 15 training samples accordingly.

test samples and k denotes their n × m correlation matrix. What we actually concern is the

conditional distribution of f t given y, P(f t|y) which is also a Gaussian as

P (f t|y) ∼ N
(

f t0 + k
T (Σ + σ2I)−1y,Σt − kT (Σ + σ2I)−1k

)

(3.57)

We use a simple example to illustrate the learning process in Gaussian processes. Suppose

we are given 15 training samples by sampling from the function sinc(x). The additive noise is

a zero-mean Gaussian random variable with variance 0.22. We choose a zero-mean Gaussian

process with covariance function Cov(x, x′) = exp
(
− 1

2 (x− x′)2
)
to account for the training

data. We study a serial cases of sampling the posterior distribution of the Gaussian process and
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present their results in Figure 3.8. The training samples and the underlying generator are given

in Figure 3.8(a). Before any training data arrive, we sample the Gaussian process twice and

present the curve in Figure 3.8(b), where the input x (i.e. the test samples) was 801 linearly

equally spaced points between −4 and +4. This graph is same as the top-left graph in Figure

3.6. Now suppose we are given one training sample, the corresponding sampling result is shown

in Figure 3.8(c). The case that we are given another sample is presented in Figure 3.8(d). Notice

the change of the two curves nearby the training samples. The cases of sampling in the posterior

distribution of the Gaussian process given 5 and 15 training samples are shown in Figure 3.8(e)

and (f) separately. Notice that the sampling results in the posterior distribution tend to be

better approximations of the underlying function, as we are given more training samples.

3.2.3 Predictive Distribution

In making prediction, we might be interested in expectation and variance of function values

at some particular input points x in the Gaussian process. The following lemma (Csató and

Opper, 2002) shows that simple but important predictive quantities like the posterior mean and

the posterior variance of the process at arbitrary inputs can be expressed as a linear combination

of a finite set of parameters which depend on the training data only. For arbitrary likelihoods,

the following can be shown.

Parameterization Lemma (Csató and Opper, 2002). The result of the Bayesian learning

(3.55) using a Gaussian process prior with mean f0(x) and the covariance Cov(x, x′) and data

D = {(xi, yi)|i = 1, . . . , n} is a process with mean and kernel functions given by

E[f(x)]n = f0(x) +

n∑

i=1

Cov(x, xi) · w(i) (3.58)

Cov(x, x′)n = Cov(x, x′) +
n∑

i,j=1

Cov(x, xi) ·R(ij) · Cov(xj , x′) (3.59)

where the parameters w(i) and R(ij) are given by

w(i) =
∂

∂f0(xi)
ln

∫

P(D|f)P(f)df (3.60)

R(ij) =
∂2

∂f0(xi)∂f0(xj)
ln

∫

P(D|f)P(f)df (3.61)

¤

60



The parameters w(i) and R(ij) have to be computed during the training of the GP model,

but once only, and then are fixed when we make predictions. Notice that the parametric form

of the posterior mean is consistent with the representations for the predictors in other kernel

methods, such as support vector machines (1.23), if we assume a common prior mean for all the

function values that resembles the bias b in (1.23). While the latter representations are derived

from the celebrated representer theorem (Kimeldorf and Wahba, 1971; Schölkopf et al., 2001),

the Parameterization Lemma could be derived from properties of Gaussian processes directly.

As for a proof, see the Appendix D or Csató and Opper (2002).

As the conjugate case, the posterior distribution of Gaussian process is also Gaussian if

Gaussian noise model is used in likelihood, and then can be derived analytically as in (1.26)

where zero mean is assumed. For a likelihood other than Gaussian, the posterior process is in

general not Gaussian and the integrals cannot be computed in a closed form. Hence, we have to

resort to approximations to keep the inference tractable (Csató et al., 2000). A popular method

is to approximate the posterior by a Gaussian distribution (Williams and Barber, 1998). This

may be formulated within a variational approach, where a certain dissimilarity measure between

the true and the approximate distribution is minimized (Seeger, 1999).

3.2.4 On-line Formulation

Another interesting fact that needs to be pointed out here is the on-line formulation (Csató and

Opper, 2002), which is a sequential mode to learn from the training data by sweeping through the

samples once only. In order to compute the on-line approximations of the mean and covariance,

we apply Parameterization Lemma sequentially with only one likelihood term P (yt|xt) at an

iteration step. Proceeding recursively, we arrive at

E[f(x)]k+1 = E[f(x)]k + w(k + 1)Cov(x, xk+1)k (3.62)

Cov(x, x′)k+1 = Cov(x, x′)k + r(k + 1)Cov(x, xk+1)kCov(xk+1, x
′)k (3.63)

where E[·]k is the average with respect to the Gaussian process given k training samples, i.e.

E[f(x)]k =
∫
f(x)P(f(x)|y1, . . . , yk) df(x),

Cov(x, xk+1)k = E [(f(x)− E[f(x)]k)(f(xk+1)− E[f(xk+1)]k)]k ,
(3.64)
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and the parameters w(k + 1) and r(k + 1) are given by

w(k + 1) =
∂

∂E
[
f(xk+1)]k

lnE[P
(
yk+1|f(xk+1)

)]

k

r(k + 1) =
∂2

∂E[f(xk+1)]2k
lnE

[
P
(
yk+1|f(xk+1)

)]

k

(3.65)

We give a simple example to illustrate the on-line version of the Parameterization Lemma in

Gaussian processes. Suppose we have drawn 15 training samples by sampling from the function

sinc(x), which are same as we had done in the previous section. The additive noise is zero-mean

Gaussian with variance σ2 = 0.22. We choose a zero-mean Gaussian process with covariance

function Cov(x, x′) = exp
(
− 1

2 (x− x′)2
)
to account for the training data. We study a serial

posterior distribution of the Gaussian process and present the posterior mean and variance

in Figure 3.9. The training samples and the underlying generator are given in Figure 3.8(a).

Now suppose we are given the first training sample, the corresponding posterior distribution is

shown in Figure 3.9(a). The case that we have been given the second sample is presented in

Figure 3.9(b). Notice the change of the posterior mean and the error bar nearby the training

samples. The posterior distribution of the Gaussian process given 5 and 15 training samples are

shown in Figure 3.9(c) and (d) accordingly. Since the Gaussian noise model is used, this is a

conjugate case. For batch mode, the specific formulation has been given in (1.26) that can be

derived analytically from the Parameterization Lemma. As for sequential mode, the parameters

in on-line update formulation (3.61) can be specified as

w(k + 1) =
yk+1 − E[f(xk+1)]k

ς2k

r(k + 1) = − 1

ς2k

(3.66)

where ς2k = σ2 +Cov(xk+1, xk+1)k. We start at k = 0 with E[f(x1)]0 = 0 and Cov(x1, x1)0 = 1

to calculate w(1) and r(1) by (3.66). We apply the formulation (3.62) and (3.63) to calculate

current mean and covariance whenever it is needed. Then k = k + 1, repeat this procedure till

k = n. Notice that there is an equivalence in learning result between the batch mode and the

sequential mode. However, the sequential mode does not require any matrix inverse that makes

it possible to be interleaved with sparsification steps (Csató and Opper, 2002) for large data

sets.

62



3.2.5 Determining the Hyperparameters

We have set up a model for the training data D we are given. We now follow a consistent way

to deal with the undetermined hyperparameter vector Θ in the model, which is composed of the

parameters in covariance function and the parameters in likelihood function. Ideally, we would

like to integrate over all the hyperparameters in order to make predictions, i.e.

P(f(x)|x,D) =
∫

P(f(x)|x,D,Θ)P(Θ|D)dΘ (3.67)

Here, we can get approximations to the posterior distribution (3.67) by either approximating the

average prediction using the most probable values of the hyperparameters Θ (MacKay, 1992c;

Williams and Rasmussen, 1996), which approach is referred to as evidence maximization, or

by performing the integration over the Θ space numerically using Monte Carlo methods (Neal,

1997a).

3.2.5.1 Evidence Maximization

Evidence maximization uses an approximation to the integral in (3.67) based on the most prob-

able set of hyperparameters ΘMP:

P(f(x)|x,D) ' P(f(x)|x,D,ΘMP) (3.68)

where ΘMP = argmax
Θ
P(Θ|D). The posterior distribution can be written as

P(Θ|D) = P(D|Θ)P(Θ)

P(D) (3.69)

The dominator is independent of Θ and could be ignored in finding ΘMP. The two remaining

terms, the likelihood of Θ and the prior on Θ, shall be considered in terms of their logs for

computational convenience. For the conjugate case with Gaussian likelihood, the log likelihood

and its derivatives have been given as in (1.28) and (1.29) respectively. As we typically have

little knowledge about the suitable values of Θ before training data are available, we usually

assume a vague distribution for P(Θ) that is greatly insensitive to the value Θ. Therefore, it is

common practice to ignore the log prior term and perform a maximum likelihood optimization

of the hyperparameters Θ (MacKay, 1992c). The evidence P(D|Θ) can be used to assign a

preference to alternative values of the hyperparameters Θ. When the derivatives of the evidence

P(D|Θ) with respect to θ can be derived, we can search for ΘMP by some standard gradient-based
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optimization packages.

3.2.5.2 Monte Carlo Approach

The Markov chain Monte Carlo approach (MCMC) (Neal, 1993) uses sampling methods to

calculate an approximation to the predictive distribution. The MCMC approach constructs a

Markov chain to approximate the posterior distribution P (Θ|D) in which each sample depends

on the previous one as well as having a random component, and then the predictive distribution

(3.67) could be approximated by a mixture of the samples in the Markov chain, we can write

P(f(x)|x,D) ' 1

M

M∑

t=1

P(f(x)|x,D,Θt) (3.70)

where the Θt are samples in the Markov chain that approximates the posterior distribution over

Θ, P(Θ|D). Note that as we are sampling from the posterior distribution P(Θ|D), we shall need

priors on these hyperparameters P(Θ).

As for the specification of the prior P(Θ), we choose the popular family of covariance func-

tion (3.53) as an example. Following the suggestions in Rasmussen (1996), we usually collect

{lnκ0, lnκa, lnκb} and {lnκι}dι=1 as variables to tune.13 The prior assumes that the training

data has been normalized to roughly zero mean and unit variance. The priors on lnκa and lnκb

are all Gaussian with mean −3 and standard deviation 3, i.e. N (−3, 3). Since the targets are

assumed to be normalized to roughly unit variance, we expect the hyperparameter lnκ0 to be

in the vicinity of 0. So a reasonable prior on lnκ0 is a Gaussian with mean −1 and standard

deviation 1, i.e. N (−1, 1). The priors for ARD hyperparameters are slightly complicated. Fol-

lowing the derivations in Neal (1996) and Rasmussen (1996), we could use a Gamma prior for

the ARD hyperparameters {lnκι}dι=1, which is

P(lnκι) = d−1 (α/2µ0)
α/2

Γ(α/2)
exp

(
α lnκι

2
− α exp(lnκι)

2µ0d2/α

)

(3.71)

The parameter µ0 is usually fixed at 1.14 To make the prior non-informative (i.e. vague), we

might fix α to small values. The smaller α is, the vaguer the prior becomes. As an extreme

limit, by setting α to zero, a uniform hyperprior is obtain, i.e. P(lnκι) ∝ 1.

To construct the Markov chain effectively, we can take account of information concerning

13The hyperparameters are constrained to be positive. Logs of these hyperparameters convert the optimization
for finding ΘMP into an unconstrained optimization problem that is more convenient for standard optimization
packages.

14We can also try to make µ0 as a top level hyperparameter and set some vague prior on it as did in (Neal,
1997a).

64



the gradient of P(Θ|D) and use this to choose search directions which favour regions of high

probability. A procedure to achieve this, known as hybrid Monte Carlo, was developed by

Duane et al. (1987), and has been successfully applied by Rasmussen (1996) and Neal (1997a)

to implement Gaussian processes.

3.2.5.3 Evidence vs Monte Carlo

In the approach of evidence maximization, a potential difficulty lies in the posterior distribution

P(Θ|D) might be multi-modal. This could imply that the ΘMP found by the gradient-based

optimization package is dependent on the initial Θ used. In general we can train several times

starting from different initial states, and choosing the one with the highest probability as our

preferred choice for Θ. It is also possible to organize these candidates together as an expert

committee to represent the predictive distribution that can reduce the uncertainty with respect

to the hyperparameters. Another issue we need notice is the computational cost. For standard

Gaussian processes for regression in which Gaussian likelihood is used, each evaluation of the

gradient of the log likelihood requires the evaluation of H−1 as in (1.29). Any exact inversion

method has an associated computational cost that is O(n3) and so calculating gradients exactly

becomes time consuming for large training data sets (more than 1000 samples).

Using MCMC, we approximate our posterior probabilities P(Θ|D) using average over a series

of samples. For collecting each sample in the series, we have to compute all the information

required by the Monte Carlo simulation, in which inverting the covariance matrix is needed

every time but without the need to store this inverse.15 When we make predictions, unless we

have retain all the inverses, we must go back to re-compute them at considerable expense. Thus,

it is very expensive for the Monte Carlo approach to tackle large data sets. However, the Monte

Carlo approach does offer us significantly more flexibility. Non-Gaussian noise model can be

incorporated into Gaussian processes, that is essential for classification problems.

For smaller data sets where matrix storage and inverting are not an important issue, we

believe that the Monte Carlo approach could give better results than evidence maximization

in a reasonable amount of CPU time. For large data sets where the multi-modality in P(Θ|D)

becomes not acute, the approach of evidence maximization is fast and their performance is found

competitive (Rasmussen, 1996).

15It is very expensive to store a series of n× n matrices in memory.
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3.3 Some Relationships

We have introduced a Bayesian framework on neural networks from the weight-space view,

and another framework in Gaussian processes from the function-space view. Although these

two Bayesian frameworks are quite different in formulation, there are some relationships and

equivalences between them.

3.3.1 From Neural Networks to Gaussian Processes

As shown by Neal (1996), there is a strong relationship between Gaussian processes and neural

networks. Let us consider the MLP networks with one hidden layer (see Figure 3.2), which could

be mathematically described as:

f(x) =

m∑

i=1

wizi(x) + b (3.72)

with zi(x) = ϕ
(
∑d

j=1 w
j
i · xj

)

where the activation function ϕ(·) is usually the tanh or logistic

function. Following MacKay (1992c), we shall specify Gaussian priors on all the weights. Each

Gaussian has zero mean and standard deviation σd, σh and σb for the input-to-hidden weights

wj
i , the hidden-to-output weights wi and the bias w0 respectively. For an arbitrary input, x,

the expectation of the output E(f(x)) =
∑m

i=0E(wi)E(zi) is zero since E(wi) = 0 and the

independence between wi and w
j
i by our assumption. The variance of f(x) can be written as

E
(
f2(x)

)
= E





(
m∑

i=1

wizi + b

)2


 = mσ2hE(z2i ) + σ2b (3.73)

as the weights are independent and E(w2
i ) = σ2h. We can use the Central Limit Theorem (Bickel

and Doksum, 1977) and the fact that E(z2i ) is the same for all i to conclude that for large m the

total contribution of the hidden units to the output value f(x) becomes approximately Gaussian

with variancemσ2hC(x, x) where we define C(x, x) = E(z2i ). The bias, w0, is also a Gaussian, with

variance σ2b , so for large m the prior distribution of f(x) is also approximately a Gaussian, with

variance σ2b +mσ2hC(x, x). We would like the variance to be finite even for an infinite number

of hidden neurons. C(x, x) is finite since the zi is bounded. If we scale the prior variance of the

hidden-to-output weights wi according to the number of hidden neurons, setting σh = $hm
−1/2

in which $h is a constant, then the variance becomes $2
hC(x, x) + σ2b . We can use the similar

argument to investigate the prior joint distribution of the values of output for the inputs, i.e.

the joint distribution of f(x1), . . . , f(xn) where x1, . . . , xn are the input vectors. As m goes
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to infinity, the prior joint distribution converges to a multivariate Gaussian, with zero mean

and covariance $2
hC(xk, xl) + σ2b where C(xk, xl) = E

(
zi(xk)zi(xl)

)
∀k, l which is some function

dependent on σd and the outputs of the hidden neuron zi. A parallelling argument could be

straightforwardly extended to the model of fixed basis functions (Gibbs, 1997). Distributions

over functions of this sort, in which the joint prior distribution of the values of the function at

any finite number of points is multivariate Gaussian, are known as Gaussian processes.

3.3.2 Between Weight-space and Function-space

Suppose the regression function contributed by some fixed basis function networks possesses the

form f(x) =
∑m

i=1 wiφi(x) = w
Tφ(x), wherew is the weight vector and φ(x) = [φ1(x), φ2(x), . . . ,

φm(x)]T is composed of a set of m basis functions {φi(x)}mi=1 (m might be infinite). Let the

weights have a prior distribution which is Gaussian and centered on the origin, w ∼ N (0,Σw),

in which the covariance matrix Σw is a diagonal matrix, usually an identity matrix. Again,

assuming that the targets yi are corrupted by Gaussian noise with variance σ2, the likelihood

of w is P(y1, . . . , yn|w) = 1
(2πσ2)n/2

∏n
i=1 exp

(

− (yi−f(xi;w))2

2σ2

)

. The posterior mean value of the

weights wMP is found by

argmin
w

1

2σ2

n∑

i=1

(yi − f(xi;w))2 +
1

2
wTΣ−1

w w (3.74)

It is easy to see that wMP = ( 1
σ2Σ

−1
w + ΦTΦ)−1ΦTy, where Φ is the n ×m matrix with ij-th

entry φj(xi) and y = [y1, . . . , yn]
T . The regression function with wMP shall be f(x;wMP) =

φT (x)( 1
σ2Σ

−1
w + ΦTΦ)−1ΦTy, which is also the predictive mean at the input x given by the

fixed basis function network. Note that ( 1
σ2Σ

−1
w + ΦTΦ)−1ΦT = ΣwΦT (ΦΣwΦ + σ2I)−1 holds.

Therefore the mean of the predictive distribution can be written as

f(x;wMP) = φT (x)ΣwΦT (ΦΣwΦT + σ2I)−1y

The predictive variance V ar[f(x;w)], which is also called the “error bar” of the prediction at x,

is given by

V ar[f(x;w)] = Ew|D[(f(x;w)− f(x;wMP))
2]

= φT (x)Ew|D[(w −wMP)(w −wMP)
T ]φ(x)

= φT (x)( 1
σ2Σ

−1
w +ΦTΦ)−1φ(x)

= φT (x)Σwφ(x)− φT (x)ΣwΦT (ΦΣwΦT + σ2I)ΦΣwφ(x)
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Now let us look at the predictive mean of standard Gaussian processes given in (1.26), that

is kT (Σ + σ2I)−1y, where k = [Cov(x1, x), Cov(x2, x), . . . , Cov(xn, x)]
T and Σ is the n × n

covariance matrix whose ij-th element is Cov(xi, xj), and the predictive variance is Cov(x, x)+

kT (Σ + σ2I)−1k. We notice that there is an equivalence in these two regression framework

provided that Cov(xi, xj) = φT (xi)Σwφ(xj). In other words, the Bayesian neural network with

fixed basis function {φi(x)} in the weight-space yields the same regression formulation as the

standard Gaussian process defined by the covariance function φT (xi)Σwφ(xj) does.

Given a positive definite covariance function Cov(xi, xj) (or kernel function), it is possible

to find out such a basis function in reproducing kernel Hilbert space. According to Mercer-

Hilbert-Schmidt theorem (Wahba, 1990; Riesz and Sz.-Nagy, 1955), we can get an orthonormal

sequence of continuous eigenfunctions, φ1, φ2, . . . and eigenvalues υ1 ≥ υ2 ≥ . . . ≥ 0, with

Cov(xi, xj) =
∑∞

τ=1 υτφτ (xi)φτ (xj). Simply choosing υ
1/2
τ φτ (x) as the basis function and an

identity matrix as Σw, we can find the equivalent basis function network in weight-space for

any given Gaussian processes, which might be of infinite hidden neurons. It is also the direct

approach to probabilistic framework for support vector machines.
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Figure 3.9: The mean and its variance of the posterior distribution of the Gaussian process given
k training samples. Four cases (a) ∼ (d) are presented in which we are given 1, 2, 5 and 15
training samples accordingly. The prior distribution of the Gaussian process is defined with zero
mean and covariance function Cov(x, x′) = exp

(
− 1

2 (x− x′)2
)
. The circles denote the training

pairs we drew from sinc(x) in presence of additive zero-mean Gaussian noise with variance 0.22.
The solid curves are the posterior means E[f(x)]k, and the dotted curves are the error bars, i.e.
E[f(x)]k ±

√

Cov(x, x)k.
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Chapter 4

Bayesian Support Vector

Regression

The application of Bayesian techniques to neural networks was pioneered by Buntine andWeigend

(1991), MacKay (1992c) and Neal (1992). These works are reviewed in Bishop (1995), MacKay

(1995) and Lampinen and Vehtari (2001). Unlike standard neural network design, the Bayesian

approach considers probability distributions in the weight space of the network. Together with

the observed data, prior distributions are converted to posterior distributions through the use of

Bayes’ theorem. Neal (1996) observed that a Gaussian prior for the weights approaches a Gaus-

sian process for functions as the number of hidden units approaches infinity. Inspired by Neal’s

work, Williams and Rasmussen (1996) extended the use of Gaussian process prior to higher di-

mensional regression problems that have been traditionally tackled with other techniques, such

as neural networks, decision trees etc, and good results have been obtained. Regression with

Gaussian processes (GPR) is reviewed in Williams (1998). The important advantage of GPR

models over other non-Bayesian models is the explicit probabilistic formulation. This not only

builds the ability to infer hyperparameters in Bayesian framework but also provides confidence

intervals in prediction. The drawback of GPR models lies in the huge computational cost for

large data sets.

Support vector machines (SVM) for regression (SVR), as described by Vapnik (1995), ex-

ploit the idea of mapping input data into a high dimensional (often infinite) reproducing kernel

Hilbert space (RKHS) where a linear regression is performed. The advantages of SVR are:

a global minimum solution as the minimization of a convex programming problem; relatively

fast training speed; and sparseness in solution representation. The performance of SVR cru-
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cially depends on the shape of the kernel function and other hyperparameters that represent

the characteristics of the noise distribution in the training data. Re-sampling approaches, such

as cross-validation (Wahba, 1990), are commonly used in practice to decide values of these hy-

perparameters, but such approaches are very expensive when a large number of parameters are

involved. Typically, Bayesian methods are regarded as suitable tools to determine the values of

these hyperparameters.

There is some literature on Bayesian interpretations of SVM. For classification, Kwok (2000)

built up MacKay’s evidence framework (MacKay, 1992c) using a weight-space interpretation.

Seeger (1999) presented a variational Bayesian method for model selection, and Sollich (2002)

proposed Bayesian methods with normalized evidence and error bar. In SVM for regression

(SVR), Law and Kwok (2001) applied MacKay’s Bayesian framework to SVR in the weight

space. Gao et al. (2002) derived the evidence and error bar approximation for SVR along

the way proposed by Sollich (2002). In these two approaches, the lack of smoothness of the

ε-insensitive loss function (ε-ILF) in SVR may cause inaccuracy in evidence evaluation and

inference. To improve the performance of Bayesian inference, we employ a unified non-quadratic

loss function for SVR, called the soft insensitive loss function (SILF). The SILF is C1 smooth.

Further, it retains the main advantages of ε-ILF, such as insensitivity to outliers and sparseness

in solution representation. We follow standard GPR to set up Bayesian framework, and then

employ SILF in likelihood evaluation. Maximum a posteriori (MAP) estimate of the function

values results in an extended SVR problem, so that quadratic programming can be employed to

find the solution. Optimal hyperparameters can then be inferred by Bayesian techniques with

the benefit of sparseness, and error bar can also be provided in making predictions.

This chapter is organized as follows: in section 4.1 we review the standard framework of

regression with Gaussian processes, and employ the SILF as loss function in likelihood evalua-

tion; in section 4.2 we formulate the MAP estimate on the function values as a convex quadratic

programming problem; hyperparameter inference is discussed in section 4.3 and predictive dis-

tribution is discussed in section 4.4; in section 4.5 we show the results of numerical experiments

that verify the approach.

4.1 Probabilistic Framework

In regression problems, we are given a set of training data D = {(xi, yi)|i = 1, . . . , n, xi ∈ Rd, yi ∈

R} which is collected by randomly sampling a function f , defined on Rd. As the measurements
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are usually corrupted by additive noise, training samples can be represented as

yi = f(xi) + δi i = 1, 2, . . . , n (4.1)

where the δi are independent, identically distributed (i.i.d.) random variables, whose distribu-

tions are usually unknown. Regression aims to infer the function f , or an estimate of it, from

the finite data set D. In the Bayesian approach, we regard the function f as the realization of a

random field with a known prior probability. The posterior probability of f given the training

data D can then be derived by Bayes’ theorem:

P(f |D) = P(D|f)P(f)
P(D) (4.2)

where f = [f(x1), f(x2), . . . , f(xn)]
T , P(f) is the prior probability of the random field and

P(D|f) is the conditional probability of the data D given the function values f which is exactly

∏n
i=1 P(yi|f(xi)). Now we follow the standard Gaussian processes (Williams, 1998; Williams

and Barber, 1998) to describe a Bayesian framework.

4.1.1 Prior Probability

We assume that the collection of training data is the realization of random variables f(xi) in a

zero mean stationary Gaussian process indexed by xi. The Gaussian process is specified by the

covariance matrix for the set of variables {f(xi)}. The possible choices of covariance function

have been discussed in Section 3.2.1. We prefer the Gaussian covariance function which is defined

as

Cov[f(xi), f(xj)] = Cov(xi, xj) = κ0 exp

(

−κ
2

d∑

l=1

(xιi − xιj)2
)

+ κb (4.3)

where κ > 0, κ0 > 0 denotes the average power of f(x), κb > 0 denotes the variance of the offset

to the function f(x), and xι denotes the ι-th element of the input vector x. Such a covariance

function expresses the idea that cases with nearby inputs have highly correlated outputs. Note

that the first term in (4.3) is the Gaussian kernel in SVM, while the second term corresponds to

the variance of the bias in classical SVR (Vapnik, 1995). Compared with the covariance function

(3.53) used in standard Gaussian processes designs (Williams, 1998; Williams and Barber, 1998),

the Gaussian covariance function (4.3) does not have the linear component. We drop off the

linear term due to the fact that there is some correlation between the parameters κ0 and κa in

(3.53) which might produce multiple solutions in hyperparameter inference. In the cases that

we believe there is some linear trend in the data, we can use linear covariance function (3.51)
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only to remove the linear trend from the data as a preprocessing.

The prior probability of the functions is a multivariate Gaussian with zero mean and covari-

ance matrix as follows

P(f) = 1

Zf

exp

(

−1

2
fTΣ−1f

)

(4.4)

where f = [f(x1), f(x2), . . . , f(xn)]
T , Zf = (2π)n/2

√

|Σ| and Σ is the n × n covariance matrix

whose ij-th element is Cov[f(xi), f(xj)].
1

4.1.2 Likelihood Function

The probability P(D|f), known as likelihood, is essentially a model of the noise. If the additive

noise δi in (4.1) is i.i.d. with probability distribution P(δi), P(D|f) can be evaluated by:

P(D|f) =
n∏

i=1

P(yi − f(xi)) =
n∏

i=1

P(δi) (4.5)

Furthermore, P(δi) is often assumed to be of the exponential form such that

P(δi) ∝ exp(−C · `(δi)) (4.6)

where `(·) is called the loss function and C is a parameter greater than zero.

In standard GPR (Williams and Rasmussen, 1996; Williams, 1998), Gaussian noise model

(2.8) is used as the likelihood function `(·). The Gaussian process prior for the functions f is

conjugated with the Gaussian likelihood to yield a posterior distribution over functions that can

be used in hyperparameter inference and prediction. The posterior probability over functions

can be carried out exactly using matrix operations in the GPR formulation. This is one of

the reasons that the Gaussian noise model is popularly used. However, one of the potential

disadvantages of the quadratic loss function is that it receives large contributions from outliers.

If there are long tails on the noise distributions then the solution can be dominated by a very

small number of outliers, which is an undesirable result. Techniques that attempt to solve this

problem are referred to as robust statistics (Huber, 1981). Non-quadratic loss functions have

been introduced to reduce the sensitivity to the outliers (see Section 2.1.2 for more details). Soft

insensitive loss function (SILF) has been introduced in Section 2.2.1 as a unified non-quadratic

loss function. SILF possesses several advantages, such as insensitivity to outliers and sparseness

1If the covariance is defined using (4.3), Σ is symmetric and positive definite if {xi} is a set of distinct points
in Rd (Micchelli, 1986).
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in solution representation. Moreover, it is C1 smooth. The definition of SILF (2.28) is given as

`ε,β(δ) =







|δ| − ε if |δ| > (1 + β)ε

(|δ| − (1− β)ε)2
4βε

if (1 + β)ε ≥ |δ| ≥ (1− β)ε

0 if |δ| < (1− β)ε

(4.7)

where 0 < β ≤ 1 and ε > 0.

Using SILF, the likelihood function is written as

P(D|f) = 1

Zn
S

exp

(

−C
n∑

i=1

`ε,β (yi − f(xi))
)

(4.8)

where `ε,β(·) and ZS are defined as in (2.31) and (2.32) respectively. The loss function charac-

terizes the noise distribution, which together with the prior probability P(f), determines the

posterior probability P(f |D) via Bayes’ theorem.

4.1.3 Posterior Probability

Based on Bayes’ theorem (4.2), prior probability (4.4) and the likelihood (4.8), the posterior

probability of f can be written as

P(f |D) = 1

Z exp (−S(f)) (4.9)

where S(f) = C
∑n

i=1 `ε,β (yi − f(xi)) + 1
2f

TΣ−1f and Z =
∫
exp(−S(f))df . The maximum

a posteriori (MAP) estimate of the function values is therefore the minimizer of the following

optimization problem:2

min
f
S(f) = C

n∑

i=1

`ε,β (yi − f(xi)) +
1

2
fTΣ−1f (4.10)

Let fMP be the optimal solution of (4.10). Since the SILF is differentiable, the derivative of

S(f) with respect to f should be zero at fMP, i.e.

∂S(f)

∂f

∣
∣
∣
∣
fMP

= C
n∑

i=1

∂`ε,β (yi − f(xi))
∂f

∣
∣
∣
∣
∣
fMP

+Σ−1f = 0

2S(f) is a regularized functional. As for the connection of the idea here to regularization theory, Evgeniou
et al. (1999) have given a comprehensive discussion.
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Let us define the following set of unknowns wi = − C
∂`ε,β(yi−f(xi))

∂f(xi)

∣
∣
∣
f(xi)=fMP(xi)

∀i, and w as

the column vector containing {wi}. Then fMP can be written as:

fMP = Σ ·w (4.11)

We can further decompose the solution (4.11) into the form

fMP(x) =
n∑

i=1

wi · κ0 ·K(x, xi) + κb

n∑

i=1

wi = κ0

n∑

i=1

wi ·K(x, xi) + b (4.12)

where b = κb
∑n

i=1 wi and K(x, xi) = exp
(

−κ
2

∑d
l=1(x

l − xli)2
)

is just the Gaussian kernel

in classical SVR, to show the significance of the hyperparameter in regression function. The

contribution of each pattern to the regression function depends on its wi in (4.12), and κ0 is the

average power of all the training patterns. κb is only involved in the bias term b in (4.12) and

that might be trivial if the sum
∑n

i=1 wi is very small.

4.1.4 Hyperparameter Evidence

The Bayesian framework we described is conditional on the parameters in the prior distribution

and the parameters in the likelihood function, which can be collected, as θ, the hyperparameter

vector. The normalizing constant P(D) in (4.2), more exactly P(D|θ), is irrelevant to the

inference of the functions f , but it becomes important in hyperparameter inference, and it is

known as the evidence of the hyperparameters θ (MacKay, 1992c).

4.2 Support Vector Regression

We now describe the optimization problem (4.10) arising from the introduction of SILF (2.31)

as the loss function. In this case, the MAP estimate of the function values is the minimizer of

the following problem

min
f
S(f) = C

n∑

i=1

`ε,β(yi − f(xi)) +
1

2
fTΣ−1f (4.13)

As usual, by introducing two slack variables ξi and ξ
∗
i , (4.13) can be restated as the following

equivalent optimization problem, which we refer to as the primal problem:

min
f ,ξ,ξ∗

S(f , ξ, ξ∗) = C

n∑

i=1

(ψ(ξi) + ψ(ξ∗i )) +
1

2
fTΣ−1f (4.14)
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subject to 





yi − f(xi) ≤ (1− β)ε+ ξi

f(xi)− yi ≤ (1− β)ε+ ξ∗i

ξi ≥ 0, ξ∗i ≥ 0 ∀i

(4.15)

where

ψ(ς) =







ς2

4βε if ς ∈ [0, 2βε)

ς − βε if ς ∈ [2βε,+∞)
(4.16)

Standard Lagrangian techniques (Fletcher, 1987) are used to derive the dual problem. Let αi ≥ 0,

α∗i ≥ 0, γi ≥ 0 and γi ≥ 0 ∀i be the corresponding Lagrange multipliers for the inequalities in

(4.15). The Lagrangian for the primal problem is:

L(f , ξ, ξ∗;α,α∗,γ,γ∗) = C
n∑

i=1

(ψ(ξi) + ψ(ξ∗i )) +
1

2
fTΣ−1f −

n∑

i=1

γiξi −
n∑

i=1

γ∗i ξ
∗
i

−
n∑

i=1

αi(ξi + (1− β)ε− yi + f(xi))−
n∑

i=1

α∗i (ξ
∗
i + (1− β)ε+ yi − f(xi))

(4.17)

The KKT conditions for the primal problem require

f(xi) =

n∑

j=1

(αj − α∗j )Cov(xi, xj) ∀i (4.18)

C
∂ψ(ξi)

∂ξi
= αi + γi ∀i (4.19)

C
∂ψ(ξ∗i )

∂ξ∗i
= α∗i + γ∗i ∀i (4.20)

Based on the definition of ψ(·) given by (4.16) and the constraint conditions (4.19) and (4.20),

the equality constraint on Lagrange multipliers can be explicitly written as

αi + γi = C
ξi
2βε

for 0 ≤ ξi < 2βε and αi + γi = C for ξi ≥ 2βε ∀i (4.21)

α∗i + γ∗i = C
ξ∗i
2βε

for 0 ≤ ξ∗i < 2βε and α∗i + γ∗i = C for ξ∗i ≥ 2βε ∀i (4.22)

If we collect all terms involving ξi in the Lagrangian (4.17), we get Ti = Cψ(ξi) − (αi + γi)ξ.

Using (4.16) and (4.21) we can rewrite Ti as

Ti =







− (αi + γi)
2βε

C
if 0 ≤ αi + γi < C

−Cβε if αi + γi = C
(4.23)
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Thus ξi can be eliminated if we set Ti = − (αi+γi)
2βε

C and introduce the additional constraints,

0 ≤ αi + γi ≤ C. The same arguments can be repeated for ξ∗i . Then the dual problem becomes

a maximization problem involving only the dual variables α, α∗, γ and γ∗:

max
α,α∗,γ,γ∗

S(α,α∗,γ,γ∗) = −1

2

n∑

i=1

n∑

j=1

(αi − α∗i )(αj − α∗j )Cov(xi, xj) +
n∑

i=1

(αi − α∗i )yi

−
n∑

i=1

(αi + α∗i )(1− β)ε−
βε

C

n∑

i=1

(
(αi + γi)

2 + (α∗i + γ∗i )
2
)

(4.24)

subject to αi ≥ 0, γi ≥ 0, α∗i ≥ 0, γ∗i ≥ 0, 0 ≤ αi + γi ≤ C and 0 ≤ α∗i + γ∗i ≤ C, ∀i. As the

last term in (4.24) is the only one where γi and γ
∗
i appear, (4.24) is maximal when γi = 0 and

γ∗i = 0 ∀i. Therefore, the dual problem can be finally simplified as

min
α,α∗

S(α,α∗) =
1

2

n∑

i=1

n∑

j=1

(αi − α∗i )(αj − α∗j )Cov(xi, xj)−
n∑

i=1

(αi − α∗i )yi

+

n∑

i=1

(αi + α∗i )(1− β)ε+
βε

C

n∑

i=1

(

α2i + α∗i
2
)

(4.25)

subject to 0 ≤ αi ≤ C and 0 ≤ α∗i ≤ C.

The optimal value of the primal variables f can be obtained from the solution of (4.25) as

fMP = Σ · (α−α∗) (4.26)

where α = [α1, α2, . . . , αn]
T and α∗ = [α∗1, α

∗
2, . . . , α

∗
n]
T . This expression, which is consis-

tent with (4.11), is the solution to MAP estimate of the function values fMP in the Gaussian

processes.3 At the optimal solution, the training samples (xi, yi) with associated αi − α∗i sat-

isfying 0 < |αi − α∗i | < C are usually called off-bound support vectors (SVs); the samples with

|αi − α∗i | = C are on-bound SVs, and the samples with |αi − α∗i | = 0 are non-SVs. From the

definition of SILF (2.28) and the equality constraints (4.21) and (4.22), we notice that the noise

δi in (4.1) associated with on-bound SVs should belong to ∆C∗ ∪∆C , while δi associated with

off-bound SVs should belong to the region ∆M∗ ∪∆M .4

Remark 1 From (2.30), the second derivative of `ε,β(δi) is not continuous at the boundary of

∆M∗∪∆M . The lack of C2 continuity may have impact on the evaluation of the evidence P(D|θ)

(to be discussed later in Section 4.3). However, it should be pointed out that the noise values δi

seldom fall exactly on the boundary of ∆M∗ ∪∆M , since it is of low probability for a continuous

random variable to be realized on some particular values.

3There is an identicalness between most probable estimate and MAP estimate in Gaussian processes.
4Note that the region ∆M∗ ∪∆M is crucially determined by the parameter β in the SILF (2.28).
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4.2.1 General Formulation

Like SILF, the dual problem in (4.25) is a generalization of several SVR formulations (Chu et al.,

2004). More exactly, when β = 0 (4.25) becomes the SVR formulation using ε-ILF; when β = 1,

(4.25) becomes that when the Huber’s loss function is used; and when β = 0 and ε = 0, (4.25)

becomes that for the case of the Laplacian loss function. Moreover, for the case of Gaussian

noise model (2.8), the dual problem becomes

min
α,α∗

1

2

n∑

i=1

n∑

j=1

(αi − α∗i )(αj − α∗j )Cov(xi, xj)−
n∑

i=1

(αi − α∗i )yi +
σ2

2

n∑

i=1

(

α2i + α∗i
2
)

(4.27)

subject to αi ≥ 0 and α∗i ≥ 0 ∀i, where σ2 is the variance of the additive Gaussian noise. The

optimization problem (4.25) is equivalent to the general SVR (4.25) with β = 1 and 2ε/C = σ2

provided that we keep upper bound C large enough to prevent any αi and α
∗
i from reaching the

upper bound at the optimal solution. If we take the implicit constraint αi · α∗i = 0 into account

and then denote αi−α∗i as νi, it is found that the formulation (4.27) is actually a much simpler

case as

min
ν

1

2

n∑

i=1

n∑

j=1

νiνjCov(xi, xj)−
n∑

i=1

νiyi +
σ2

2

n∑

i=1

ν2i (4.28)

without any constraint. This is an unconstrained quadratic programming problem. The solution

on small data sets can be simply found by doing a matrix inverse. Conjugate gradient algorithm

(Fletcher, 1987) can also be used to find the solution. As for the SMO algorithm design, see the

LS-SVMs discussed by Keerthi and Shevade (2003).

4.2.2 Convex Quadratic Programming

Obviously, the dual problem (4.25) is a convex quadratic programming problem. Traditional

matrix-based quadratic programming techniques that use the “chunking” idea can be employed

for solving (4.25). Popular SMO algorithms for classical SVR (Smola and Schölkopf, 1998;

Shevade et al., 2000) could also be adapted for its solutions. In the following, we give some details

on the SMO design in which the constraints αi · α∗i = 0 ∀i have been taken into consideration

and pairs of variables (αi, α
∗
i ) are selected simultaneously into the working set.
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4.2.2.1 Optimality Conditions

The Lagrangian for the dual problem (4.25) is defined as:

L = 1
2

∑n
i=1

∑n
j=1(αi − α∗i )(αj − α∗j )Qij −

∑n
i=1 yi(αi − α∗i )

+
∑n

i=1(1− β)ε(αi − α∗i )−
∑n

i=1 πiαi −
∑n

i=1 ψiα
∗
i

−∑n
i=1 λi(C − αi)−

∑n
i=1 ηi(C − α∗i )

(4.29)

where Qij = Σij + δij
2βε
C with δij the Kronecker delta.5 Let us define

Fi = yi −
n∑

j=1

(αj − α∗j )Q(xi, xj) (4.30)

and the KKT conditions should be:

∂L
∂αi

= −Fi + (1− β)ε− πi + λi = 0

πi ≥ 0, πiαi = 0, λi ≥ 0, λi(C − αi) = 0,∀i
∂L
∂α∗i

= Fi + (1− β)ε− ψi + ηi = 0

ψi ≥ 0, ψiα
∗
i = 0, ηi ≥ 0, ηi(C − α∗i ) = 0,∀i

These conditions can be simplified by considering five cases for each i:

Case 1 : αi = α∗i = 0 −(1− β)ε ≤ Fi ≤ (1− β)ε

Case 2 : αi = C Fi ≥ (1− β)ε

Case 3 : α∗i = C Fi ≤ −(1− β)ε

Case 4 : 0 < αi < C Fi = (1− β)ε

Case 5 : 0 < α∗i < C Fi = −(1− β)ε

(4.31)

We can classify any one pair into one of the following five sets, which are defined as:

I0a = {i : 0 < αi < C}

I0b = {i : 0 < α∗i < C}

I0 = I0a ∪ I0b
I1 = {i : αi = α∗i = 0}

I2 = {i : α∗i = C}

I3 = {i : αi = C}

(4.32)

5The Kronecker delta is defined as δij =

{
1 if i = j
0 otherwise

.
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Let us denote Iup = I0 ∪ I1 ∪ I3 and Ilow = I0 ∪ I1 ∪ I2. We further define F up
i on the set Iup as

Fup
i =







Fi + (1− β)ε if i ∈ I0b ∪ I1
Fi − (1− β)ε if i ∈ I0a ∪ I3

and F low
i on the set Ilow as

F low
i =







Fi + (1− β)ε if i ∈ I0b ∪ I2
Fi − (1− β)ε if i ∈ I0a ∪ I1

Then the conditions in (4.31) can be simplified as

Fup
i ≥ 0 ∀i ∈ Iup and F low

i ≤ 0 ∀i ∈ Ilow

Thus the stopping condition can be compactly written as:

bup ≥ −τ and blow ≤ τ (4.33)

where bup = min{F up
i : i ∈ Iup}, blow = max{F low

i : i ∈ Ilow}, and the tolerance parameter

τ > 0, usually 10−3. If (4.33) holds, we reach a τ -optimal solution. At the optimal solution, the

training samples whose index i ∈ I0 are off-bound SVs, on-bound SVs if i ∈ I2∪ I3, and non-SVs

if i ∈ I1.

4.2.2.2 Sub-optimization Problem

Following the design proposed by Keerthi et al. (2001) (see Appendix C), we employ the two-loop

approach till the stopping condition is satisfied. We update two Lagrange multipliers towards

the optimal values in either Type I or Type II loop every time. In the Type II loop we update

the pair associated with bup and blow, while in the Type I loop either bup or blow is chosen to be

updated together with the variable which violates KKT conditions. The algorithm is summarized

in Table C.1 in which (4.33) should be used as the stopping condition.

Now we study the solution to the sub-optimization problem, i.e. how to update the α values of

the violating pair. Suppose that the pair of the Lagrangian multipliers being updated are {αi, α∗i }

and {αj , α∗j}. The other Lagrangian multipliers are fixed during the updating. Thus, we only

need to find the minimization solution to the sub-optimization problem. In comparison with

the sub-optimization problem in classical SVR discussed in Appendix C.2, the only difference
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lies in that the sub-optimization problem cannot be analytically solved here. We could choose

Newton-Raphson formulation to update the two Lagrangian multipliers. Since there are only

two variables in the sub-optimization problem, there is no need for matrix inverse. The sub-

optimization problem can be stated as

min
αi,α∗i ,αj ,α∗j

1

2

n∑

i′=1

n∑

j′=1

(αi′−α∗i′)(αj′−α∗j′)Qi′j′−(αi−α∗i )yi−(αj−α∗j )yj+(1−β)ε(αi+α∗i+αj+α∗j )

subject to 0 ≤ αi ≤ C, 0 ≤ α∗i ≤ C, 0 ≤ αj ≤ C and 0 ≤ α∗j ≤ C, where Qi′j′ =

Cov(xi′ , xj′) + δi′j′
2βε
C with δi′j′ the Kronecker delta. We need to distinguish four different

cases: (αi, 0, αj , 0), (αi, 0, 0, α
∗
j ), (0, α

∗
i , αj , 0), (0, α

∗
i , 0, α

∗
j ), as that in Figure C.2. It is easy to

derive the unconstrained solution to the sub-optimization problem according to Newton-Raphson

formulation. The unconstrained solutions are tabulated in Table 4.1 with ρ = QiiQjj −QijQij ,

Gi = −Fi + (1− β)ε, Gj = −Fj + (1− β)ε, G∗
i = Fi + (1− β)ε, G∗

j = Fj + (1− β)ε, where Fi is

defined as in (4.30).

Table 4.1: Unconstrained solution in the four quadrants.

Quadrant Unconstrained Solution

I (αi, αj) αnewi = αi + (−QjjGi +QijGj)/ρ αnewj = αj + (QijGi −QiiGj)/ρ

II (α∗i , αj) αnewi = αi + (−QjjG
∗
i −QijGj)/ρ αnewj = αj + (−QijG

∗
i −QiiGj)/ρ

III (α∗i , α
∗
j ) αnewi = αi + (−QjjG

∗
i +QijG

∗
j )/ρ αnewj = αj + (QijG

∗
i −QiiG

∗
j )/ρ

IV (αi, α
∗
j ) αnewi = αi + (−QjjGi −QijG

∗
j )/ρ αnewj = αj + (−QijGi −QiiG

∗
j )/ρ

It may happen that for a fixed pair of indices (i, j) the initial chosen quadrant, say e.g.

(αi, α
∗
j ) is the one with optimal solution. In a particular case the other quadrants, (αi, αj) and

even (α∗i , αj), have to be checked. It occurs (see Figure C.2) if one of the two variables hits the

0 boundary, and then the computation of the corresponding values for the variables with(out)

asterisk according to the following table is required. Moreover, there is no need to solve the

sub-optimization problem exactly that requires lot of iterations. In practice, we use Newton-

Raphson formulation once only in the applicable quadrant.6 Since the objective function of the

sub-optimization problem is convex, the corresponding Hessian matrix is positive semi-definite.

Consequently, the Newton’s direction is a non-increasing direction. It is also possible to adjust

the step length along the Newton’s direction in order to ensure descent, but we have found from

our numerical experiments that this was not needed.7 In numerical experiments, we find that

6There is no significant reduction in computational cost when we use Newton-Raphson formulation in iterative
way to find the exact solution of the sub-optimization problem.

7We also found that the convergence of the overall algorithm is faster when the change of α are limited at the
initial stage of the algorithm. Hence, we place a limit to ‖αnew − αold‖ for the case where αold = 0.

81



the adapted algorithm can efficiently find the solution at nearly the same computational cost

as that required by SMO in classical SVR. As for more details about implementation, refer to

Appendix C.4.8

4.3 Model Adaptation

The hyperparameter vector θ contains the parameters in the prior distribution and the parame-

ters in the likelihood function, i.e., θ = {C, ε, κ, κb}.9 For a given set of θ, the MAP estimate of

the functions can be found from the solution of the optimization problem (4.13) in Section 4.2.

Based on the MAP estimate fMP, we show now how the optimal values of the hyperparameters

are inferred.

4.3.1 Evidence Approximation

The optimal values of hyperparameters θ can be inferred by maximizing the posterior probability

P(θ|D):

P(θ|D) = P(D|θ)P(θ)
P(D)

A prior distribution on the hyperparameters P(θ) is required here. As we typically have little

idea about the suitable values of θ before training data are available, we assume a flat distribution

for P(θ), i.e., P(θ) is greatly insensitive to the values of θ. Therefore, the evidence P(D|θ) can

be used to assign a preference to alternative values of the hyperparameters θ (MacKay, 1992c).

An explicit expression of the evidence P(D|θ) can be obtained after an integral over the f -space

with a Taylor expansion at fMP. Gradient-based optimization methods can then be used to

infer the optimal hyperparameters that maximize this evidence function, more exactly

P(D|θ) =
∫

P(D|f , θ)P(f |, θ) df . (4.34)

Using the definitions of the prior probability (4.4) and the likelihood (4.8) with SILF (2.31), the

evidence (4.34) can be written as

P(D|θ) = Z−1
f Z−n

S

∫

exp (−S(f)) df . (4.35)

8The source code can be accessed at http://guppy.mpe.nus.edu.sg/∼chuwei/code/bisvm.zip. The routines in
bismo routine.cpp and bismo takestep.cpp were written in ANSI C to solve the quadratic programming problem.

9Due to the redundancy with C and the correlation with κ, κ0 is fixed at the variance of the targets {yi}
instead of automatically tuning in the present work.
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The marginalization can be done analytically by considering the Taylor expansion of S(f) around

its minimum S(fMP), and retaining terms up to the second order. The first order derivative with

respect to f at the most probable point f is zero. The second order derivative exists everywhere

except the boundary of the region ∆M ∪∆∗
M . As pointed out in Remark 1, the probability that

a sample exactly falls on the boundary is little. Thus it is quite all right to use the second order

approximation

S(f) ≈ S(fMP) +
1

2
(f − fMP)

T · ∂
2S(f)

∂f∂fT

∣
∣
∣
∣
f=fMP

· (f − fMP) (4.36)

where ∂2S(f)

∂f∂fT = Σ−1 + C · Λ and Λ is a diagonal matrix with ii-th entry being 1
2βε if the

corresponding training sample (xi, yi) is an off-bound SV at fMP, otherwise the entry is zero.

Introducing (4.36) and Zf into (4.35), we get

P(D|θ) = exp (−S(fMP)) · |I+ C · Σ · Λ|− 1
2 · Z−n

S (4.37)

where I is a n× n identity matrix.10

Notice that only a sub-matrix of Σ plays a role in the determinant |I+ C · Σ · Λ| due to the

sparseness of Λ. Let ΣM be the m ×m sub-matrix of Σ obtained by deleting all the rows and

columns associated with the on-bound SVs and non-SVs, i.e., keeping the m off-bound SVs only.

This fact, together with fMP = Σ · (α−α∗) from (4.26), can be used to show that the negative

log probability of data given hyperparameters is

− lnP(D|θ) = 1

2
(α−α∗)T ·Σ · (α−α∗)+C

n∑

i=1

`β,ε(yi− fMP(xi))+
1

2
ln

∣
∣
∣
∣
I+

C

2βε
ΣM

∣
∣
∣
∣
+n lnZS

(4.38)

where ZS is defined as in (2.32), I is a m ×m identity matrix. The evidence evaluation (4.38)

is a convenient yardstick for model selection.

The expression in (4.38) is then used for the determination of the best hyperparameter θ by

finding the minimizer for − lnP(D|θ). Note that the evidence depends on the set of off-bound

SVs. This set will vary as the hyperparameters are changed. We assume that the set of off-bound

SVs remains unchanged near the minimum of (4.38). In this region, the evidence is a smooth

function of these hyperparameters. Gradient-based optimization methods could be used for the

minimizer of (4.38). We usually collect {lnC, ln ε, lnκb, lnκ} as the set of variables to tune,11

10Refer to Section E.1 for more details in the derivation.
11This collection makes the optimization problem unconstrained.
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and the derivatives of − lnP(D|θ) with respect to these variables are

∂ − lnP(D|θ)
∂ lnC

= C

n∑

i=1

`ε,β(yi − fMP(xi)) +
1

2
trace

[(
2βε

C
I+ΣM

)−1

ΣM

]

− n

ZS

(√

βεπ

C
· erf(

√

Cβε) +
2

C
exp(−Cβε)

) (4.39)

∂ − lnP(D|θ)
∂ ln ε

= −C
(
∑

i∈I0

(yi − fMP(xi))
2 − (1− β)2ε2

4βε
+

∑

i∈I2∪I3
ε

)

−1

2
trace

[(
2βε

C
I+ΣM

)−1

ΣM

]

+
n

ZS

(√

βεπ

C
· erf(

√

Cβε) + 2(1− β)ε
) (4.40)

∂ − lnP(D|θ)
∂ lnκ′

=
κ′

2
trace

[(
2βε

C
I+ΣM

)−1
∂ΣM

∂κ′

]

− κ′

2
(α−α∗)T

∂Σ

∂κ′
(α−α∗) (4.41)

where κ′ ∈ {κb, κ}, α and α∗ is the optimal solution of (4.25), I0, I2 and I3 are defined as in

(4.32).12

4.3.2 Feature Selection

MacKay (1994) and Neal (1996) proposed automatic relevance determination (ARD) as a hi-

erarchical prior over the weights in neural networks. The weights connected to an irrelevant

input can be automatically punished with a tighter prior in model adaptation, which reduces

the influence of such a weight towards zero effectively. ARD could be directly embedded into

the covariance function (4.3) as follows (Williams, 1998):

Cov[f(xi), f(xj)] = Cov(xi, xj) = κ0 exp

(

−1

2

d∑

l=1

κl(x
l
i − xlj)2

)

+ κb (4.42)

where κl > 0 is the ARD parameter that determines the relevance of the l-th input dimension

to the prediction of the output variables. The derivatives of − lnP(D|θ) with respect to the

variables {lnκl}dl=1 can be evaluated as in (4.41).

It is possible that the optimization problem is stuck at local minima in the determination of θ.

We minimize the impact of this problem by minimizing (4.38) several times starting from several

different initial states, and choosing the one with the highest evidence as our preferred choice for

θ. It is also possible to organize these candidates together as an expert committee to represent

the predictive distribution that can reduce the uncertainty with respect to the hyperparameters.

12Refer to Section E.2 for more details in the derivation.
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4.3.3 Discussion

In classical GPR, the inversion of the full n × n matrix Σ has to be done for hyperparameter

inference, refer to (1.29) in Section 1.3.2. In our approach, only the inversion of the m × m

matrix ΣM, corresponding to off-bound SVs, is required instead of the full matrix inverse. The

non-SVs are not even involved in matrix multiplication and the future prediction. Usually, the

off-bound SVs are small fraction of the whole training samples. As a result, it is possible to

tackle reasonably large data sets with thousands of samples using our approach. For very large

data sets, the size of the matrix ΣM could still be large and the computation of Σ−1
M could

become the most time-consuming step. The parameter β can control the number of off-bound

SVs. In the numerical experiments given in Section 4.5, we find that the choice of β has little

influence on the training accuracy and the generalization capacity, but has a significant effect

on the number of off-bound SVs and hence, the training time. As a practical strategy for tuning

β, we can choose a suitable β to keep the number of off-bound SVs small for large data sets.13

This can shorten training time greatly with no appreciable degradation in the generalization

performance. Heuristically, we fix β at: 0.3 when the size of training data sets is less than 2000;

0.1 for 2000 ∼ 4000 samples; and, 0.05 for 4000 ∼ 6000 samples.

Another support for the manual setting on β comes from the asymptotic property of unbiased

estimator (refer to Section 2.1.1.3). When the size of training data is large, it is alright to

arbitrarily choose any unbiased noise model. The effect of β setting on the efficiency of SILF is

discussed in Appendix A.

Clearly, Our discussion above is not suitable to the case of classical SVR (β = 0), since in

this case SILF becomes ε-ILF, which is not smooth. An approximate evaluation for the evidence

in the case has been discussed by Gao et al. (2002), in which the (left/right) first order derivative

at the insensitive tube is used in the evidence approximation.

Some Details in Implementation We briefly summarize the algorithm in Table 4.2. In

practice, we always specify some uniform prior for the variables {lnC, ln ε, lnκb, lnκ}, which is

sufficiently broad but prevents the hyperparameters from being silly values. Moreover, we notice

that the gradient with respect to lnC is usually much larger than the gradient with respect

to the other variables, since the value of C is usually much greater than 1. This makes the

step inferred by line-search in optimization package unbalanced for these variables, i.e. lnC is

13Clearly, the number of off-bound SVs reduces, as β → 0, to the number of off-bound SVs in the standard
SVR (β = 0), but never below this number. The set of off-bound SVs in standard SVR is usually a small part of
the training set.
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Table 4.2: The algorithm of Bayesian inference in support vector regression.

BISVR Algorithm

Initialization choose initial values for hyperparameter vector θ0
load the training data into memory, i.e. initialize data structures
use the gradient-based optimization package to maximize the evidence

in the Package While ( exit condition has not been satisfied )
in Line Search as required by the optimization package

at θi call some routine to solve the quadratic programming
evaluate the evidence by − lnP(D|θi) as in (4.38)
compute the evidence gradient at θi as in (4.39)∼(4.41)

endwhile
at Optimal θ construct optimal predictor and then make predictions
Termination exit

going too far alone. We could use C instead of lnC as the variable in optimization package to

reduce the unbalance. As the prior distribution, we can set C uniformly distributed in the region

[0.01, 1000]. It rarely happens that the optimization package requires to evaluate the evidence

and its gradient at C less than 1. C going towards infinity (greater than 1000) implies that the

variance of the additive noise is very small, i.e. the training data are almost noise-free. As for

other hyperparameters, we specify [−5,−0.7] for ln ε, [−13, 10] for lnκb and [−17, 10] for lnκ.

4.4 Error Bar in Prediction

In this section, we present the error bar in prediction on new data points (MacKay, 1992c;

Bishop, 1995). This ability to provide the error bar is one of the important advantages of the

probabilistic approach over the usual deterministic approach to SVR.

Suppose a test case x is given for which the target tx is unknown. The random variable f(x)

indexed by x along with the n random variables {f(xi)} in (4.4) have the joint multivariate

Gaussian distribution,






f

f(x)




 ∼ N











0

0




 ,






Σ k

kT Cov(x, x)









 (4.43)

where f and Σ are defined as in (4.4), kT = [Cov(x1, x), Cov(x2, x), . . . , Cov(xn, x)]. The

conditional distribution of f(x) given f is a Gaussian,

P(f(x)|f) ∝ exp

(

−1

2

(f(x)− fT · Σ−1 · k)2
Cov(x, x)− kT · Σ−1 · k

)

(4.44)

where the mean is Ef(x)|f [f(x)] = fT ·Σ−1 ·k and the variance is V arf(x)|f [f(x)] = Cov(x, x)−

kT · Σ−1 · k. At fMP, the mean of the predictive distribution for f(x) is fTMP · Σ−1 · k, where
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fTMP · Σ−1 is just the Lagrange multipliers (α−α∗)T in the solution of (4.25).14

To make predictions with the optimal hyperparameters we have inferred, we need to compute

the distribution P(f(x)|D) in order to erase the influence of the uncertainty in f .15 Formally,

P(f(x)|D) can be found from

P(f(x)|D) =
∫

P(f(x)|f ,D)P(f |D) df =

∫

P(f(x)|f)P(f |D) df

where P(f(x)|f) is given by (4.44) and P(f |D) is given by (4.9). We replace f ·Σ−1 by its linear

expansion around fMP and use the approximation (4.36) for S(f), the distribution P(f(x)|D)

can be written as:

P(f(x)|D) ∝
∫

exp

(

−1

2

(f(x)− fTMP · Σ−1 · k − (f − fMP)
T · Σ−1 · k)2

Cov(x, x)− kT · Σ−1 · k

)

·

exp

(

−1

2
(f − fMP)

T (Σ−1 + C · Λ)(f − fMP)

)

df

(4.45)

This expression can be simplified to a Gaussian distribution of the form:

P(f(x)|D) = 1√
2πσt

exp

(

− (f(x)− (α−α∗)T · k)2
2σ2t

)

(4.46)

where σ2t = Cov(x, x) − kTM · ( 2βεC I + ΣM)−1 · kM, where kM is a sub-vector of k obtained by

keeping the entries associated with the off-bound SVs.16

The target tx is a function of f(x) and the noise δ as in (4.1), i.e. tx = f(x)+ δ. As the noise

is of zero mean, with variance σ2n as given in (2.33), the variance of tx is therefore σ2t + σ2n.

4.5 Numerical Experiments

In the implementation of our Bayesian approach to support vector regression (BSVR), we used

the routine L-BFGS-B (Byrd et al., 1995) as the gradient-based optimization package, and

started from the initial values of the hyperparameters to infer the optimal ones.17 We also

implemented standard GPR (Williams, 1998) and classical SVR (Vapnik, 1995) for comparison

purpose. For GPR, evidence maximization was implemented to choose the optimal hyperpa-

14The zero Lagrange multipliers in the solution of (4.25) associated with non-SVs do not involve in prediction
at all.

15In a fully Bayesian treatment, these hyperparameters θ must be integrated over θ-space. Hybrid Monte Carlo
methods (Duane et al., 1987; Neal, 1992) can be adopted here to approximate the integral efficiently by using
the gradients of P(D|θ) to choose search directions which favor regions of high posterior probability of θ.

16Refer to Section E.3 for more details in the derivation.
17In numerical experiments, the initial values of the hyperparameters were usually chosen as C = 1.0, ε = 0.05,

κb = 100.0 and κ = 0.5. We suggest to try more starting points in practice, such as C = 10.0 or κ = 1/d where
d is the input dimension, and then choose the best model by the evidence.
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rameters using the routine L-BFGS-B. In the classical SVR, there are three tunable hyperpa-

rameters {C, ε, κ} in the case that the Gaussian covariance function (4.3) is used as the kernel

function.18 Due to the prohibitive computational cost for cross validation in three-dimensional

hyperparameter space, we simply fix ε at a reasonable value and then search the corresponding

optimal values for C and κ only. Five-fold cross validation was employed to determine their

optimal values. The initial search was done on a 7× 7 coarse grid linearly spaced in the region

{(log10 C, log10 κ)| − 0.5 ≤ log10 C ≤ 2.5,−2.5 ≤ log10 κ ≤ 0.5}, followed by a fine search on a

9×9 uniform grid linearly spaced by 0.1 in the (log10 C, log10 κ) space. This scheme requires 650

evaluations. In order to accelerate these experiments, we also cached the full covariance matrix

in the implementation of GPR and SVR that requires O(n2) memory, but we did not do that

for BSVR. Average squared error (ASE) and average absolute error (AAE) are used as measures

in prediction. Their definitions are

ASE =
1

m

m∑

j=1

(yj − f(xj)2) and AAE =
1

m

m∑

j=1

|yj − f(xj)|

where m is the number of test cases, yj is the target value for xj and f(xj) is the prediction at

xj . The computer used for these numerical experiments was PIII 866 PC with 384MB RAM and

Windows 2000 as the operating system.19 We start with the simulated sinc data to study the

role of β in our approach which is the main factor of advantage over the Huber’s loss function

and the quadratic loss function, and carry out the scaling results for SVR, BSVR and GPR; and

then we employ the ARD Gaussian covariance function to carry out feature selection on robot

arm data, and illustrate the predictive distribution on laser generated data; we also compare

our method with GPR and SVR for generalization capability and computational cost on some

benchmark data.

4.5.1 Sinc Data

The function sinc(x) = |x|−1 sin |x| is commonly used to illustrate SVR (Vapnik, 1995). Training

and testing data sets were obtained by uniformly sampling data points from the interval [−10, 10].

Eight training data sets with sizes ranging from 50 to 4000 and a single common testing data

set of 3000 cases were generated. The targets were corrupted by the noise generated by the

noise model (2.31), using C = 10, ε = 0.1 and β = 0.3.20 From (2.33), the noise variance σ2n

18κ0 and κb are trivial for classical SVR in this case.
19The program bisvm.exe (version 4.2) and its source code we used for these numerical experiments can be

accessed from http://guppy.mpe.nus.edu.sg/∼mpessk/papers/bisvm.zip.
20The simulated sinc data we generated can be accessed from http://guppy.mpe.nus.edu.sg/∼chuwei/data/sinc.zip.

As for how to generate the noise distributed as the model (2.31), refer to Appendix F.
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is 0.026785 theoretically. The true noise variances σ2T in each of the training data sets were

computed and recorded in the second column of Table 4.3 as reference. The average squared

noise in the testing data set is actually 0.026612, and the true value of average absolute noise is

0.12492.

We normalized the inputs of training data sets and keep the targets unchanged. We started

from the default settings with a fixed value of β = 0.3. The training results were recorded in the

upper part of Table 4.3. We find that the parameters C and ε approach the true value 10 and 0.1

respectively as the training sample size increases; σ2n, the variance of the additive noise that is

estimated by (2.31) approaches σ2T too; and the ASE on testing data set also approaches the true

value of average squared noise. About 60% of training samples are selected as SVs. However, the

training time increases heavily as the size of training data set becomes larger. The main reason

is that the number of off-bound SVs that are involved in matrix inverse becomes larger. In the

next experiment, we fixed β at a small value 0.1 and then carried out the training results, which

were recorded in the lower part of Table 4.3. Comparing with the case of β = 0.3, we notice

that the number of off-bound SVs decreases significantly for the case β = 0.1. That reduces

the computational cost for the matrix inverse in the gradient evaluation for the evidence, and

hence shortens the training time greatly. Moreover, the performance in testing does not worsen.

Although β is not fixed at its true value, as the the size of training data increases, the estimated

variance of the additive noise σ2n still approaches σ2T and the test ASE approaches to its true

value too.

We also trained on the data set having 4000 examples, starting from the default settings

with different β ranging from 0.001 to 1.0, and plotted the training results in Figure 4.1. Note

that it is the Huber’s loss function (2.26) when β = 1.0. We find that the number of off-bound

SVs increases as β increases. The CPU time used to evaluate the evidence and its gradients

increases significantly for β larger than 0.2, i.e., when the number of off-bound SVs greater than

1000. This makes the training on large-scale data sets very slow. The introduction of β makes it

possible to reduce the number of off-bound SVs that involves in matrix inverse, and then saves

lots of CPU time and memory. We also find that the evidence and test ASE is slightly unstable

in the region of very small β, meanwhile the number of off-bound SVs becomes small. One

reason might be that the change on the off-bound SVs set may cause fluctuation in evidence

evaluation when the number of off-bound SVs is very few. Thus setting β at a very small value is

not desirable. There exists a large range for the value of β (from 0.01 to 0.1) where the training

speed is fast and the performance is good. The introduction of β makes it possible to reduce

the number of off-bound SVs that involves in matrix inverse. This is one important advantage
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Figure 4.1: Graphs of training results with respect to different β for the 4000 sinc data set. The
horizontal axis indicates the value of β in log-scale. The solid line in the graph (a) indicates
the number of SVs, while the dotted line indicates the number of off-bound SVs. In the graph
(b), the solid line indicate the CPU time in seconds used to evaluate evidence and its gradient,
and the dotted line is the CPU time in seconds consumed for MAP estimate. In the graph (c),
the dots indicate − lnP(D|θ) in training results. In the graph (d), the dots indicate the average
squared error (ASE) in testing minus the true value in the additive noise that is 0.026612.
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Table 4.3: Training results on sinc data sets with the fixed values, β = 0.3 or β = 0.1. σ2T denotes
the true value of noise variance in training data set; σ2n denotes the noise variance in training
data retrieved by (2.31); − lnP(D|θ) denotes the negative log evidence of the hyperparameters
as in (4.38); SVM denotes the number of off-bound support vectors; SVC denotes the number of
on-bound support vectors; TIME denotes the CPU time in seconds consumed in the training;
AAE is the average absolute error in test; ASE denotes the average squared error in test; the
true value of average squared noise in the testing data set is 0.026612; the true value of average
absolute noise in the testing data set is 0.12492.

β Size σ2
T C ε σ2

n κ − lnPD|θ SVM SVC TIME AAE ASE

50 .03012 15.95 .181 .02416 5.19 -1.3 23 4 0.15 .13754 .031194
100 .03553 10.00 .136 .03152 5.85 -11.1 33 25 0.40 .13027 .028481
300 .02269 11.16 .118 .02478 5.57 -113.7 90 87 5.95 .12642 .027189

0.3 500 .02669 9.36 .080 .02752 5.89 -174.8 135 218 12.9 .12544 .026765
1000 .02578 9.90 .094 .02655 5.62 -389.9 270 388 63.0 .12537 .026834
2000 .02639 10.01 .096 .02630 5.01 -808.8 539 768 436.2 .12509 .026661
3000 .02777 9.96 .106 .02770 5.20 -1146.7 833 1052 1551.4 .12511 .026671
4000 .02663 10.51 .111 .02609 5.76 -1642.2 1226 1280 3291.9 .12501 .026615

50 .03012 6.70 .086 .05018 9.42 5.51 10 20 0.11 .13411 .030065
100 .03553 12.07 .163 .02855 5.54 -10.1 19 25 0.53 .13366 .029728
300 .02269 12.05 .124 .02300 5.92 -113.8 39 100 5.13 .12651 .027212

0.1 500 .02669 9.42 .080 .02715 5.78 -174.4 57 250 9.43 .12543 .026764
1000 .02578 9.96 .095 .02631 6.09 -389.7 102 459 47.9 .12540 .026848
2000 .02639 10.06 .096 .02600 5.06 -808.5 190 920 264.7 .12512 .026662
3000 .02777 9.96 .108 .02774 5.34 -1142.6 287 1303 1070.4 .12509 .026673
4000 .02663 10.41 .109 .02623 5.74 -1643.3 446 1650 2852.3 .12502 .026619

of our approach over the classical GPR in which the inverse of the full matrix is inevitable.

In the next experiments, we compared the generalization performance and the computational

cost of GPR, SVR and BSVR on different size of the sinc simulated data. The size of training

data set ranged from 10 to 1000. The targets were corrupted by additive Gaussian noise of

variance 0.04, and 3000 noise-free samples were used as the test set for all the training data

sets. At each size, we repeat the experiments 20 times to reduce the randomness in training

data generation. The comparison of generalization performance is given in Figure 4.2(a)∼Figure

4.2(f). BSVR and GPR yield better and more stable performance than SVR on small data

sets. Clearly, when the number of training samples is small, Bayesian approaches are much

better than SVR. GPR yields sightly better performance than BSVR when the size is less than

100, since GPR takes advantage on the Gaussian noise model and sparseness in BSVR may

lose some information on small data sets. We presented the CPU time consumed by the three

algorithms for the bunch of tasks, separately in Figure 4.2(g)∼Figure 4.2(i). From the scaling

results, we find that BSVR requires O(n2.36) computational cost, while GPR requires O(n3.05).

This advantage of BSVR comes from the sparseness property in Bayesian inference that help us

to tackle large data sets.
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Figure 4.2: SVR, BSVR and GPR on the simulated sinc data at different training data size. The
results of AAE and ASE are presented in the graph (a)∼(f) respectively. BSVR and GPR used
evidence maximization to choose optimal hyperparameters, while five-fold cross validation was
used for SVR. The position of cross denotes the average values over the 20 repetitions, and the
vertical line indicates the standard deviation. In the graph (g)∼(i), we present the total CPU
time in seconds consumed by these three approaches in training and test at different data sizes.
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4.5.2 Robot Arm Data

The task in the robot arm problem is to learn the mapping from joint angles, x1 and x2, to the

resulting arm position in rectangular coordinates, y1 and y2. The actual relationship between

inputs and targets is as follows:

y1 = 2.0 cosx1 + 1.3 cos(x1 + x2) and y2 = 2.0 sinx1 + 1.3 sin(x1 + x2) (4.47)

Targets are contaminated by independent Gaussian noise of standard deviation 0.05. The data

set of robot arm problem we used here was generated by MacKay (1992c) which contains 600

input-target pairs.21 The first 200 samples in the data set were used as training set in all cases;

the second 200 samples were used as testing set; the last 200 samples were not used. Two

predictors were constructed for the two outputs separately in the training. We normalized the

input data and keep the original target values, and then trained with ARD Gaussian model

(4.42) starting from the default settings. The results are recorded in Table 4.4.

In the next experiment, four more input variables were added artificially (Neal, 1996), related

to the inputs x1 and x2 in the original problem (4.47), x3 and x4 are copies of x1 and x2 corrupted

by additive Gaussian noise of standard deviation 0.02, and x5 and x6 are irrelevant Gaussian

noise inputs with zero mean, as follows: x1 = x1, x2 = x2, x3 = x1+0.02 ·n3, x4 = x2+0.02 ·n4,

x5 = n5, x6 = n6, where n3, n4, n5 and n6 are independent Gaussian noise variables with zero

mean and unit variance.22 We normalized the input data and kept the original target values, and

then trained an ARD Gaussian model (4.42) starting from the default settings. The results are

recorded in Table 4.5. It is very interesting to look at the training results of the ARD parameters

in the case of 6 inputs in Table 4.5. The values of the ARD parameters show nicely that the

first two inputs are most important, followed by the corrupted inputs. The ARD parameters for

the noise inputs shrink very fast in training. We also recorded the true variance of the additive

Gaussian noise on y1 and y2 in the third column of Table 4.4 as reference, which are about

0.0025. Although the additive noise is Gaussian that is not consistent with our loss function in

likelihood evaluation, we retrieve the noise variance properly. Meanwhile we keep sparseness in

solution representation. About 50% ∼ 60% of the training samples are selected as SVs (refer to

Table 4.4 and 4.5).

In Table 4.6, we compared the test ASE with that in other implementations, such as neural

21The robot arm data set generated by MacKay (1992c) is available at
http://wol.ra.phy.cam.ac.uk/mackay/bigback/dat/.

22The robot arm data set with six inputs we generated can be accessed from
http://guppy.mpe.nus.edu.sg/∼chuwei/data/robotarm.zip.
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Table 4.4: Training results on the two-dimensional robot arm data set with the fixed value
of β = 0.3. σ2T denotes the true value of noise variance in the training data; σ2n denotes the
estimated value of the noise variance; SVM denotes the number of off-bound support vectors;
SVC denotes the number of on-bound support vectors; TIME denotes the CPU time in seconds
consumed in the training; AAE is the average absolute error in test; ASE denotes the average
squared error in test.

y σ2
T

(10−3)
C ε σ2

n
(10−3)

κ1 κ2 κb SVM SVC TIME AAE ASE(10−3)

y1 2.743 44.94 0.057 2.681 0.682 0.248 3.86 75 21 33.8 .03930 2.491
y2 2.362 34.35 0.042 2.787 0.673 0.184 17.03 74 42 68.4 .04544 3.184

Table 4.5: Training results on the six-dimensional robot arm data set with the fixed value of
β = 0.3. σ2n denotes the estimated value of the noise variance; SVM denotes the number of
off-bound support vectors; SVC denotes the number of on-bound support vectors; AAE is the
average absolute error in test; ASE denotes the average squared error in test.

y σ2
n

(10−3)
κ1 κ2 κ3

(10−2) κ4
(10−2) κ5

(10−5) κ6
(10−5) κb SVM SVC AAE ASE(10−3)

y1 2.696 .667 .248 .287 .0087 0.01 0.01 2.36 74 27 .03907 2.477
y2 2.779 .603 .222 8.41 .904 0.01 0.01 23.53 60 77 .04622 3.160

Table 4.6: Comparison with other implementation methods on testing ASE of the robot arm
positions. INPUTS denotes the number of inputs. ASE denotes the average squared error in
testing.

IMPLEMENTATION METHOD INPUTS ASE(10−3)

Gaussian Approximation of MacKay
Solution with highest evidence 2 5.73
Solution with lowest test error 2 5.57

Hybrid Monte Carlo of Neal 2 5.47
6 5.49

Gaussian Processes of Williams and Rasmussen 2 5.63
6 5.69

GPR using Evidence Maximization
with Gaussian Covariance Function 2 5.83

with ARD Gaussian 2 5.70
with ARD Gaussian 6 5.70

SVR using Gaussian Covariance Function
ε = 0.1 2 7.46
ε = 0.05 2 6.82
ε = 0.01 2 5.84

BSVR with β = 0.3
Gaussian Covariance Function 2 5.89

ARD Gaussian 2 5.68
ARD Gaussian 6 5.64
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Figure 4.3: Graphs of our predictions on laser generated data. In the upper graph, the dots
indicate our predictions on the testing data set and the solid curve describes the time series. In
the lower graph, the dot indicates estimation error that is equal to prediction minus target, and
solid curves indicate the error bars ±2

√

σ2t + σ2n in predictive distribution.

networks with Gaussian approximation by MacKay (1992c) and neural networks with Monte

Carlo by Neal (1996), and Gaussian processes for regression by Williams and Rasmussen (1996)

etc. The expected test error of ASE based on knowledge of the true distribution is about 0.005.

These results indicate that our approach gives a performance that is very similar to that given

by well-respected techniques.23

4.5.3 Laser Generated Data

SVR has been successfully applied to time series prediction (Müller et al., 1997). Here we choose

the laser data to illustrate the error bar in predictions. The laser data has been used in the

Santa Fe Time Series Prediction Analysis Competition.24 A total of 1000 points of far-infrared

23Note that Monte Carlo methods sample hyperparameters hundreds of times according to P(θ|D) and then av-
erage their individual predictions. Thus they have the advantage of reducing the uncertainty in hyperparameters.
On the other hand, our approach takes the mode of P(θ|D) as the optimal hyperparameters.

24Full description can be found at URL: http://www-psych.stanford.edu/∼andreas/Time-Series/SantaFe.html.
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laser fluctuations were used as the training data and 100 following points were used as testing

data set. We normalized the training data set coordinate-wise, and used 8 consecutive points as

the inputs to predict the next point. We chose Gaussian kernel (4.3) and started training from

the default settings. β was fixed at 0.3. Figure 4.3 plots the predictions on testing data set and

the error bars. Although the predictions of our model do not match the targets very well on

the region (1051-1080), our model can reasonably provide larger error bars for these predictions.

This feature is very useful in other learning fields, such as active learning.

4.5.4 Benchmark Comparisons

We compare our method BSVR with standard GPR (Williams, 1998) and classical SVR (Vapnik,

1995) upon generalization performance and computational cost on some benchmark data sets.

The descriptions of these benchmark data sets we used are given as follows.

Boston Housing Data The “Boston Housing” data was collected in connection with a study

of how air quality affects housing prices. The data concerns the median price in 1970 of owner-

occupied houses in 506 census tracts within the Boston metropolitan area. Thirteen attributes

pertaining to each census tract are available for use in prediction.25 The objective is to predict the

median house value. Following the method used by Tipping (2000) and Saunders et al. (1998),26

the data set was partitioned into 481/25 training/testing splits randomly. This partitioning was

carried out 100 times on the data. We cited the test ASE results reported by other methods

in Table 4.9. The results of ARD parameters in Table 4.10 indicate that the most important

attribute should be NOX, followed by TAX, LSTAT and RAD.

Computer Activity Data The computer activity data was collected from a Sun Sparcstation

20/712 with 128 Mbytes of memory running in a multi-user university department. The data

set is composed of 8192 samples with 21 attributes.27 The task is to predict the portion of time

that CPUs run in user mode from all the 21 attributes. We partitioned the computer activity

data into 2000/6192 training/testing splits randomly. The partitioning was repeated 10 times

independently.

Abalone Data We normalize the abalone data28 to zero mean and unit variance coordinate-

wise, and then map the gender encoding (male/female/infant) into {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
25The original data can be found in StatLib, available at URL http://lib.stat.cmu.edu/datasets/boston.
26Saunders et al. (1998) used 80 cases in 481 training data as validation set to determine the kernel parameters.
27The data set and its full description can be accessed at http://www.cs.toronto.edu/∼delve/data/comp-activ/.
28The data can be accessed via ftp://ftp.ics.uci.edu/pub/machine-learning-databases/abalone/.
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Table 4.7: Training results of BSVR and standard SVR on the benchmark data sets. Both of
them used the Gaussian covariance function (4.3). TIME denotes the total CPU time in hours
consumed by BSVR for all partitions of that data set, and SVR is the corresponding value of
SVR. ASE denotes the test ASE of BSVR averaged over all partitions of that data set together
with the standard deviation, and SVR-ASE is the corresponding element of SVR. AAE denotes
the test AAE of BSVR, and SVR-AAE is the corresponding element of SVR. The p-value is for
the paired t−test on test error. We use the bold face to indicate the cases in which the indicated
element is significantly better; a p-value threshold of 0.01 was used to decide this.

Data set SVR TIME SVR-ASE ASE p-value SVR-AAE AAE p-value

Housing 22.0 0.9 10.27±7.21 12.34±9.20 0.078 2.13±0.48 2.19±0.48 0.32
Computer 45.6 4.7 13.80±0.93 17.59±0.98 5.5×10−8 2.28±0.04 2.33±0.05 0.026
Abalone 67.8 6.5 0.441±0.021 0.438±0.024 0.78 0.455±0.0088 0.454±0.0086 0.95

Table 4.8: Training results of BSVR and standard GPR on the benchmark data sets. Both of
them used the ARD Gaussian covariance function (4.42). TIME denotes the total CPU time
in hours consumed by BSVR for training on all partitions of that data set, and GPR is the
corresponding value of GPR. ASE denotes the test ASE of BSVR averaged over all partitions of
that data set together with the standard deviation, and GPR-ASE is the corresponding element
of GPR. AAE denotes the test AAE of BSVR, and GPR-AAE is the corresponding element of
GPR. The p-value is for the paired t−test on test error. We use the bold face to indicate the
cases in which the indicated element is significantly better; a p-value threshold of 0.01 was used
to decide this.

Data set GPR TIME GPR-ASE ASE p-value GPR-AAE AAE p-value

Housing 2.4 2.2 8.32±4.35 6.99±4.38 0.032 2.01±0.40 1.86±0.37 0.0060
Computer 23.0 12.1 5.58±0.25 5.80±0.27 0.070 1.686±0.023 1.687±0.026 0.99
Abalone 43.6 13.6 0.428±0.022 0.432±0.023 0.73 0.463±0.0087 0.451±0.0095 0.0094

The normalized data set is split into 3000 training and 1177 testing data set randomly. The

partitioning is carried out 10 times independently. The objective is to predict the abalone’s

rings.

The results of BSVR using Gaussian covariance function against SVR are given in Table

4.7. SVR yields significantly better performance on the computer activity data than BSVR

does.29 The results of BSVR and GPR using ARD Gaussian covariance function are presented

in Table 4.8. ARD feature selection greatly improves the generalization performance of BSVR

on the computer activity data and the Boston housing data. BSVR performs significantly better

than GPR in AAE on the Boston housing data and the abalone data. Meanwhile, BSVR is

very efficient. Hence, BSVR with the benefit of sparseness can efficiently achieve very good

generalization on reasonably large-scale data sets. If we could employ some scheme to cache

29Note that GPR with Gaussian covariance function yields ASE 18.21 ± 1.07 and AAE 2.36 ± 0.046 on the
computer activity data that is quite close to the test result of BSVR. SVR performs significantly better than
BSVR and GPR on this dataset, possibly because the probabilistic models prefer relatively simple models when
the noise level is quite high, while SVR selects the best matching model using cross validation.
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Table 4.9: Comparison with Ridge Regression (Saunders et al., 1998), Relevance Vector Machine
Tipping (2000), GPR and SVR on price prediction of the Boston Housing data set. ASE denotes
the average squared test error.

IMPLEMENTATION METHOD KERNEL TYPE ASE

Ridge Regression Polynomial 10.44
Ridge Regression Splines 8.51
Ridge Regression ANOVA Splines 7.69

Relevance Vector Machine Gaussian 7.46

SVR Gaussian 10.27
GPR Gaussian 9.13

BSVR with β = 0.3 Gaussian 12.34

GPR ARD Gaussian 8.32
BSVR with β = 0.3 ARD Gaussian 6.99

Table 4.10: Training results of ARD hyperparameters on Boston housing data set with the fixed
value of β = 0.3. The results are computed by averaging over the 100 partitions and its standard
deviations are also computed.

Attribute Description ARD

CRIM per capita crime rate by town 0.0363±0.0126
ZN proportion of residential land zoned for lots over 25,000 sq. ft 0.0142±0.0043

INDUS proportion of non-retail business acres per town 0.0659±0.0150
CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise) 0.0329±0.0185
NOX nitric oxides concentration (parts per 10 million) 3.6681±1.6795

RM average number of rooms per dwelling 0.1415±0.0274
AGE proportion of owner-occupied units built prior to 1940 0.0417±0.0105
DIS weighted distances to five Boston employment centers 0.1231±0.0275
RAD index of accessibility to radial highways 0.2400±0.0409
TAX full-value property-tax rate per $10,000 0.9418±0.3511

PTRATIO pupil-teacher ratio by town 0.0428±0.0083
B 1000(Bk−0.63)2 where Bk is the proportion of blacks by town 0.0306±0.0135

LSTAT % lower status of the population 0.2421±0.1120
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part of the covariance matrix, the training time should be further reduced.

4.6 Summary

In this chapter, we proposed a Bayesian design for support vector regression using a unifying loss

function. The SILF is smooth and also inherits most of the virtues of ε-ILF, such as insensitivity

to outliers and sparseness in solution representation. In the Bayesian framework, we integrated

support vector methods with Gaussian processes to keep the advantages of both. Various com-

putational procedures were provided for the evaluation of MAP estimate and evidence of the

hyperparameters. ARD feature selection and model adaptation were also implemented intrin-

sically in hyperparameter determination. Another benefit is the determination of error bar in

making predictions. Furthermore, sparseness in the evidence evaluation and probabilistic pre-

diction reduces the computational cost significantly and helps us to tackle reasonably large data

sets. The results in numerical experiments showed that the generalization ability is competitive

with other well-respected techniques.

99



Chapter 5

Extension to Binary Classification

Binary classification can be regarded as a special case of regression problems, in which the

targets are only two values {+1,−1}. It is possible to take advantage of the Bayesian techniques

with regression formulation to solve classification problems. For example, Van Gestel et al.

(2002) employed Bayesian inference in least squares regression formulation together with a post-

processer for classifier. However, such a scheme is not a direct Bayesian design for classifier, since

the regression outputs have to be post-processed separately. Moreover, Bayesian inference with

regression formulation to implement model selection for classifier faces the danger of over-fitting.

This is because regression formulation gives punishment to any deviation from the target.1

The solution of the problem of classification can be considered in the light of the main

principle for solving problems using a restricted amount of information formulated by Vapnik

(1995, pg. 28):

When solving a given problem, try to avoid solving a more general problem as an

intermediate step. One must try to find the desired function “directly” rather than

first estimating the densities and then using the estimated densities to construct the

desired function.

Hence, any uses of regression formulation with some post-processing to solve classification prob-

lems are not desirable.

Gaussian processes provide promising non-parametric Bayesian approaches to classification

problems. In standard Gaussian processes for classification (Williams and Barber, 1998), it is

assumed that the likelihood of an output y (i.e. class label) for a given input x ∈ Rd can be

1For classifier design, only the deviation to one side of the target needs to be punished.
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evaluated by P(y|f(x)) where f(x) : Rd → R is a latent function which has a Gaussian prior

distribution. Traditionally, the logistic function is used in likelihood evaluation for classifier

designs. This results in non-Gaussian posterior distribution for the latent functions. As a

popular technique, Laplacian approximation is widely used to produce the analytical formulation

(MacKay, 1992a; Bishop, 1995). The important advantage of Gaussian process models over other

non-Bayesian models is the explicit probabilistic formulation. This not only builds up Bayesian

framework to implement hyperparameter inference but also provides us with probabilistic class

prediction. Its drawback lies in the huge increase of the computation cost in matrix inverse for

large training data sets.

As a computationally powerful class of supervised learning networks, classical support vector

classifier (SVC) (Vapnik, 1995) exploits the idea of mapping the input data into a high dimen-

sional (often infinite) Hilbert space defined by a reproducing kernel (RKHS), where a linear

classification is performed. The discriminant function is constructed by solving a regularized

functional via convex quadratic programming (see Appendix B.1 for a quick reference). The

advantages of classical SVC are: a global minimum solution; relatively fast training speed for

large-scale learning tasks; and sparseness in solution representation. The choice of the regu-

larization parameter and the other kernel parameters in the SVC model crucially affect the

generalization performance. Model selection is usually based on the criterion of some simple

and pertinent performance measures, such as cross validation (Wahba, 1990) or various gener-

alization bounds derived from statistical learning theory (Vapnik, 1995). Typically, Bayesian

methods are regarded as suitable tools to determine the values of these parameters. Moreover,

Bayesian methods can also provide probabilistic class prediction that is more desirable than just

deterministic classification.

There is some literature on Bayesian interpretations of classical SVC. Kwok (2000) built

up MacKay’s evidence framework (MacKay, 1992c) using a weight-space interpretation. The

unnormalized evidence may cause inaccuracy in Bayesian inference. Sollich (2002) pointed out

that the normalization issue in Bayesian framework for classical SVC is critical (we will high-

light this issue in Section 5.1), and proposed an intricate Bayesian treatment with normalized

evidence and error bar, where the evidence normalization depends on an unknown input distri-

bution that limits its usefulness in practice. In this chapter, we shall put forward a Bayesian

design on support vector classifier in stationary Gaussian processes. We introduce a novel loss

function for SVC, called the trigonometric loss function (Chu et al., 2003), with the purpose

of integrating Bayesian inference with SVC smoothly while preserving their individual merits.

The trigonometric loss function is smooth and naturally normalized in likelihood evaluation.
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Further, it possesses the desirable property of sparseness in sample selection. This differs from

standard Gaussian processes for classification. We follow standard Gaussian processes for clas-

sification (Williams and Barber, 1998) to set up a Bayesian framework. Maximum a posteriori

(MAP) estimate of the latent functions results in a convex programming problem. The popular

sequential minimal optimization algorithm could be easily adapted to find the solution. Opti-

mal parameters can then be inferred by Bayesian techniques with the benefit of sparseness, and

probabilistic class prediction can also be provided for test patterns.

This chapter is organized as follows: in section 5.1 we highlight the normalization requirement

in Bayesian design for SVC; in section 5.2 we summarize the desirable characteristics of the

popular loss functions for binary classification, and then propose the trigonometric loss function;

in section 5.3 we describe the Bayesian framework, formulate the MAP estimate on function

values as a convex programming problem, and then evidence approximation can be applied to

implement hyperparameter inference; in section 5.4 we discuss the probabilistic class prediction;

we show the results of numerical experiments that verify the approach in section 5.5.

5.1 Normalization Issue in Bayesian Design for Classifier

In regression problems, the discrepancy between the target value yx and the associated latent

function fx at the input x is used to evaluate the likelihood by a specific noise model. For binary

classifier designs, we prefer to measure the probability of the class label yx for a given latent

function fx at x as the likelihood, which is a conditional probability P(yx|fx). Here, yx is a

discrete random variable, and the sum of the probabilities for all possible cases of yx should be

equal to 1, i.e.
∑

yx
P(yx|fx) = 1, which is referred to as normalization requirement. Since there

are only two possible labels for any input x in binary classification problems, yx ∈ {+1,−1} ∀x,

the likelihood function P(yx|fx) for binary classifiers must satisfy

P(yx = +1|fx) + P(yx = −1|fx) = 1 (5.1)

In the probabilistic approach for binary classification, logistic function is widely used as an

approximation for the discontinuous heaviside step function in likelihood evaluation (Williams

and Barber, 1998). The logistic function is defined as

P(yx|fx) =
1

1 + exp(−yx · fx)
(5.2)
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where the input vector x ∈ Rd, the class label yx ∈ {+1,−1} and fx denotes the latent function

(discriminant function) at x . Another choice is the probit function (Neal, 1997b), which is the

cumulative Gaussian distribution defined as

P(yx|fx) =
1

2
+

1

2
erf

(
yx · fx√

2σ0

)

(5.3)

where the noise variance σ0 > 0 and erf(z) =
2√
π

∫ z

0

exp(−t2) dt. Note that both the logistic

function (5.2) and the probit function (5.3) satisfy the normalization requirement (5.1).

The loss function associated with the shifted heaviside step function in SVC is also called

hard margin loss function, which is defined as

`h(yx · fx) =







0 if yx · fx ≥ +1;

+∞ otherwise.
(5.4)

The hard margin loss function is suitable for noise-free data sets. For other general cases, a soft

margin loss function is popularly used in SVC (Burges, 1998), which is defined as

`ρ(yx · fx) =







0 if yx · fx ≥ +1;

(1− yx · fx)ρ otherwise,

where ρ is a positive integer. Considering the normalization requirement (5.1), the corresponding

likelihood function in probabilistic framework could be written as

P(yx|fx) =
1

ν(fx)
· exp(−`ρ(yx · fx)), (5.5)

where yx ∈ {−1,+1} and the normalizer should be

ν(fx) = exp(−`ρ(+fx)) + exp(−`ρ(−fx)). (5.6)

Notice that the normalizer ν(fx) is dependent on the latent function fx (see Figure 5.1). As

usual, we specify the prior as P(f) ∝ exp
(
−λ‖f‖2RKHS

)
where λ is a regularization factor and

f denotes the set of fx, and use (5.5) as the likelihood function, i.e. P(D|f) = ∏x∈D P(yx|fx)

where D denotes the training data set. The posterior is then given as

P(f |D) ∝ exp

(

−λ‖f‖2RKHS −
∑

x∈D
`ρ(yx · fx)

)

·
∏

x∈D

1

ν(fx)

by Bayes’ theorem. The MAP estimate on function values is equivalent to min
f
R(f) where
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Figure 5.1: The graphs of soft margin L1 and L2 loss functions, together with their normalizers
in likelihood. The normalizer (solid line in the two right graphs) is defined as in (5.6) with
C = 1. The horizontal axis indicates the latent function fx of the input vector x.

R(f) = λ‖f‖2RKHS +
∑

x `ρ(yx · fx) +
∑

x ln ν(fx). Notice that the sum of the first two terms

in R(f) is just the objective functional in classical SVC. To compute the MAP estimate on

function values fx in this Bayesian framework, the term of the normalizer ν(fx) has to be taken

into account. This flaw precludes the solution of SVC from being directly used as the MAP

estimate (Sollich, 2002), which makes us lose the computational advantage of classical SVC.

5.2 Trigonometric Loss Function

Soft margin loss function is special in that it gives identical zero penalty to training samples

that have satisfied the constraint yx · fx ≥ +1. These training samples are not involved in the

Bayesian inference computations. The simplification of computational burden is usually referred

to as the sparseness property. Logistic function does not enjoy this property since it contributes

a positive penalty to all the training samples. On the other hand, logistic function is attractive
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because it is naturally normalized in likelihood evaluation, i.e., the normalizer is a constant, a

property that allows Bayesian techniques to be used smoothly.

Based on these observations, we generalize the desirable characteristics in these loss functions

for classification: it should be naturally normalized in likelihood evaluation; it should possess

a flat zero region that results in sparseness property; it should be smooth and its first order

derivative should be explicit and simple. Adhering to these requirements, we propose a novel

loss function for binary classification, known as trigonometric loss function (Chu et al., 2002b).

The trigonometric loss function is defined as

`t(yx · fx) =







+∞ if yx · fx ∈ (−∞,−1];

2 ln sec(π4 (1− yx · fx)) if yx · fx ∈ (−1,+1);

0 if yx · fx ∈ [+1,+∞),

(5.7)

The trigonometric likelihood function is therefore written as

Pt(yx|fx) =







0 if yx · fx ∈ (−∞,−1];

cos2(π4 (1− yx · fx)) if yx · fx ∈ (−1,+1);

1 if yx · fx ∈ [+1,+∞).

(5.8)

The derivatives of the loss function are needed in the implementation of Bayesian methods. The

first order derivative of (5.7) with respect to fx can be derived as

∂`t(yx · fx)
∂fx

=







−yx π2 tan(π4 (1− yx · fx)) if yx · fx ∈ (−1,+1);

0 if yx · fx ∈ [+1,+∞),
(5.9)

and the second order derivative is

∂2`t(yx · fx)
∂f2x

=







π2

8 sec2(π4 (1− yx · fx)) if yx · fx ∈ (−1,+1);

0 if yx · fx ∈ [+1,+∞).
(5.10)

From (5.8) and Figure 5.2, it is easy to see that the normalizer ν(fx) is a constant for any

fx. From (5.7) and Figure 5.2, we find that the trigonometric loss function possesses a flat zero

region that is same as the loss functions in classical SVC, but it requires that yx ·fx > −1 should

always hold. One related issue for the trigonometric loss function is its sensitivity to outliers.

We have conducted numerical experiments to understand this effect. It will be shown, in Section

5.5.1, that the general predictive ability using trigonometric loss function is not affected much

by outliers, but only an increase in the number of support vectors is seen. Its generalization
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Figure 5.2: The graphs of trigonometric likelihood function and its loss function. The horizontal
axis indicates the latent function fx of the input vector x.

performance is found to be very close to that of the classical SVC method. The details are given

in Section 5.5.

Remark 2 The trigonometric loss function (5.7) could also be stated in a more general form as

`t(yx · fx) =







+∞ if yx · fx ∈ (−∞,−δ];

2 ln sec
(
π
4 (1− 1

δ · yx · fx)
)

if yx · fx ∈ (−δ,+δ);

0 if yx · fx ∈ [+δ,+∞),

(5.11)

where δ > 0. The optimal value of δ is determined by the noise level in training data.

5.3 Bayesian Inference

Introducing the trigonometric loss function into the regularized functional of classical SVC yields

an optimization problem of minimizing the trigonometric SVC (TSVC) regularized functional in

a RKHS

min
f∈RKHS

R(f) =

n∑

i=1

`t(yxi · fxi) + λ‖f‖2RKHS, (5.12)

where the regularization parameter λ is positive and ‖f‖2RKHS is a norm in the RKHS. As a

byproduct, the TSVC along the way of classical SVC is described in the Appendix H. Here

we only focus on our initial motivation to integrate with Bayesian techniques. If we assume

that the prior P(f) ∝ e−λ‖f‖
2
RKHS and the likelihood P(D|f) ∝ e−

∑n
i=1 `t(yxi ·fxi ), the minimizer

of TSVC regularized functional (5.12) could be directly interpreted as maximum a posteriori
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(MAP) estimate of the function f in the RKHS (Evgeniou et al., 1999). The function f could

be also explained as a family of random variables in a Gaussian process due to the duality

between RKHS and stochastic processes (Wahba, 1990).

Recently, Gaussian processes have provided a promising non-parametric Bayesian approach

to classification problems (Williams and Barber, 1998). The important advantage of Gaussian

process models over other non-Bayesian models is the explicit probabilistic formulation. This

not only builds the ability to infer model parameters in Bayesian framework but also provides

probabilistic class prediction. We follow the standard Gaussian process classifier to describe a

Bayesian framework, in which we impose a Gaussian process prior distribution on the latent

functions and employ the trigonometric loss function in likelihood evaluation. Compared with

standard Gaussian processes for classification, our approach attempts the trigonometric loss

function in place of the logistic loss function in likelihood evaluation that results in another

convex programming problem in MAP estimate and sparseness in computation. This classifier,

TSVC in Bayesian framework, is referred to as Bayesian TSVC (BTSVC).

5.3.1 Bayesian Framework

The latent functions are usually assumed as the realizations of random variables indexed by the

input vector xi in a stationary zero-mean Gaussian process. The Gaussian process can then

be specified by giving the covariance matrix for any finite set of zero-mean random variables

{f(xi)|i = 1, 2, . . . , n}. The covariance between the outputs corresponding to the inputs xi and

xj could be defined as

Cov[f(xi), f(xj)] = κ0exp

(

−1

2
κ‖xi − xj‖2

)

+ κb, (5.13)

where κ0 > 0, κ > 0 and κb > 0. κ0 denotes the average power of f(x) that reflects the noise

level. Note that the exponential term in (5.13) is exactly the Gaussian kernel in classical SVC,2

while the second term corresponds to the variance of the offset in the latent functions. Thus the

relationship between the covariance function and the kernel function should be

Cov[f(xi), f(xj)] = κ0K(xi, xj) + κb, (5.14)

where K(xi, xj) denotes the Gaussian kernel function, i.e., K(xi, xj) = exp
(

− 1
2κ‖xi − xj‖

2
)

.

Other kernel functions in classical SVC could also be used in the covariance function, such as

2There is no need to multiply the term κ0 in kernel function of classical SVC, due to the redundancy with the
regularization parameter.
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polynomial kernels and spline kernels (Wahba, 1990). However, we only focus on Gaussian kernel

in the present work.

We collect the parameters in the prior distribution {κ0, κ, κb}, as θ, the hyperparameter

vector. Thus, for a given hyperparameter vector θ, the prior probability of the random variables

{f(xi)} is a multivariate Gaussian, which can be simply written as

P(f |θ) = 1

Zf

exp(−1

2
fTΣ−1f), (5.15)

where f = [f(x1), f(x2), . . . , f(xn)]
T , Zf = (2π)

n
2 |Σ| 12 , and Σ is the n × n covariance matrix

whose ij-th element is Cov[f(xi), f(xj)].
3

The likelihood with the trigonometric likelihood function (5.8) can be written as

P(D|f , θ) =
n∏

i=1

Pt(yxi |f(xi)). (5.16)

Based on Bayes’ theorem, the posterior probability of f can then be written as

P(f |D, θ) = 1

ZS
exp (−S(f)) , (5.17)

where S(f) = 1
2f

TΣ−1f+
∑n

i=1 `t(yxi ·f(xi)), `t(·) is defined as in (5.7) and ZS =
∫
exp(−S(f)) df .

Since P(f |D, θ) ∝ exp(−S(f)), the MAP estimate on the values of f is therefore the minimizer

of the following optimization problem

min
f
S(f) =

1

2
fTΣ−1f +

n∑

i=1

`t(yxi · f(xi)). (5.18)

This is a regularized functional. If fMP denotes an optimal solution of (5.18), then the derivative

of S(f) with respect to f should be zero at fMP, i.e.,

∂S(f)

∂f

∣
∣
∣
∣
fMP

= Σ−1 · f +

n∑

i=1

∂`t(yxi · f(xi))
∂f

∣
∣
∣
∣
∣
fMP

= 0.

Let us now define the following set of unknowns: υi = − ∂`t(yxi ·f(xi))
∂f(xi)

|fMP(xi) where the deriva-

tive is as given in (5.9) and υ as the column vector containing {υi}. Then fMP can be written

as:

fMP = Σ · υ. (5.19)

3It is possible to insert “jitter” term in the diagonal entries of the covariance matrix, that could reflect the
uncertainty in the corresponding function value.
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Using (5.14), we can decompose the solution (5.19) into the form

fMP(x) =

n∑

i=1

υi · κ0 ·K(x, xi) + κb

n∑

i=1

υi, (5.20)

to show the significance of the hyperparameters.4 The hyperparameter κ0 determines the average

power of the patterns. The contribution of each pattern to the optimal discriminant function

depends on its υi in (5.20). In the case of high noise level, a smaller value κ0 could reduce

the deleterious effect from some particular outliers. In the regularized functional (5.18), κ0 in

covariance function plays the role as the regularization parameter. κb is only involved in the

bias term of the discriminant function (5.20).5

5.3.2 Convex Programming

In this subsection, we formulate the optimization problem (5.18) as a convex programming

problem, and then adapt popular sequential minimal optimization (SMO) algorithm (Platt,

1999; Keerthi et al., 2001) for the solution. As usual, slack variables ξi are introduced: ξi ≥

1 − yxi · f(xi), ∀i. The optimization problem (5.18) can then be restated as the following

equivalent optimization problem, which we refer to as the primal problem:

min
f ,ξ

1

2
fTΣ−1f + 2

n∑

i=1

ln sec
(π

4
ξi

)

(5.21)

subject to yxi · f(xi) ≥ 1 − ξi and 0 ≤ ξi < 2, ∀i. Standard Lagrangian techniques (Fletcher,

1987) are used to derive the dual problem. The strict inequality ξi < 2 is assumed to hold and

omitted. As we will see below, this condition will be implicitly satisfied in the solution. Let

αi ≥ 0 and γi ≥ 0 be the corresponding Lagrange multipliers for other inequalities in the primal

problem (5.21). The Lagrangian for the primal problem (5.21) is:

L(f , ξ) =
1

2
fTΣ−1f + 2

n∑

i=1

ln sec
(π

4
ξi

)

−
n∑

i=1

γi · ξi −
n∑

i=1

αi(yxi · f(xi)− 1 + ξi). (5.22)

The KKT conditions for the primal problem (5.21) are

f(xi) =

n∑

j=1

yxjαjCov(xi, xj), ∀i; (5.23)

4Let us consider the case that we use K(xi, xj)+κb as covariance function (5.14) and the general trigonometric
loss function (5.11) in the regularized functional (5.18). Comparing the consequent solution with that in (5.20),
we can notice that there is an equivalence between κ0 in covariance function and the parameter 1/δ in (5.11).

5κb might be trivial if the sum
∑n

i=1 υi is very small.
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π

2
tan

(π

4
ξi

)

= αi + γi, ∀i. (5.24)

We can write (5.24) as

ξi =
4

π
arctan

(
2

π
(αi + γi)

)

(5.25)

Given this, we note that the condition ξi < 2 is automatically satisfied. If we collect all the

terms involving ξi in the Lagrangian (5.22), we get

Ti = 2 ln sec
(π

4
ξi

)

− (αi + γi)ξi.

Using (5.25) we can rewrite Ti as

Ti = ln

(

1 +

(
2

π
(αi + γi)

)2
)

− 4

π
(αi + γi) arctan

(
2

π
(αi + γi)

)

. (5.26)

Thus, the dual problem becomes a maximization problem involving only the dual variables, αi

and γi:

max
α,γ

R(α,γ) = −1

2

n∑

i=1

n∑

j=1

(yxiαi)(yxjαj)Cov [f(xi), f(xj)] +

n∑

i=1

αi

+
n∑

i=1

[

ln

(

1 +

(
2

π
(αi + γi)

)2
)

− 4

π
(αi + γi) arctan

(
2

π
(αi + γi)

)] (5.27)

subject to

αi ≥ 0 and γi ≥ 0,∀i. (5.28)

It is noted that R(α,γ) ≤ R(α, 0) for any α and γ satisfying (5.28). Hence the maximization

of (5.27) over (α,γ) satisfying (5.28) can be found by maximizing R(α, 0) over αi ≥ 0,∀i.

Therefore, the dual problem can be finally simplified as

min
α

1

2

n∑

i=1

n∑

j=1

(yxiαi)(yxjαj)Cov [f(xi), f(xj)]−
n∑

i=1

αi

+

n∑

i=1

[

4

π
αi arctan

(
2αi
π

)

− ln

(

1 +

(
2αi
π

)2
)] (5.29)

subject to αi ≥ 0,∀i.

The dual problem (5.29) is a convex programming problem. In the following, we study

the optimality conditions for the dual problem and adapt the popular SMO algorithm for the

solution. Let ηi ≥ 0 ∀i be the Lagrange multipliers corresponding to the inequalities in the dual
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problem (5.29). The KKT condition for the dual problem (5.29) requires

Fi + yxiηi = 0, ∀i, (5.30)

where Fi = −∑n
j=1 yxjαjCov [f(xi), f(xj)] + yxi − 4

π arctan
(
2yxiαi

π

)

. The constraints (5.30)

can be simplified by considering three cases for each i:

Case 1 : αi 6= 0 Fi = 0;

Case 2 : αi = 0 and yxi = −1 Fi ≥ 0;

Case 3 : αi = 0 and yxi = +1 Fi ≤ 0.

Any one pair could be classified into one of the three sets, which are defined as: I1 = {i : αi 6= 0},

I2 = {i : αi = 0 and yxi = −1}, and I3 = {i : αi = 0 and yxi = +1}. Let us define βup =

min{Fi : i ∈ Iup} and βlow = max{Fi : i ∈ I low}, where Iup = I1 ∪ I2 and I low = I1 ∪ I3.

Optimality holds if βup ≥ 0 and βlow ≤ 0. Thus, an approximate stopping condition is

βup ≥ −τ and βlow ≤ τ (5.31)

where τ is a positive tolerance parameter, usually 10−3. If (5.31) holds, we have reached a

τ -optimal solution, and then the MAP estimate on the values of the random variables f can be

determined from (5.23). We write (5.23) in column vector form as

fMP = Σ · υ (5.32)

where υ = [yx1
α1, yx2

α2, . . . , yxnαn]
T , that is consistent with the form (5.19). The training

samples (xi, yxi) associated with non-zero Lagrange multiplier αi are called support vectors

(SVs). The other samples associated with zero αi do not involve in the solution representation

and the following Bayesian computation. This property is usually referred to as sparseness, and

it reduces the computational cost significantly.

The popular SMO algorithm for classical SVC (Platt, 1999; Keerthi et al., 2001) can be easily

adapted to solve the optimization problem. The basic idea is to update the pair of Lagrange mul-

tipliers associated with βup and βlow towards the minimum iteratively till the stopping condition

(5.31) is satisfied. The difference is that the sub-optimization problem cannot be analytically

solved. In the sub-optimization problem, we choose Newton-Raphson formula to update the two

Lagrange multipliers (see Appendix G for more details). In numerical experiments, we find that

the adapted algorithm can efficiently find the solution at nearly the same computational cost
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as that required by the quadratic programming in classical SVC. Of course, other methods for

solving convex programming problems, such as dual subgradient schemes (Larsson et al., 1999)

or interior point methods (Vanderbei, 2001), can also be used for the solution.

5.3.3 Hyperparameter Inference

The optimal values of hyperparameters θ can be inferred by maximizing the posterior probability

P(θ|D), using P(θ|D) = P(D|θ)P(θ)/P(D). A prior distribution on the hyperparameters P(θ)

is required here. As we typically have little idea about the suitable values of θ before training

data are available, we assume a flat distribution for P(θ), i.e., P(θ) is greatly insensitive to the

values of θ. Therefore, P(D|θ), known as the evidence of θ, can be used to assign a preference to

alternative values of the hyperparameters θ (MacKay, 1992c). The evidence could be calculated

by an explicit formula after using a Laplacian approximation at fMP, and then hyperparameter

inference may be done by gradient-based optimization methods.

We can get the evidence by an integral over all f : P(D|θ) =
∫
P(D|θ,f)P(f |θ) df . Using

the definitions in (5.15) and (5.16), the evidence can also be written as

P(D|θ) = 1

Zf

∫

exp(−S(f)) df . (5.33)

The marginalization can be done analytically by considering the Taylor expansion of S(f) around

its minimum S(fMP), and retaining terms up to the second order. Since the first order derivative

with respect to f at the most probable point fMP is zero, S(f) can be written as

S(f) ≈ S(fMP) +
1

2
(f − fMP)

T ∂2S(f)

∂f∂fT

∣
∣
∣
∣
f=fMP

(f − fMP), (5.34)

where ∂2S(f)

∂f∂fT = Σ−1+Λ, and Λ is a diagonal matrix coming from the second order derivative of

trigonometric loss function (5.10). Introducing (5.34) into (5.33) yields

P(D|θ) = exp(−S(fMP)) · |I+Σ · Λ|− 1
2 ,

where I is the n × n identity matrix. Notice that only a sub-matrix of Σ plays a role in the

determinant |I+Σ ·Λ| due to the sparseness of the diagonal matrix Λ in which only the entries

associated with SVs are non-zero. We denote their sub-matrices as ΣM and ΛM respectively by

keeping their non-zero entries. The MAP estimate of f (5.32) on support vectors can also be

simplified as fMP = ΣM ·υM, where υM denotes the sub-vector of υ by keeping entries associated

with SVs. Because of these sparseness properties, the negative log of the evidence can then be
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simplified as in the following remark.

Remark 3 The negative logarithm of the evidence, which is the probability of data given hyper-

parameters P(D|θ), could be written as

− lnP(D|θ) = 1

2
υTM · ΣM · υM + 2

∑

m∈SVs
ln sec

(π

4
ξm

)

+
1

2
ln |I+ΣM · ΛM|, (5.35)

where I is the identity matrix with the size of SVs, m ∈ SVs denotes m belongs to the index set

of SVs and ξm = 1− yxm · fMP(xm), ∀m.

The evidence evaluation is a convenient yardstick for model selection. Note that the evidence

depends on the set of SVs. This set will change as the hyperparameters are varied. The evidence

is a smooth function of the hyperparameters within the regions of hyperparameter space where

the set of SVs remains unchanged.6 We assume that the set of SVs remains the same near the

minimum of the evidence. The minimizer of − lnP(D|θ) could then be inferred by some gradient-

based optimization methods. We usually collect {lnκ0, lnκ, lnκb} as the set of variables to tune,

and the derivatives of (5.35) with respect to these variables are required. We give an expression

of the derivatives of − lnP(D|θ) with respect to these variables in the following remark.

Remark 4 The derivatives of − lnP(D|θ) with respect to the variables can be generally given

as

∂ − lnP(D|θ)
∂ ln θ

=
θ

2
tr

(

(Λ−1
M +ΣM)−1 ∂ΣM

∂θ

)

− θ

2
υTM

∂ΣM

∂θ
υM

−θ
2

∑

m∈SVs
υmM
(
(Λ−1

M +ΣM)−1 · ΣM

)

mm

(

Λ−1
M (Λ−1

M +ΣM)−1 ∂ΣM

∂θ
υM

)m (5.36)

where θ ∈ {κ0, κ, κb}, the subscript mm denotes the mm-th entry of a matrix, the superscript m

denotes the m-th entry of a vector and m ∈ SVs denotes m belongs to the index set of SVs.7

In standard Gaussian processes for classification (Williams and Barber, 1998), the inversion of

the full matrix Σ has to be computed in an iterative mode. This is a heavy burden for large-scale

learning tasks. In our approach, only the inversion of the sub-matrix ΣM, corresponding to the

SVs, is required in the gradient evaluation (5.36). This sparseness in gradient evaluation makes

it possible for our approach to tackle reasonably large data sets with thousands of samples, as

the SVs usually form a small subset of the training samples.

6The set of points in hyperparameter space where the set of SVs changes is a set of measure zero. Therefore
gradient based optimization methods applied to find the minimum of − lnP(D|θ) typically do not face any
numerical difficulties caused by the lack of differentiability.

7Refer to Section E.4 for more details in the derivation.
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Remark 5 Automatic relevance determination (ARD) could be directly embedded into the co-

variance function (5.13) as follows

Cov[f(xi), f(xj)] = κ0exp

(

−1

2

d∑

ι=1

κι(x
ι
i − xιj)2

)

+ κb, (5.37)

where xι denotes the ι-th entry of the input vector x, and κι is the ARD parameter that deter-

mines the relevance of the ι-th input dimension to the target. The derivatives of − lnP(D|θ)

(5.35) with respect to the variables {lnκι} can be evaluated like we did in Remark 4.

5.4 Probabilistic Class Prediction

In this section, we present the probabilistic class prediction on test patterns (MacKay, 1992c;

Bishop, 1995). This ability to provide the class probability is one of the important advantages

of the probabilistic approach over the usual deterministic approach.

Let us take a test case x for which the class label yx is unknown. The random variable

f(x) and the vector f containing the n zero-mean random variables {f(xi)}ni=1 have the joint

multivariate Gaussian distribution,






f

f(x)




 ∼ N











0

0




 ,






Σ k

kT Cov[f(x), f(x)]











where k = [Cov[f(x), f(x1)], . . . , Cov[f(x), f(xn)] ]
T . The conditional distribution of f(x) given

f is a Gaussian:

P(f(x)|f ,D, θ) ∝ exp

(

−1

2

(f(x)− f TΣ−1k)2

Cov[f(x), f(x)]− kTΣ−1k

)

. (5.38)

To erase the uncertainty in f , we compute P(f(x)|D, θ) by an integral over f -space, which could

be written as

P(f(x)|D, θ) =
∫

P(f(x)|f ,D, θ)P(f |D, θ) df , (5.39)

where P(f |D, θ) is given as in (5.17). We make a Laplacian approximation on S(f) at fMP as

given by (5.34), and replace f TΣ−1k by its linear expansion around fMP, i.e.,

f TΣ−1k = fTMPΣ
−1k + kTΣ−1(f − fMP). (5.40)

By computing the integral over f (5.39) with the approximation (5.34) and the linear expansion
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(5.40), the distribution of P(f(x)|D, θ) could be evaluated as a Gaussian distribution

P(f(x)|D, θ) ∼ N (µt, σ
2
t ) =

1√
2πσt

exp

(

− (f(x)− µt)2
2σ2t

)

. (5.41)

where the mean µt = υTMkM, the variance σ2t = Cov[f(x), f(x)]−kTM(Λ−1
M +ΣM)−1kM,8 and kM

is the sub-vector of k by keeping the entries associated with SVs. The standard deviation σt of

the predictive distribution on x is also known as the error bar on the mean value µt. The second

term in the σ2t evaluation is a measure on the geometric distance between the test case x and

the set of SVs in feature space. In other words, the test case x tends to get a broad predictive

distribution if it lies far away from the SVs in feature space, vice versa.

Now we make probabilistic class prediction. Given the hyperparameters θ, the probability of

the binary class label yx for the testing case x can be evaluated as:

P(yx|D, θ) =
∫

P(yx|f(x),D, θ)P(f(x)|D, θ) df(x) ,

where P(yx|f(x),D, θ) is evaluated by trigonometric likelihood function (5.8) and P(f(x)|D, θ)

is given by (5.41). The one dimensional integral can be easily computed as:

P(yx|D, θ) =
1

2
erfc

(
1− yxµt√

2σt

)

+

∫ +1

−1

cos2
(π

4
(1− yxf(x))

)

N (µt, σ
2
t ) df(x) ,

(5.42)

where erfc(ν) = 2√
π

∫ +∞
ν

exp(−z2) dz. The definite integral from −1 to +1 could be calculated

by Romberg integration which may yield accurate results using much few function evaluations.

Note that P(yx = +1|D, θ) is a monotonically increasing function of µt and P(yx|D, θ) = 0.5

only when the predictive mean µt = 0. However P(yx|D, θ) also depends on the predictive

variance σ2t for any µt 6= 0. Specifically, P(yx = +1|D, θ) is a monotonically decreasing function

of the predictive variance σ2t when µt > 0, but a monotonically increasing function of σ2t when

µt < 0.

For θ in (5.42) we can simply choose the mode of the distribution P(D|θ), i.e., use P(yx|D, θML)

in making prediction where θML = argmax
θ
P(D|θ). This method is usually referred to as Type

II maximum likelihood. Note that this method is also equivalent to MAP estimate of ln θ with a

uniform prior distribution on ln θ that corresponds to a non-informative prior distribution P(θ)

(Berger, 1985).9

8The matrix inverse is already at hand after Bayesian inference with evidence gradient evaluations.
9In full Bayesian treatment, these hyperparameters θ must be integrated over θ space. Hybrid Monte Carlo

(HMC) methods (Duane et al., 1987; Neal, 1996) can be adapted here to efficiently approximate the integral.
However, we have not done it in the present work.
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Table 5.1: The optimal hyperparameters in Gaussian covariance function (5.13) of BTSVC after
hyperparameter inference, along with the model parameters of standard SVC with Gaussian
kernel after leave one out cross validation on the one-dimensional simulated data set. Evidence
is indexed by − lnP(D|θ) which is evaluated as in (5.35). The SVs denotes the number of SVs.
The C denotes the regularization parameter in SVC.

BTSVC SVC
Data set κ0 κ κb SVs Evidence C κ SVs

Original Case 7.485 0.194 0.565 9 5.46 7.943 0.159 6
Outlier Case 0.776 0.792 0.113 74 15.97 158.489 0.0158 8

5.5 Numerical Experiments

In numerical experiments, the initial values of the hyperparameters are chosen as κ = 1/d and

κb = 100.0, where d is the input dimension. The initial value of κ0 is chosen from {0.1, 1, 10, 100},

at which the gradient descent could start smoothly; usually it is 10. In Bayesian inference, we

use the routine L-BFGS-B (Byrd et al., 1995) as the gradient-based optimization package, and

start from the default initial states mentioned above to infer optimal hyperparameters. N (µ, σ2)

is used to denote a Gaussian distribution with the mean µ and the variance σ2. We begin by

showing the behavior of BTSVC on two simulated data sets. Then we report the training results

on the benchmark data sets used by Rätsch et al. (2001). The computer we used for these

numerical experiments is PIII 866 PC with 384MB RAM and the operating system is Windows

2000.10

5.5.1 Simulated Data 1

We generated 50 samples with positive label by randomly sampling in a Gaussian distribution

N (−2, 1) and 50 samples with negative label in N (+2, 1) as the original case. To study the effect

of outliers on BTSVC, we also created a second case where an extra sample with negative label at

−2 was inserted as an outlier. We tried BTSVC with the Gaussian covariance function (5.13) and

also SVC with Gaussian Kernel. For SVC, leave one out validation error was used to determine

optimal hyperparameters, which are the regularization parameter C and the κ in the Gaussian

kernel, exp
(
−κ

2 ‖xi − xj‖2
)
.11 The initial search for optimal hyperparameters was done on a 7×7

coarse grid linearly spaced in the region {(log10 C, log10 κ)|0 ≤ log10 C ≤ 3,−3 ≤ log10 κ ≤ 0},

followed by a fine search on a 9× 9 uniform grid linearly spaced by 0.1 in the (log10 C, log10 κ)

10The program we used in the experiments is available at http://guppy.mpe.nus.edu.sg/∼mpessk/btsvc/bisvm.zip,
and the simulated data can be accessed from http://guppy.mpe.nus.edu.sg/∼mpessk/btsvc/simu.zip.

11When two sets of hyperparameters yield same leave one out validation error, we prefer the set with smaller
number of SVs.
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Figure 5.3: The training results of BTSVC on the one-dimensional simulated data, together with
the results of SVC and GPC. In the graph (a), the distributions of each class are presented as
reference. In the graph (c), we compare the probabilistic class prediction of BTSVC (5.42) on
the original and outlier cases. In the graph (e), we present the results of GPC on the two cases.
In the graph (b) and (d), we plot the discriminant function of BTSVC, µt in (5.41), together
with that of classical SVC for the two cases. The dotted curves indicate the error bars provided
by BTSVC, i.e. µt ± σt. Leave one out cross validation was used to choose the optimal model
parameters for SVC. In the graph (f), we present the results of GPC on the outlier case as
reference. The dotted curves indicate the error bars provided by GPC.
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Table 5.2: Negative log-likelihood on test set (NLL) and the error rate on test set (ERR) for
optimal Bayes classifier (Optimal), Bayes classifier (Bayes), kernel logistic regression (Klogr),
probabilistic output of classical support vector classifier (SVC), standard Gaussian processes
for classification (GPC) and Bayesian trigonometric support vector classifier (BTSVC) on the
two-dimensional simulated data set.

Optimal Bayes Klogr SVC GPC BTSVC

NLL 2532.5 2559.2 2663.4 2703.5 2570.3 2665.7
ERR 0.0490 0.0495 0.0502 0.0507 0.0496 0.0496

space. For BTSVC, the initial value of κ0 was set at 0.1 and Bayesian inference was used to

find the optimal hyperparameters. Their final hyperparameter settings are recorded in Table

5.1. Comparing the results of BTSVC on the two cases, we find that the effect of the outlier

could be reduced by decreasing the hyperparameter κ0. Moreover, the increase on κ in Gaussian

kernel narrow the kernel shape that restricts the influence of the outlier to a local region. The

discriminant functions of BTSVC and SVC are compared in Figure 5.3(b) and 5.3(d) for the

two cases. In both cases, the region {x : f(x) > 0} is quite similar for both BTSVC and SVC.

In the outlier case of BTSVC, lots of the patterns around the outlier turn out to be SVs that

reduce the error bar drastically. In the probabilistic class prediction as given in Figure 5.3(c),

the regions {x : P(yx = +1|x) > 0.5} are almost same for both cases. We can also notice the

effect of the error bar on the predictive probability. Note that, among all training samples of

class −1, the outlier at −2 gets the lowest value for class −1 probability; this property can help

to identify the outlier.

5.5.2 Simulated Data 2

We compare the negative log-likelihood and test error with other well-known probabilistic meth-

ods on a two dimensional simulated data set. The samples with positive label were generated by

randomly sampling in a two-dimensional Gaussian distribution N
(
(−2, 0),diag{1, 2}

)
, while the

samples with negative label were generated by sampling in N
(
(+2, 0),diag{2, 1}

)
. The data set

is composed of 1000 training samples and 20002 test samples. The negative log-likelihood on test

set and test error rate are recorded in Table 5.2, together with the results of other probabilistic

approaches that includes optimal Bayes classifier (Duda et al., 2001) using the true generic model,

Bayes classifier using the generic model estimated from training data, kernel logistic regression

(Keerthi et al., 2002), probabilistic output of classical SVC (Platt, 2000), standard Gaussian pro-

cesses for classification (GPC) (Williams and Barber, 1998).12 BTSVC and GPC yields quite

12The results of kernel logistic regression and probabilistic output of standard SVC are cited from Keerthi et al.
(2002), where 5-fold cross validation was used for model selection.
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similar test error as we expect since both use the Laplacian approximation in Bayesian approach

and the difference only lies in the loss function used. Compared with kernel logistic regression,

BTSVC yields lower error rate, but quite similar likelihood evaluation. A visual comparison with

Bayes classifier and GPC is given in Figure 5.4. The predictive likelihood of BTSVC is slightly

conservative due to the broad error bar in the regions away from the SVs.

In the next experiment, we compared the generalization performance and the computational

cost of standard SVC and BTSVC on different size of the two dimensional simulated data. The

size of training data set ranges from 10 to 1000. The set of 20002 test samples is used as the

common test data for all training data sets. At different size, we repeat 20 times to reduce the

randomness in training data generation. If the training data size is less than 100, leave one out

validation error is used to determine optimal hyperparameters for SVC, otherwise 10-fold cross

validation is used. The searching method we used is same as that described in Section 5.5.1, and

the test error was obtained using the optimal hyperparameters. The comparison of generalization

performance and the computational cost is given in Figure 5.5. BTSVC and GPC yield better

and more stable generalization performance than SVC, especially when the training data size

is small. Clearly, when the number of training samples is small, the Bayesian approaches are

very much superior. From the scaling result in the three lower graphs of Figure 5.5, we find

that each evaluation in GPC consumes more CPU time than BTSVC, and BTSVC consumes

slightly more CPU time than SVC used for quadratic programming. However SVC with cross

validation requires hundreds of evaluations (1300 times in the case of 10-fold cross validation)

while BTSVC and GPC usually require 20 times only. The evaluation time of BTSVC and GPC

include the cost for the gradient. For large data sets with high noise level, we cannot obtain

desirable sparseness in the BTSVC solution due to the effect from outliers. As the training data

size increases, the evaluation for the gradient could become a very expensive step. However, for

relatively large data sets with moderate noise level, it is suitable for BTSVC to get sparseness

and then fast training speed.

5.5.3 Some Benchmark Data

We also carried out Bayesian inference with Gaussian covariance function (5.13) on the bench-

mark data sets used by Rätsch et al. (2001).13 We report the training results of BTSVC on

these data sets in Table 5.3. The optimal hyperparameters used throughout the training on

13These 100-partition benchmark data sets (only 20 partitions available for Image and Splice)
and related experimental results reported by Rätsch et al. (2001) can be accessed from
http://www.first.gmd.de/∼raetsch/data/benchmarks.htm.
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Figure 5.4: In the upper graph, the contour of the probabilistic output of Bayes classifier on the
two-dimensional simulated data set is presented. In the middle graph, the contour of probabilistic
output of BTSVC is presented. In the lower graph, the contour of probabilistic output of
standard Gaussian processes for classification is presented. The contours are indexed by P (yx =
+1|x,D, θ).
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Figure 5.5: SVC, BTSVC and GPC on the two-dimensional simulated data sets at different size
of training data. The test error rate at different size of training data are given in the three upper
graphs separately. BTSVC and GPC used Bayesian inference with Laplacian approximation
to tune hyperparameters while cross validation was used for SVC to choose optimal hyperpa-
rameters. In the left lower graph, the computational cost (CPU time in seconds) of SVC for
training once on one fold is given. In the middle and right lower graph, we present the CPU
time in seconds consumed by BTSVC and GPC for one evaluation on evidence and its gradient
(including the convex programming) separately. The position of cross denotes the average value
over 20 tries, and the vertical line indicates its standard deviation.
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all partitions of that data set were determined by the average results of Bayesian inference on

the first five partitions. We choose optimal hyperparameters in this way for a fair comparison

with the results of SVC reported by Rätsch et al. (2001). A paired t-test is carried out to

measure how likely it would be to obtain the observed t-statistic under the null hypothesis that

there is no difference on test error between BTSVC and SVC. The t-statistic is evaluated by

t = ē
(∑n

i=1(ei−ē)
2

n(n−1)

)−1/2

where ē = 1
n

∑n
i=1 ei and ei denotes the test error difference between

the two methods on the i-th partition. The p-value, i.e. the probability of observing the given

result by chance given that the null hypothesis is true, is recorded in the last column of Table

5.3. A small p-value implies the difference is significant. BTSVC and SVC tie on the overall

performance. Thus, the generalization capability of our Bayesian approach is very competitive.

Table 5.3: Training results of BTSVC with Gaussian covariance function (5.13) on the 100-
partition benchmark data sets. d denotes the input dimension, n is the size of training data and
m is the size of test data. κ0, κ and κb denotes the average result of BTSVC on the first five
partitions. RATE denotes the test error rate in percent averaged over all partitions of that data
set and the variance is also computed; and for comparison purpose, we cite the test error rate
of classical SVC with Gaussian kernel reported by Rätsch et al. (2001) in the column SVC, and
then compute the p-values for the paired t−test on error rate difference. We use the bold face
to indicate the cases in which the p-value satisfies the threshold 0.01.

Data set d n m κ0 κ κb RATE SVC p-value

Banana 2 400 4900 2.308 1.425 0.349 10.39±0.50 11.53±0.66 7.69×10−30

Breast 9 200 77 0.172 0.115 0.00343 25.70±4.46 26.04±4.74 0.214
Diabetis 8 468 300 0.386 0.0606 15.638 23.13±1.75 23.53±1.73 2.95×10−4

Flare 9 666 400 0.802 0.316 0.0969 34.26±1.75 32.43±1.82 1.01×10−17

German 20 700 300 0.339 0.0625 11.362 23.37±2.28 23.61±2.07 0.0583
Heart 13 170 100 3.787 0.00731 9.222 16.33±2.78 15.95±3.26 0.0404
Image 18 1300 1010 87.953 0.0428 95.847 3.50±0.62 2.96±0.60 9.74×10−5

Ringnorm 20 400 7000 0.978 0.0502 102.126 1.99±0.26 1.66±0.12 2.75×10−22

Splice 60 1000 2175 3.591 0.00601 121.208 12.36±0.72 10.88±0.66 2.54×10−11

Thyroid 5 140 75 66.920 0.132 96.360 3.95±2.07 4.80±2.19 3.41×10−8

Titanic 3 150 2051 0.391 0.966 44.536 22.51±1.01 22.42±1.02 0.280
Twonorm 20 400 7000 18.658 0.00426 94.741 2.90±0.27 2.96±0.23 3.26×10−3

Waveform 21 400 4600 1.310 0.0393 111.23 9.94±0.42 9.88±0.43 0.196

We also carried out the training results of standard Gaussian processes for classification

(GPC) (Williams and Barber, 1998),14 to compare the generalization capability and compu-

tational cost with BTSVC, which can be taken as a comparison between logistic loss function

and trigonometric loss function. The optimal hyperparameters were determined by Bayesian

inference, which was carried out independently on every partition. Their results are recorded in

Table 5.4. The overall generalization performance of BTSVC closely matches GPC. Notice that

14The source code for GPC we used is available at http://guppy.mpe.nus.edu.sg/∼mpessk/btsvc/gpc.zip, in
which convex programming is used to find the MAP estimate on function values and Type II maximum likelihood
with Laplacian approximation is used to tune hyperparameters.

122



Table 5.4: Training results of BTSVC and GPC with Gaussian covariance function (5.13) on
the 100-partition benchmark data sets. Splice∗ denotes training on the reduced Splice data sets,
and SVs denotes the number of the SVs of BTSVC. RATE denotes the test error rate of BTSVC
in percent averaged over all partitions of that data set and the variance is also computed, and
GPC-RATE is that of GPC. TIME denotes the average CPU time in seconds consumed by
BTSVC for training on one partition, and GPC-TIME is that of GPC. The p-value is for the
paired t−test on error rate. We use the bold face to indicate the cases in which the p-value
satisfies the threshold 0.01.

Data set SVs TIME GPC-TIME RATE GPC-RATE p-value

Banana 252.9±27.3 9.34±2.34 18.04±6.32 10.44±0.48 10.47±0.46 0.216
Breast 199.9±0.4 3.21±0.68 1.53±0.32 26.53±4.60 26.79±4.50 0.200
Diabetis 454.0±7.0 27.24±8.93 12.67±1.17 23.21±1.77 23.71±2.08 3.75×10−7

Flare 646.5±14.4 71.61±21.05 47.87±14.92 34.39±1.81 34.22±1.81 0.0506
German 682.7±13.8 95.71±34.76 57.78±13.93 23.48±2.11 23.81±2.17 0.0115
Heart 149.1±8.6 1.77±0.58 2.39±0.65 16.34±2.90 17.19±3.23 1.22×10−4

Image 357.1±32.3 96.05±21.43 997.78±158.56 3.58±0.67 3.39±0.81 0.299
Ringnorm 188.8±9.0 2.88±1.19 18.79±9.94 1.99±0.26 1.61±0.13 7.36×10−39

Splice 713.8±21.4 261.43±60.39 519.52±65.21 12.35±0.75 11.30±0.77 3.23×10−11

Splice∗ 511.4±52.2 52.81±23.49 271.38±59.62 5.85±0.53 5.59±0.46 1.16×10−3

Thyroid 30.6±8.3 0.28±0.13 1.56±0.32 4.32±2.09 4.80±1.94 4.41×10−4

Titanic 149.8±1.5 1.32±0.38 0.90±0.22 22.73±1.43 22.50±1.54 5.12×10−3

Twonorm 96.0±18.3 2.16±0.95 23.71±6.93 2.85±0.29 2.89±0.27 0.016
Waveform 190.7±22.3 4.38±1.77 30.92±6.24 10.11±0.45 10.06±0.47 0.0888

Table 5.5: Training results of BTSVC and GPC with ARD Gaussian kernel (5.37) on the Image
and Splice 20-partition data sets. Splice∗ denotes training on the reduced Splice data sets, and
SVs denotes the number of the SVs. RATE denotes the test error rate of BTSVC in percent
averaged over all partitions of that data set and the variance is also computed, and GPC-RATE is
that of GPC. TIME denotes the average CPU time in seconds consumed by BTSVC for training
on one partition, and GPC-TIME is that of GPC. The p-value is for the paired t−test on error
rate.

Data set SVs TIME GPC-TIME RATE GPC-RATE p-value

Image 379.5±53.7 133.71±86.89 1561.64±351.92 2.59±0.54 2.24±0.58 0.0287
Splice 598.1±74.4 811.89±574.48 1238.22±318.96 5.29±0.67 5.07±0.79 0.217
Splice∗ 491.6±37.3 48.43±21.32 498.04±247.84 5.71±0.59 5.59±0.55 0.303
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Figure 5.6: The contour graphs of evidence and testing error rate in hyperparameter space on the
first fold of Banana and Waveform data sets. The horizontal axis indicates κ0 and the vertical
axis indicates κ. κb is fixed at 100. The evidence contour is indexed by − lnP(D|θ).

BTSVC requires quite less computational cost on large data sets.

The correlation between evidence and generalization performance (measured by test error

rate) in BTSVC can be seen from their contour graphs in hyperparameter space on the first

partition of Banana and Waveform data sets in Figure 5.6.

For the next experiment, we choose the Image and Splice data, which have many input vari-

ables, to carry out feature selection with ARD Gaussian covariance function (5.37). The inputs

{xi} in the training data were normalized to zero mean and unit variance dimension-wise and the

initial values for all ARD parameters were chosen as 1/d where d is the input dimension. In Table

5.5, BTSVC using ARD Gaussian covariance function improves generalization performance from

12.35% to 5.29% on the Splice data sets. From the optimal ARD parameters, we find that only

the 28th − 34th input dimensions are significantly relevant in the whole 60 dimensions. Thus,

we create reduced Splice data sets by keeping the 7 relevant dimensions only. On the reduced

data sets, both Gaussian (in Table 5.4) and ARD Gaussian kernel can still yields competitive
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performance. Based on these numerical experiments, we find that both BTSVC and GPC have

the capacity to determine the relevant inputs and hence improve generalization. BTSVC has

the additional advantage that it requires less overhead than GPC on large data sets.

5.6 Summary

In this chapter, we proposed a Bayesian support vector classifier by introducing trigonometric

likelihood function. In the probabilistic framework of stationary Gaussian processes, various

computational procedures were provided for the MAP estimate and the evidence of the hyper-

parameters. Model adaptation and ARD feature selection were implemented intrinsically in

hyperparameter inference. Furthermore, the sparseness reduces the computational cost signif-

icantly. Another benefit is the availability of class probabilities in making predictions. The

results in numerical experiments verified that the generalization capability is excellent and that

it is possible to tackle reasonably large data sets with moderate noise level using this approach.
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Chapter 6

Conclusion

In this thesis, we developed Bayesian designs for support vector machines. In the probabilistic

framework of stationary Gaussian processes along with novel loss functions, we integrated sup-

port vector methods with Gaussian processes to keep the advantages of both. Various computa-

tional procedures were provided for the MAP estimate and the evidence of the hyperparameters.

Model adaptation and ARD feature selection were implemented intrinsically in hyperparameter

inference. Another benefit is the availability of probabilistic evaluation in making predictions.

Furthermore, the sparseness in the evidence evaluation and probabilistic prediction reduces the

computational cost significantly that helps us to tackle reasonably large data sets. The results

in numerical experiments indicated the usefulness of our approaches. Overall, the contributions

of this work are two-fold: for classical support vector machines, we follow the standard Bayesian

approach using the new loss function to implement model selection, by which it is convenient to

tune hundreds of hyperparameters automatically; for standard Gaussian processes, we introduce

sparseness into Bayesian computation that helps to reduce the computational burden and makes

it possible to tackle large data sets of several thousands samples.

Many opportunities for future work are available within this Bayesian framework. Approx-

imation methods other than Laplace’s method for evidence evaluation are well worth extensive

exploration, such as variational bounding (Seeger, 1999), mean-field statistical physics (Opper

and Winther, 2000) and expectation propagation (Minka, 2001). Learning curves in Gaussian

processes (Williams and Vivarelli, 2000; Opper and Vivarelli, 1999; Sollich, 1999) can be ex-

tended into our approaches to shed light on the generalization bounds. It is also straightforward

to implement information-based active data selection (MacKay, 1992b) that might be helpful

for large-scale learning tasks. The on-line mode of the Gaussian process learning serves as a

126



powerful filter. It would be quite desirable to propose some approximation propagations on the

evidence that make the on-line hyperparameter adaptation possible.
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Appendix A

Efficiency of Soft Insensitive Loss

Function

In classical statistics (Bickel and Doksum, 1977), there exist a Cramér and Rao lower bound for

an unbiased estimator. In this section, we employ the Cramér and Rao lower bound to discuss

the efficiency of the soft insensitive loss function (SILF) with the hope that it will provide us

with some useful insights into complex cases in applications.

The noise density function corresponding to the SILF as in (2.28) could be stated as

PS(y|µ) =
1

ZS







1 if |y − µ| < (1− β)ε

exp

(

−C · |y − µ|
2

4βε

)

if (1− β)ε ≤ |y − µ| ≤ (1 + β)ε

exp
(
− C · (|y − µ| − ε)

)
if |y − µ| > (1 + β)ε

(A.1)

where ZS = 2(1− β)ε+ 2
√

πβε
C · erf

(√
Cβε

)
+ 2

C exp
(
− Cβε

)
, ε > 0 and 0 < β ≤ 1.0.

Now, we consider the asymptotic estimation of a local parameter µ setting in the noise

model PS(y|µ). The estimate µ̂ is defined as µ̂ = argmin
µ
− lnPS(y|µ). If lnPS(y|µ) is a twice

differentiable function in µ, then asymptotically, for increasing sample size to n → ∞, the

variance V arµ
(
− lnPS(y|µ)

)
is given by, see Theorem 3.13 in Schölkopf and Smola (2001),

V arµ
(
− lnPS(y|µ)

)
=

∫ (
∂ lnPS(y|µ)

∂µ

)2

dF(y|µ)
(∫

∂2 lnPS(y|µ)
∂µ2

dF(y|µ)
)2 (A.2)
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and the Fisher information number is well-known as

I(µ) =

∫ (
∂ lnP(y|µ)

∂µ

)2

dF(y|µ). (A.3)

The statistical efficiency e of an estimator µ̂ is defined as

e =
1

I(µ) · V arµ
(
− lnPS(y|µ)

) (A.4)

Here we consider the scalar case only for simplicity. The extension to matrix is straightforward.

Following the treatment on ε-insensitive loss function in Section 3.4.2 of Schölkopf and Smola

(2001), we discuss the efficiency of the estimator argmin
µ
− lnPS(y|µ) on various distributions

F(y|µ). For this purpose, we compute the quantities V arµ
(
− lnPS(y|µ)

)
for the noise model

(A.1) as given in (A.2). We suppose that n samples of y independently drawn from the distri-

bution F(y|µ) are given. The Fisher information number in samples of size n becomes n I(µ).

The numerator in the right hand of (A.2) could be explicitly written as:

∫ (
∂ lnPS(y|µ)

∂µ

)2

dF(y|µ) = nC2

(
∫ µ+(1+β)ε

µ+(1−β)ε

(
1

2βε

)2

(y − µ)2 dF(y|µ)

+

∫ µ−(1−β)ε

µ−(1+β)ε

(
1

2βε

)2

(y − µ)2 dF(y|µ) +
∫ +∞

(1+β)ε+µ

dF(y|µ) +
∫ −(1+β)ε+µ

−∞
dF(y|µ)

)

;

(A.5)

and the term in the dominator could be written as:

∫
∂2 lnPS(y|µ)

∂µ2
dF(y|µ) = n

∫ µ−(1−β)ε

µ−(1+β)ε

C

2βε
dF(y|µ) + n

∫ µ+(1+β)ε

µ+(1−β)ε

C

2βε
dF(y|µ). (A.6)

We may check what happened if we use the estimator for different types of noise distribution.

Since Gaussian distribution is widely used in practice, we first assume that y is normally dis-

tributed with µ as mean and variance σ2, i.e., F(y|µ) =

∫ y

−∞

1√
2πσ

exp

(

− (z − µ)2
2σ2

)

dz. It is

easy to get that the Fisher information number is
n

σ2
in the n samples form (A.3). Introducing

the Gaussian distribution into (A.5) and (A.6), the efficiency could be evaluated

e =
σ2
(

erf( (1+β)ε√
2σ

)− erf( (1−β)ε√
2σ

)
)2

(2βε)2(1− erf( (1+β)ε)√
2σ

)) + 2
∫ (1+β)ε

(1−β)ε
1√
2πσ

t2 exp(− t2

2σ2 ) dt
(A.7)

We study the relationship between the efficiency e and the parameters (β and ε) in the

estimator. The variance σ2 of the Gaussian distribution is set at 0.0025. We choose β as a

variable and set ε at some fixed values. The graph of the efficiency e as a function of β is
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Figure A.1: Graphs of the efficiency as a function of β at different ε. The variance σ2 of Gaussian
noise distribution is set at 0.0025.
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Figure A.2: Graphs of the efficiency as a function of ε at different β. The variance σ2 of Gaussian
noise distribution is set at 0.0025.
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presented in Figure A.1. Then, we choose ε as a variable and set β at some fixed values. The

graph of the efficiency e as a function of ε is presented in Figure A.2.

From Figure A.1, we find that the efficiency e is a monotonically increasing function of β,

i.e., get maximal at β = 1 for any fixed values of ε. In other words, the Huber’s loss function is

best for Gaussian noise if we employ the noise model (A.1) as an estimator. From Figure A.2,

we find that there is a value of ε that makes the efficiency e maximal for any fixed β. When β

is very small, the maximal efficiency is got at Laplacian loss function, i.e., ε→ 0. In the special

case of β = 1, we find that the efficiency e approaches 1 as ε increases. This also verifies that

the Huber’s loss function with some large value of ε produces the same effect as the Gaussian

loss function for all practical purpose.

Now we assume that y is distributed as P(y|µ) = λ

2
exp(−λ|y−µ|), i.e., Laplacian distribution

with mean µ as the next exercise. It is easy to get that the Fisher information number is nλ2

in the n samples form (A.3). Introducing the Laplacian distribution into (A.2), the variance

V arµ
(
− lnPS(y|µ)

)
could be evaluated as

e =

(
exp(−(1− β)ελ)− exp(−(1 + β)ελ)

)2

(2βελ)2 exp(−(1 + β)ελ) + λ3
∫ (1+β)ε

(1−β)ε
t2 exp(−λt) dt

(A.8)

The parameter λ in Laplacian distribution is set at 5. We choose β as a variable and set ε

at some fixed values. The graph of the efficiency e as a function of β is presented in Figure A.3.

We observe that the efficiency always reaches the maximum at β = 1 for any ε. Then, we choose

ε as a variable and set β at some fixed values. The graph of the efficiency e as a function of ε is

presented in Figure A.4. We see that ε = 0 makes the efficiency maximal for different β, which

is consistent with the underlying Laplacian noise distribution.

The relationship between β and the efficiency e also gives us a hint that it is better not to

regard the parameter β as free parameter in model adaptation, otherwise the noise model (A.1)

is very likely to approach the Huber’s loss function as β → 1 that loses the desirable sparseness

we pursue.
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Figure A.3: Graphs of the efficiency as a function of β at different ε. The parameter λ of
Laplacian noise distribution is set at 5.0.
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Figure A.4: Graphs of the efficiency as a function of ε at different β. The parameter λ of
Laplacian noise distribution is set at 5.0.
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Appendix B

A General Formulation of

Support Vector Machines

As computationally powerful tools for supervised learning, support vector machines (SVMs) are

widely used in classification and regression problems (Vapnik, 1995). Let us suppose that a data

set D = {(xi, yi)|i = 1, . . . , n} is given for training, where the input vector xi ∈ Rd and yi is the

target value. SVMs maps these input vectors into a high dimensional reproducing kernel Hilbert

space (RKHS), where a linear machine is constructed by minimizing a regularized functional.

The linear machine takes the form of f(x) = 〈w · φ(x)〉+ b, where φ(·) is the mapping function,

b is known as the bias, and the dot product 〈φ(x) ·φ(x′)〉 is also the reproducing kernel K(x, x′)

in the RKHS. The regularized functional is usually defined as

R(w, b) = C ·
n∑

i=1

`
(
yi, f(xi)

)
+

1

2
‖w‖2 (B.1)

where the regularization parameter is C which is greater than zero, the norm of w in the

RKHS is the stabilizer and
∑n

i=1 `
(
yi, f(xi)

)
is the empirical loss term. In standard SVMs,

the regularized functional (B.1) can be minimized by solving a convex quadratic programming

optimization problem that guarantees a unique global minimum solution.

Various loss functions can be used in SVMs that results in quadratic programming. In SVMs

for classification (Burges, 1998), hard margin, L1 soft margin and L2 soft margin loss functions

are widely used. For regression, Smola and Schölkopf (1998) have discussed a lot of common

loss functions, such as Laplacian, Huber’s, ε-insensitive and Gaussian etc.

In the following, we generalize these popular loss functions and put forward new loss functions
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for classification and regression respectively. The two new loss functions are C1 smooth that

is desirable in probabilistic approaches. By introducing these loss functions in the regularized

functional of classical SVMs in place of popular loss functions, we derive a general formulation

for SVMs (Chu et al., 2002a). As a byproduct, the general formulation also provides a framework

that facilitate the algorithm implementation.

B.1 Support Vector Classifier

In classical SVMs for binary classification (SVC) in which the target values yi ∈ {−1,+1}, the

hard margin loss function is defined as

`h(yx · fx) =







0 if yx · fx ≥ +1;

+∞ otherwise.
(B.2)

The hard margin loss function is suitable for noise-free data sets. For other general cases, a soft

margin loss function is popularly used in classical SVC, which is defined as

`ρ(yx · fx) =







0 if yx · fx ≥ +1;

1

ρ
(1− yx · fx)ρ otherwise,

(B.3)

where ρ is a positive integer. The minimization of the regularized functional (B.1) with the soft

margin (B.3) as loss function leads to a convex programming problem for any positive integer ρ;

for L1 (ρ = 1) or L2 (ρ = 2) soft margin, it is also a convex quadratic programming problem. We

generalize the L1 and L2 soft margin loss functions as the Le soft margin loss function, which is

defined as

`e(yx · fx) =







0 if yx · fx > +1;

(1− yx · fx)2
4ε

if + 1 ≥ yx · fx ≥ +1− 2ε;

(1− yx · fx)− ε otherwise,

(B.4)

where the parameter ε > 0.

From their definitions and Figure B.1, we find that the Le soft margin approaches to L1

soft margin as the parameter ε → 0. Let ε be fixed at some large value, the Le soft margin

approaches the L2 soft margin for all practical purposes.

The minimization problem in SVC (B.1) with the Le soft margin loss function can be

rewritten as the following equivalent optimization problem by introducing slack variables ξi ≥

140



−3  −2.5 −2  −1.5 1−2ε  −0.5 0   0.5 1   1.5 2   

0

1

2

3

4

5

6

7

8
Soft Margin Loss Functions in SVC

y
x
 ⋅ f

x

L2 soft margin 

L1 soft margin 

Le soft margin 

Figure B.1: Graphs of soft margin loss functions, where ε is set at 1.

1− yi ·
(
〈w · φ(xi)〉+ b

)
∀i, which we refer to as the primal problem

min
w,b,ξ

R(w, b, ξ) = C ·
n∑

i=1

ψe
(
ξi
)
+

1

2
‖w‖2 (B.5)

subject to 





yi ·
(
〈w · φ(xi)〉+ b

)
≥ 1− ξi;

ξi ≥ 0, ∀i
(B.6)

where

ψe(ξ) =







ξ2

4ε
if ξ ∈ [0, 2ε];

ξ − ε if ξ ∈ (2ε,+∞).
(B.7)

Standard Lagrangian techniques (Fletcher, 1987) are used to derive the dual problem. Let

αi ≥ 0 and γi ≥ 0 be the corresponding Lagrange multipliers for the inequalities in the primal

problem (B.6), and then the Lagrangian for the primal problem would be:

L(w, b, ξ) = C ·
n∑

i=1

ψe
(
ξi
)
+

1

2
‖w‖2 −

n∑

i=1

αi ·
(
yi · (〈w · φ(xi)〉+ b)− 1 + ξi

)
−

n∑

i=1

γi · ξi (B.8)
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The KKT conditions for the primal problem (B.5) require

w =

n∑

i=1

yi · αi · φ(xi) (B.9)

n∑

i=1

yi · αi = 0 (B.10)

C · ∂ψe(ξi)
∂ξi

= αi + γi ∀i (B.11)

Based on the definition of ψe(·) given in (B.7) and the constraint condition (B.11), an equality

constraint on Lagrange multipliers can be explicitly written as

C · ξi
2ε

= αi + γi if 0 ≤ ξi ≤ 2ε and C = αi + γi if ξi > 2ε ∀i (B.12)

If we collect all terms involving ξi in the Lagrangian (B.8), and let Ti = Cψe(ξi) − (αi + γi)ξi.

Using (B.7) and (B.12) we have

Ti =







− ε

C
(αi + γi)

2 if ξ ∈ [0, 2ε];

−Cε if ξ ∈ (2ε,+∞).
(B.13)

Thus the ξi can be eliminated if we set Ti = −
ε

C
(αi+γi)

2 and introduce the additional constraints

0 ≤ αi + γi ≤ C. Then the dual problem can be stated as a maximization problem in terms of

the positive dual variables αi and γi:

max
α,γ

R(α,γ) = −1

2

n∑

i=1

n∑

i=1

αi · yi · αj · yj · 〈φ(xi) · φ(xj)〉+
n∑

i=1

αi −
ε

C

n∑

i=1

(αi + γi)
2 (B.14)

subject to

αi ≥ 0, γi ≥ 0, 0 ≤ αi + γi ≤ C,∀i and
n∑

i=1

αi · yi = 0. (B.15)

It is noted that R(α,γ) ≤ R(α, 0) for any α and γ satisfying (B.15). Hence the maximization

of (B.14) over (α,γ) can be found as maximizing R(α, 0) over 0 ≤ αi ≤ C and
∑n

i=1 αi · yi = 0.

Therefore, the dual problem can be finally simplified as

min
α
R(α) =

1

2

n∑

i=1

n∑

i=1

αi · yi · αj · yj ·K(xi, xj)−
n∑

i=1

αi +
ε

C

n∑

i=1

α2i (B.16)

subject to 0 ≤ αi ≤ C,∀i and ∑n
i=1 αi · yi = 0. With the equality (B.9), the linear classifier

can be obtained from the solution of (B.16) as f(x) =
∑n

i=1 αi · yi ·K(xi, x) + b where b can be
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easily obtained as a byproduct in the solution. In most of the cases, only some of the Lagrange

multipliers, αi, differ from zero at the optimal solution. They define the support vectors (SVs) of

the problem. More exactly, the training samples (xi, yi) associated with αi satisfying 0 < αi < C

are called off-bound SVs, the samples with αi = C are called on-bound SVs, and the samples

with αi = 0 are called non-SVs.

The above formulation (B.16) is a general framework for classical SVC. There are three

special cases of the formulation:

1. L1 soft margin: the formulation is just the SVC using L1 soft margin if we set ε = 0.

2. Hard margin: when we set ε = 0 and keep C large enough to prevent any αi from reaching

the upper bound C, the solution of this formulation is identical to the standard SVC with

hard margin loss function.

3. L2 soft margin: when we set
C

2ε
equal to the regularization parameter in SVC with L2

soft margin, and keep C large enough to prevent any αi from reaching the upper bound at

the optimal solution, the solution will be same as that of the standard SVC with L2 soft

margin loss function.

In practice, such as on unbalanced data sets, we would like to use different regularization

parameter C+ and C− for the samples with positive label and negative label separately.1 As

an extremely general case, we can use different regularization parameter Ci for every sample

(xi, yi). It is straightforward to obtain the general dual problem as

min
α
R(α) =

1

2

n∑

i=1

n∑

i=1

αi · yi · αj · yj ·K(xi, xj)−
n∑

i=1

αi +
ε

Ci

n∑

i=1

α2i (B.17)

subject to 0 ≤ αi ≤ Ci,∀i and
∑n

i=1 αi · yi = 0. Obviously, the dual problems (B.17) is

a constrained convex quadratic programming problem. Denoting α̂ = [y1α1, y2α2, . . . , ynαn],

P = [−y1,−y2, . . . ,−yn]T and Q = K +Λ where Λ is a n × n diagonal matrix with Λii =
2ε
Ci

and K is the kernel matrix with Kij = K(xi, xj), (B.17) can be written in a general form as

min
α̂

1

2
α̂TQα̂+ P T α̂ (B.18)

subject to li ≤ α̂i ≤ ui, ∀i and
∑n

i=1 α̂i = 0 where li = 0, ui = Ci when yi = +1 and li = −Ci,

ui = 0 when yi = −1. As to the algorithm design for the solution, matrix-based quadratic

1The ratio between C+ and C− is usually fixed at
C+

C−
=

N−

N+
, where N+ is the number of samples with

positive label and N− is the number of samples with negative label.
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programming techniques that use the “chunking” idea can be employed here. Popular SMO

algorithms (Platt, 1999; Keerthi et al., 2001) could be easily adapted for the solution. For a

program design and source code, refer to Chu et al. (2001a).

B.2 Support Vector Regression

Smola (1996) explained a lot of loss functions for support vector regression (SVR) that leads to

a general optimization problem. There are four popular loss functions widely used for regression

problems. They are

1. Laplacian loss function: `l(δ) = |δ|.

2. Huber’s loss function: `h(δ) =







δ2

4ε
if |δ| ≤ 2ε

|δ| − ε otherwise.

3. ε-insensitive loss function: `ε(δ) =







0 if |δ| ≤ ε

|δ| − ε otherwise.

4. Gaussian loss function: `g(δ) = δ2.

Here, we introduce another loss function to generalize these popular loss functions. The loss

function known as soft insensitive loss function (SILF) is defined as:

`ε,β(δ) =







|δ| − ε if |δ| > (1 + β)ε

(|δ| − (1− β)ε)2
4βε

if (1 + β)ε ≥ |δ| ≥ (1− β)ε

0 if |δ| < (1− β)ε

(B.19)

where 0 < β ≤ 1 and ε > 0. There is a profile of SILF as shown in Figure 2.4. The properties

of SILF are entirely controlled by two parameters, β and ε. For a fixed ε, SILF approaches

the ε-ILF as β → 0; on the other hand, as β → 1, it approaches the Huber’s loss function. In

addition, SILF becomes the Laplacian loss function as ε → 0. Hold ε fixed at some large value

and let β → 1, the SILF approach the quadratic loss function for all practical purposes. The

application of SILF in Bayesian SVR has been discussed in Chu et al. (2001b).

We introduce SILF into the regularized functional (B.1) that will leads to a quadratic pro-

gramming problem that could work as a general framework. As usual, two slack variables ξi and

ξ∗i are introduced as ξi ≥ yi−〈w·φ(xi)〉−b−(1−β)ε and ξ∗i ≥ 〈w·φ(xi)〉+b−yi−(1−β)ε ∀i. The

minimization of the regularized functional (B.1) with SILF as loss function could be rewritten
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as the following equivalent optimization problem, which is usually called primal problem:

min
w,b,ξ,ξ∗

R(w, b, ξ, ξ∗) = C

n∑

i=1

(
ψs(ξi) + ψs(ξ

∗
i )
)
+

1

2
‖w‖2 (B.20)

subject to 





yi − 〈w · φ(xi)〉 − b ≤ (1− β)ε+ ξi;

〈w · φ(xi)〉+ b− yi ≤ (1− β)ε+ ξ∗i ;

ξi ≥ 0; ξ∗i ≥ 0 ∀i

(B.21)

where

ψs(ξ) =







ξ2

4βε
if ξ ∈ [0, 2βε];

ξ − βε if ξ ∈ (2βε,+∞).

(B.22)

Let αi ≥ 0, α∗i ≥ 0, γi ≥ 0 and γ∗i ≥ 0 ∀i be the corresponding Lagrangian multipliers for

the inequalities in (B.21). The KKT conditions for the primal problem require

w =
n∑

i=1

(αi − α∗i ) · φ(xi) (B.23)

n∑

i=1

(αi − α∗i ) = 0 (B.24)

C · ∂ψe(ξi)
∂ξi

= αi + γi ∀i (B.25)

C · ∂ψe(ξ
∗
i )

∂ξ∗i
= α∗i + γ∗i ∀i (B.26)

Based on the definition of ψs given by (B.22), the constraint condition (B.26) could be explicitly

written as equality constraints:

αi + γi = C · ξi
2βε

if 0 ≤ ξi ≤ 2βε

αi + γi = C if ξi > 2βε

(B.27)

α∗i + γ∗i = C · ξ
∗
i

2βε
if 0 ≤ ξ∗i ≤ 2βε

α∗i + γ∗i = C if ξ∗i > 2βε

(B.28)

Following the analogous arguments as SVC did in (B.13), we can also eliminate ξi and ξ
∗
i here.
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That yields a maximization problem in terms of the positive dual variables w, b, ξ, ξ∗:

max
α,γ,α∗,γ∗

−1

2

n∑

i=1

n∑

i=1

(αi − α∗i )(αj − α∗i )〈φ(xi) · φ(xj)〉+
n∑

i=1

(αi − α∗i )yi

−
n∑

i=1

(αi + α∗i )(1− β)ε−
βε

C

n∑

i=1

(
(αi + γi)

2 + (α∗i + γ∗i )
2
)

(B.29)

subject to αi ≥ 0, α∗i ≥ 0, γi ≥ 0, γ∗i ≥ 0, 0 ≤ αi + γi ≤ C,∀i, 0 ≤ α∗i + γ∗i ≤ C,∀i and
∑n

i=1(αi − α∗i ) = 0. As γi and γ
∗
i only appear in the last term in (B.29), the functional (B.29)

is maximal when γi = 0 and γ∗i = 0 ∀i. Thus, the dual problem can be simplified as

min
α,α∗

R(α,α∗) =
1

2

n∑

i=1

n∑

i=1

(αi − α∗i )(αj − α∗i )K(xi, xj)−
n∑

i=1

(αi − α∗i )yi

+

n∑

i=1

(αi + α∗i )(1− β)ε+
βε

C

n∑

i=1

(
α2i + α∗2i

)
(B.30)

subject to 0 ≤ αi ≤ C,∀i, 0 ≤ α∗i ≤ C,∀i and∑n
i=1(αi−α∗i ) = 0. With the equality (B.23), the

dual form of the regression function can be written as f(x) =
∑n

i=1(αi − α∗i )K(xi, xj) + b.

Like SILF, the dual problem (B.30) is a generalization of the several SVR formulations. More

exactly,

1. when we set β = 0, (B.30) becomes the classical SVR using ε-insensitive loss function;

2. When β = 1, (B.30) becomes that when the Huber’s loss function is used.

3. When β = 0 and ε = 0, (B.30) becomes that for the case of the Laplacian loss function.

4. As for the optimization problem (B.1) using Gaussian loss function with the variance σ2,

that is equivalent to the general SVR (B.30) with β = 1 and
2ε

C
= σ2 provided that we

keep upper bound C large enough to prevent any αi and α
∗
i from reaching the upper bound

at the optimal solution.

The dual problem (B.30) is also a constrained convex quadratic programming problem. Let us

denote

α̂ = [α1, . . . , αn,−α∗1, . . . ,−α∗n]T ,

P = [−y1 + (1− β)ε, . . . ,−yn + (1− β)ε,−y1 − (1− β)ε, . . . ,−yn − (1− β)ε]T

Q =






K + 2βε
C I K

K K + 2βε
C I





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where K is the kernel matrix with ij-entry K(xi, xj), (B.30) can be rewritten as

min
α̂

1

2
α̂
T
Qα̂+ P T α̂ (B.31)

subject to li ≤ α̂i ≤ ui, ∀i and
∑2n

i=1 α̂i = 0 where li = 0, ui = C for 1 ≤ i ≤ n and li = −C,

ui = 0 for n+1 ≤ i ≤ 2n. As to the algorithm design for the solution, popular SMO algorithms

could be easily adapted for the solution (Smola and Schölkopf, 1998; Shevade et al., 2000) . For

a program design and source code, refer to Chu et al. (2001a).
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Appendix C

Sequential Minimal Optimization

and its Implementation

Sequential minimal optimization (SMO) was proposed by Platt (1999) for support vector clas-

sifier. The idea to fix the size of working set at two is an extreme case of the “chunking” idea.

The merit of SMO lies in that the sub-optimization problem can be solved analytically. Keerthi

et al. (2001) put forwards improvements on SMO by introducing two thresholds to determine the

bias. In this chapter, we adapt the popular SMO algorithm to solve the constrained quadratic

programming (QP) problems arising in the general formulation for SVM.

C.1 Optimality Conditions

We briefly study the optimality conditions for the solution of the QP problems, (B.18) or (B.31).

By introducing Lagrange multipliers for the constraints in the QP, we have to find the saddle of

the Lagrange functional:

L =
1

2
α̂
T
Qα̂+ P T α̂−

∑

i

ηi(α̂i − li) +
∑

i

λi(α̂i − ui) + γ
∑

i

α̂i (C.1)

Let us define

Fi(α̂) = −[Qα̂]i − P i (C.2)
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where [Qα̂]i denotes the i-th entry of the vector Qα̂ and P i is the i-th entry of the vector P .

The KKT conditions for the QP are:

∂L
∂α̂i

= −Fi(α̂)− ηi + λi + γ

ηi ≥ 0, ηi(α̂i − li) = 0, λi ≥ 0, λi(α̂i − ui) = 0,∀i
(C.3)

These conditions can be simplified by considering three cases for each i:

Case 1 : α̂i = li Fi(α̂)− γ ≤ 0

Case 2 : li < α̂i < ui Fi(α̂)− γ = 0

Case 3 : α̂i = ui Fi(α̂)− γ ≥ 0

(C.4)

Let us define three index sets: I0(α̂) = {i : li < α̂i < ui}; I1(α̂) = {i : α̂i = ui} and

I2(α̂) = {i : α̂i = li}, and then further Iup(α̂) = I0(α̂) ∪ I1(α̂) and Ilow(α̂) = I0(α̂) ∪ I2(α̂).

The optimality conditions can be written as

γ ≤ Fi(α̂) ∀ i ∈ Iup(α̂)

γ ≥ Fi(α̂) ∀ i ∈ Ilow(α̂)
(C.5)

We introduce a positive tolerance parameter τ to define approximate optimality conditions. We

will say that (i, j) is a τ -violating pair at α̂ if one of the following two sets of events occurs:

i ∈ Iup(α̂), j ∈ Ilow(α̂) and Fi(α̂) < Fj(α̂)− τ

i ∈ Ilow(α̂), j ∈ Iup(α̂) and Fi(α̂) > Fj(α̂) + τ
(C.6)

Define bup(α̂) = min{Fi(α̂) : i ∈ Iup(α̂)} and blow(α̂) = max{Fi(α̂) : i ∈ Ilow(α̂)}. The

optimality conditions can be compactly written as

bup ≥ blow − τ (C.7)

If (C.7) holds, we say that α̂ is a τ -optimal solution, and then the bias b in primal problem can

be determined as
bup+blow

2 . Note that the training samples whose index i ∈ I0 is just the set of

off-bound SVs.

So far, we have got two conditions in (C.6) for checking optimality, and a stopping condition

(C.7). Following the design in Keerthi et al. (2001), we employ a two-loop approach till the

stopping condition is satisfied. The Type I loop sweeps over all the samples one by one to check
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optimality with current bup or blow,
1 and then updates the pair of samples who are violating

the optimality conditions (C.6). While the Type II loop update the pair associated with bup

and blow, and then vote new bup and blow within the I0 set. The Type II loop are repeated till

(C.7) are satisfied or no sample can be updated, then the Type I loop is executed to check the

optimality violation for all samples again. We describe the SMO algorithm in Table C.1:

Table C.1: The main loop in SMO algorithm.

SMO Algorithm

Initialization BOOL CheckAll = TRUE ;
BOOL Violation = TRUE ;
choose any α̂ that satisfies li ≤ α̂i ≤ ui
vote the current bup and blow
While ( CheckAll == TRUE or Violation == TRUE )

if ( CheckAll == TRUE )
Type I Loop check optimality condition one by one over all samples

update the violating pair and then set Violation = TRUE
else

Type II Loop while (the stopping condition does not hold)
update the pair associated with bup and blow;
vote bup and blow within the set I0

endwhile
set Violation = FALSE

endif
Switcher if (CheckAll == TRUE)

set CheckAll = FALSE
elseif (Violation == FALSE)

set CheckAll = TRUE
endif

endwhile
Termination return α̂

C.2 Sub-optimization Problem

Now we study the solution to the sub-optimization problem, i.e. how to update the violating

pair. We update two Lagrange multipliers towards the optimal values in either Type I or Type

II loop every time. Suppose that the pair of the Lagrangian multipliers being updated are α̂i

and α̂j . The other Lagrangian multipliers are fixed during the updating. Thus, we only need

to find the minimization solution to a sub-optimization problem. The sub-optimization problem

for the QP problem can be given as

min
α̂i,α̂j

S(α̂i, α̂j) =
1

2
α̂
T
Qα̂+ P iα̂i + P jα̂j (C.8)

1If the sample being checked belongs to Iup(α̂), we check it with blow; otherwise, we check it with bup.
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lj
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Case 1

Case 2
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(αi(0),αj(0))

(αi(t),αj(t))

t>0

(αi(t),αj(t))

(αi(0),αj(0))

t<0

Hj

Bj

Figure C.1: Minimization steps within the rectangle R = [li, ui]× [lj , uj ] in the sub-optimization
problem.

subject to li ≤ α̂i ≤ ui, lj ≤ α̂j ≤ uj and α̂i + α̂j = c where c is a constant. Clearly, the

minimization of the sub-optimization problem (C.8) takes place in the rectangle R = [li, ui] ×

[lj , uj ] along the path determined by α̂i + α̂j = c, which is a straight line with negative unit

slope, as shown in Figure C.1. Let us denote the current Lagrange multipliers as α̂i(0) and α̂j(0),

and then define the potential solution to (C.8) as α̂i(t) and α̂j(t), where α̂i(t) = α̂i(0) + t and

α̂j(t) = α̂j(0)− t and t ∈ R. Our objective is to minimize the functional S(t) = S(α̂i(t), α̂j(t))

subject to the pair (α̂i, α̂j) ∈ R. It is easy to confirm that S(t) = S(0) + S ′(0)t + 1
2S

′′(0)t2

where S(0) = S(α̂i(0), α̂j(0)), S
′(0) = Fj − Fi and S

′′(0) = Qii − 2Qij +Qjj .
2 By the semi-

positive definiteness of Q it follows S ′′(0) ≥ 0. The unconstrained minimum of S(t) should

be at tu = − S′(0)
S′′(0) , i.e. the unconstrained solution should be α̂i(t) = α̂i(0) + tu and α̂j(t) =

α̂j(0) − tu. We now take the rectangle constraint into account by holding Bj ≤ α̂j(t) ≤ Hj ,

where Bj = max{c− ui, lj} and Hj = min{c− li, uj}.

In the implementation, we cache Fi for each sample who lies in the set I0.
3 This helps

especially when the type II loop is executing, as Fi are used quite frequently. After solving the

sub-optimization problem, we update Fi in the cache by

Fnew
k = F old

k +
(
α̂i(0)− α̂i(t)

)
Qik +

(
α̂j(0)− α̂j(t)

)
Qjk ∀k (C.9)

2Fi has been defined as in (C.2) at α̂(0).
3We also cache the diagonal entries of Q, i.e. Qii∀i.
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C.3 Conjugate Enhancement in Regression

Although the SMO algorithm we described in last section could be used to solve the QP problem

in SVR (B.31), it is not an efficient way since we have to double the QP size. Notice that the

constraints αiα
∗
i = 0 ∀i always exist since both of them are associated with the sample (xi, yi).

In the SMO algorithm for standard SVR (Smola and Schölkopf, 1998; Shevade et al., 2000), the

constraints αiα
∗
i = 0 are taken into account in minimization steps. Pairs of variables (αi, α

∗
i )

are selected simultaneously into the working set, and then consider the possible results in four

quadrants.

Optimality Conditions The Lagrangian for the dual problem (B.30) is defined as:

L = 1
2

∑n
i=1

∑n
j=1(αi − α∗i )(αj − α∗j )Qij −

∑n
i=1 yi(αi − α∗i )

+
∑n

i=1(1− β)ε(αi − α∗i )−
∑n

i=1 πiαi −
∑n

i=1 ψiα
∗
i

−∑n
i=1 λi(C − αi)−

∑n
i=1 ηi(C − α∗i ) + γ

∑n
i=1(αi − α∗i )

(C.10)

where Qij = 〈φ(xi) · φ(xj)〉+ δij
2βε
C with δij the Kronecker delta. Let us define

Fi = yi −
n∑

j=1

(αi − α∗i )Q(xi, xj) (C.11)

and the KKT conditions should be:

∂L
∂αi

= −Fi + (1− β)ε− πi + λi + γ = 0

πi ≥ 0, πiαi = 0, λi ≥ 0, λi(C − αi) = 0,∀i
∂L
∂α∗i

= Fi + (1− β)ε− ψi + ηi − γ = 0

ψi ≥ 0, ψiα
∗
i = 0, ηi ≥ 0, ηi(C − α∗i ) = 0,∀i

(C.12)

These conditions can be simplified by considering five cases for each i:

Case 1 : αi = α∗i = 0 −(1− β)ε ≤ Fi − γ ≤ (1− β)ε

Case 2 : αi = C Fi − γ ≥ (1− β)ε

Case 3 : α∗i = C Fi − γ ≤ −(1− β)ε

Case 4 : 0 < αi < C Fi − γ = (1− β)ε

Case 5 : 0 < α∗i < C Fi − γ = −(1− β)ε

(C.13)
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We can classify any one pair into one of the following five sets, which are defined as:

I0a = {i : 0 < αi < C}

I0b = {i : 0 < α∗i < C}

I0 = I0a ∪ I0b
I1 = {i : αi = α∗i = 0}

I2 = {i : α∗i = C}

I3 = {i : αi = C}

(C.14)

Let us denote Iup = I0 ∪ I1 ∪ I3 and Ilow = I0 ∪ I1 ∪ I2. We further define F up
i on the set Iup as

Fup
i =







Fi + (1− β)ε if i ∈ I0b ∪ I1
Fi − (1− β)ε if i ∈ I0a ∪ I3

(C.15)

and F low
i on the set Ilow as

F low
i =







Fi + (1− β)ε if i ∈ I0b ∪ I2
Fi − (1− β)ε if i ∈ I0a ∪ I1

(C.16)

Then the conditions in (C.13) can be simplified as

γ ≤ Fup
i ∀i ∈ Iup and γ ≥ F low

i ∀i ∈ Ilow (C.17)

Thus the stopping condition can be compactly written as:

bup ≥ blow − τ (C.18)

where bup = min{F up
i : i ∈ Iup}, blow = max{F low

i : i ∈ Ilow}, and the tolerance parameter

τ > 0. If (C.18) holds, we reach a τ -optimal solution, and then the bias b can also be determined

as
bup+blow

2 . At the optimal solution, the training samples whose index i ∈ I0 are usually called

off-bound SVs, on-bound SVs if i ∈ I2 ∪ I3, and non-SVs if i ∈ I1.

Sub-optimization Problem Suppose that the i-th and j-th samples are collected in the

working set, and denote α = [α1, . . . , αn]
T and α∗ = [α∗1, . . . , α

∗
n]
T . The sub-optimization
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Figure C.2: Possible quadrant changes of the pair of the Lagrange multipliers.

problem can be written as

min
αi,α∗i ,αj ,α∗j

S(αi, α
∗
i , αj , α

∗
j ) =

1
2 (α−α∗)TQ(α−α∗)

−(αi − α∗i )yi − (αj − α∗j )yj + (1− β)ε(αi + α∗i + αj + α∗j )

(C.19)

subject to 0 ≤ αi ≤ C, 0 ≤ α∗i ≤ C, 0 ≤ αj ≤ C, 0 ≤ α∗j ≤ C and αi − α∗i + αj − α∗j = ν

where ν is a constant. We have to distinguish four different cases: (αi, αj), (αi, α
∗
j ), (α

∗
i , αj),

(α∗i , α
∗
j ). It is easy to derive the unconstrained solution to the sub-optimization problem at the

four quadrants and the boundary of feasible regions. We tabulate these results in Table C.2,

where ρ = Qii − 2Qij +Qjj and the linear constraint αi − α∗i + αj − α∗j = ν should hold.

Table C.2: Boundary of feasible regions and unconstrained solution in the four quadrants, where
ρ = Qii − 2Qij +Qjj .

Quadrant Boundary of αj or α∗j Unconstrained Solution

I (αi, αj) Hj = min(C, ν); Bj = max(0, ν − C) αnewj = αj + (Fj − Fi)/ρ

II (α∗i , αj) Hj = min(C,C + ν); Bj = max(0, ν) αnewj = αj + (Fj − Fi − 2(1− β)ε)/ρ

III (α∗i , α
∗
j ) Hj = min(C,−ν); Bj = max(0,−ν − C) α∗newj = αj + (Fi − Fj)/ρ

IV (αi, α
∗
j ) Hj = min(C − ν, C); Bj = max(0,−ν) α∗newj = αj + (Fi − Fj − 2(1− β)ε)/ρ
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It may happen that for a fixed pair of indices (i, j) the initial chosen quadrant, say e.g.

(αi, α
∗
j ) is the one with optimal solution. In a particular case the other quadrants, (αi, αj) and

even (α∗i , αj), have to be checked. It occurs if one of the two variables hits the 0 boundary, and

then the computation of the corresponding values for the variables with(out) asterisk according

to the following table is required. The possible quadrant transfers are shown in Figure C.2. Thus

we have to compute Fnew
i − Fnew

j after an updating, which is equal to

Fnew
i − Fnew

j = F old
i − F old

j − ρ(αnewi − α∗i new − αoldi + α∗i
old) (C.20)

Sometimes it may happen that ρ ≤ 0. In that case, the optimal values lie on the boundaries Hj

or Bj . We can determine simply which endpoints should be taken by computing the value of

the objective function at these endpoints.

C.4 Implementation in ANSI C

In this section, we report a program design to implement the SMO algorithm in ANSI C. We

describe the data structure design first that is the basis even for other learning algorithm, and

then introduce the main functions of other routines.

Design on Data Structure Data structures are the basis for an algorithm implementation.

We design three key data structures to save and manipulate the training data.

1. Pairs, which is a list to save training (or test) samples. Each node contains the input

vector and the target value of a training sample.

2. Alpha, which is a n × 1 structure vector. Each structure contains a pointer reference to

the associated pair node (xi, yi), the current value of αi (and α∗i for regression) and the

associated upper/lower bounds, the current set name which is determined by αi value, the

current value of Fi if the set name is just I0 and a pointer reference to the corresponding

cache node.

3. I0 Cache, which is a list of Fi for the set I0, i.e. the current set of off-bound SVs. Each

node contains a reference of the pointer of the Alpha structure in which we can access the

current Fi.

4. smo Settings, which is a structure to save the settings of SVM that contains all necessary

parameters that control the behavior of the SMO algorithm.
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1 2 mI0 Set
List

Link

Cross Reference
Reference

Figure C.3: Relationship of Data Structures.

Their inter-relationship is presented in Figure C.3. The manipulations on these data struc-

tures have been implemented in ANSI C, whose source code can be found in datalist.cpp, al-

phas.cpp, cachelist.cpp and smo settings.cpp respectively. The declarations are collected in

smo.h.4

Routine Description There are several routines, each of which serves a specified function,

to cooperate to implement the algorithm. The program we implemented is strictly compatible

with the data format of DELVE.5

1. BOOL smo Loadfile, which loads data file from disk to initialize the Pairs list. The full

name of the data file has already been saved in the structure smo Settings after creating

the structure.

2. BOOL smo Routine, which is the main loop of the SMO algorithm.

4The source code can be accessed at http://guppy.mpe.nus.edu.sg/∼chuwei/smo/usmo.zip.
5DELVE, data for evaluating learning in valid experiments, contains a lot of benchmark data sets, available

at http://www.cs.toronto.edu/∼delve/.
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3. BOOL smo ExamineSample, which checks the optimality condition of the sample with

current bup or blow.

4. BOOL smo TakeStep, which updates the sample pair by analytically solving the sub-

optimization problem.

5. BOOL smo Prediction, which calculates the test error if the test data are available.

6. BOOL smo Dumping, which creates log files to save the result.

7. BOOL Calc Kernel, which calculate the kernel value of two input vectors.
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Appendix D

Proof of Parameterization Lemma

The following property of Gaussian distribution will be used to prove the Parameterization

Lemma, we first state it separately:

Property of Gaussian Distribution (Csató and Opper, 2002). Let f ∈ Rn and a general

Gaussian probability density function (pdf)

P(f) = 1

(2π)
n
2 |Σ| 12

exp

(

−1

2
(f − f0)

TΣ−1(f − f0)

)

where the mean f0 ∈ Rn and the n × n covariance matrix Σ with ij-th entry Cov[fi, fj ] ∀i, j.

If g : Rn → R is a differentiable function not growing faster than a polynomial and with partial

derivatives ∇g(f) = ∂

∂f
g(f), and then1

∫

f P(f)g(f)df = f0

∫

P(f) g(f)df +Σ

∫

P(f)∇g(f)df (D.1)

Proof. The proof uses the partial integration rule:

∫

P(f)∇g(f)df = −
∫

g(f)∇P(f)df .

Using the derivative of a Gaussian pdf we have:

∫

P(f)∇g(f)df =

∫

P(f)g(f)Σ−1(f − f0)df (D.2)

Multiplying both sides with Σ leads to (D.1). ¤

1In the following we will assume definite integral over the f -space whenever the integral appears.
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In Parameterization Lemma, we are interested in computing the mean function of the pos-

terior distribution in the Gaussian process:

E[f(x)]n =

∫

f(x)P(f̄ |D)df̄ =
1

P(D)

∫

f(x)P(D|f̄)P(f̄)df̄

=
1

P(D)

∫

f(x)P(f̄)P(D|f)df̄

where D = {(xi, yi)}ni=1, f̄ = [f(x),f ]T and f = [f(x1), . . . , f(xn)]
T . Let us apply (D.1)

replacing g(x) by P(D|f) and only pick up the entry of f(x) in the vector form, we have

E[f(x)]n =
1

P(D)

(

f0(x)

∫

P(f̄)P(D|f)df̄ +

n∑

i=1

Cov[f(x), f(xi)]

∫

P(f̄)∂P(D|f)
∂f(xi)

df̄

)

(D.3)

The variable f(x) in the integrals vanishes since it is only contained in P(f̄), (D.3) can be further

simplified as

E[f(x)]n = f0(x) +

n∑

i=1

Cov[f(x), f(xi)] · w(i) (D.4)

where

w(i) =
1

P(D)

∫

P(f)∂P(D|f)
∂f(xi)

df (D.5)

Notice that the coefficients w(i) depends only on the training data D and are independent from

x at which the posterior mean is evaluated.

Now we change the variables in the integral of (D.5): f(xi)
′ = f(xi) − f0(xi) where f0(xi)

is the prior mean at xi and keep other variables unchanged f(xj)
′ = f(xj), j 6= i, that leads to

the following integral:
∫

P(f ′)∂P(D|f
′)

∂f(xi)′
df ′ (D.6)

where f ′ = [f(x1)
′, . . . , f(xi)′ + f0(xi), . . . , f(xn)

′]T . We change the partial differentiation is

with respect to f(xi)
′ with the partial differentiation with respect to f0(xi) and exchange the

differentiation and the integral operators, that leads to

∂

∂f0(xi)

∫

P(f ′)P(D|f ′)df ′ (D.7)

We then perform the inverse change of the variables inside the integral and substitute back into

the expression for w(i), that leads to

w(i) =
∂

∂f0(xi)
ln

∫

P(f)P(D|f)df (D.8)
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The posterior covariance can be written as

Cov(x, x′)n = E[f(x)f(x′)]n − E[f(x)]n · E[f(x′)]n (D.9)

Let us apply (D.1) twice on E[f(x)f(x′)]n which is written as

E[f(x)f(x′)]n =
1

P(D)

∫

f(x)f(x)′P(f̂)P(D|f)df̂ (D.10)

where f̂ = [f(x), f(x)′,f ]T , that leads to

E[f(x)f(x′)]n =
1

P(D)

[

f0(x)

∫

f(x)′P(f̂)P(D|f)df̂ + Cov(x, x′)

∫

P(f̂)P(D|f)df̂

+

n∑

i=1

Cov(x, xi)

∫

f(x′)P(f̂)∂P(D|f)
∂f(xi)

df̂

]

= f0(x) · E[f(x′)]n +
1

P(D)
n∑

i=1

Cov(x, xi)

[

f0(x
′)

∫

P(f̂)∂P(D|f)
∂f(xi)

df̂

+

n∑

j=1

Cov(xj , x
′)

∫

P(f̂) ∂2P(D|f)
∂f(xi)∂f(xj)

df̂

]

+ Cov(x, x′)

= Cov(x, x′) + f0(x) · E[f(x′)]n + f0(x
′)

n∑

i=1

Cov(x, xi) · w(i)

+

n∑

i=1

n∑

j=1

Cov(x, xi) · Cov(xj , x′)
1

P(D)

∫

P(f̂) ∂2P(D|f)
∂f(xi)∂f(xj)

df̂

(D.11)

Since E[f(x′)]n = f0(x
′) +

∑n
j=1 Cov(x

′, xj) · w(j) from (D.4) and the variables f(x) and f(x′)

will disappear in the integral, (D.11) can be finally written as

E[f(x)f(x′)]n = Cov(x, x′) +E[f(x)]n · E[f(x′)]n

+
n∑

i=1

n∑

j=1

Cov(x, xi) · Cov(xj , x′)
[
Q(ij)− w(i)w(j)

] (D.12)

where Q(ij) =
1

P(D)

∫

P(f) ∂2P(D|f)
∂f(xi)∂f(xj)

df .

Therefore, the posterior covariance can be given as

Cov(x, x′)n = Cov(x, x′) +
n∑

i=1

n∑

j=1

Cov(x, xi) ·
[
Q(ij)− w(i)w(j)

]
· Cov(xj , x′) (D.13)

Note that

R(ij) = Q(ij)− w(i)w(j) = ∂2

∂f(xi)∂f(xj)
ln

∫

P(D|f)P(f)df (D.14)
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holds. Now we perform the change of variables in the integral for Q(ij), i.e., repeat the steps

from (D.5) to (D.8), that finally leads to

R(ij) =
∂2

∂f0(xi)∂f0(xj)
ln

∫

P(D|f)P(f)df (D.15)

and using a single training sample in the likelihood leads to the scalar coefficients w(k + 1) and

r(k + 1) as in (3.65) for the on-line formulation (3.62) and (3.63).
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Appendix E

Some Derivations

In this chapter, we give more details about the derivations for some important equations in

previous chapters.

E.1 The Derivation for Equation (4.37)

The exact evaluation on the evidence is an integral over the space of f as given in (4.35). We try

to give an explicit expression for evidence evaluation by resorting to Laplacian approximation,

i.e. Taylor expansion of S(f) around S(fMP) up to the second order:

S(f) ≈ S(fMP)+ (f − fMP)
T · ∂S(f)

∂f

∣
∣
∣
∣
f=fMP

+
1

2
(f−fMP)

T · ∂
2S(f)

∂f∂fT

∣
∣
∣
∣
f=fMP

·(f−fMP) (E.1)

At the MAP estimate point fMP,
∂S(f)
∂f

∣
∣
∣
f=fMP

= 0 holds, and ∂2S(f)

∂f∂fT

∣
∣
∣
f=fMP

= Σ−1+C ·Λ where

Λ is a diagonal matrix with ii-th entry being 1
2βε if the corresponding training sample (xi, yi) is an

off-bound SV, otherwise the entry is zero. The Laplacian approximation of S(f) can be simplified

as in (4.36). By introducing the Laplacian approximation (4.36) and Zf = (2π)n/2|Σ|1/2 which

is defined as in (4.4) into (4.35), the integral can be approximated as

P(D|θ) ≈ (2π)−n/2|Σ|−1/2Z−n
S S(fMP)

∫

exp

(

−1

2
(f − fMP)

T · (Σ−1 + C · Λ) · (f − fMP)

)

df

(E.2)

Let us regard f as random variables with a joint Gaussian distributionN
(
fMP, (Σ

−1 + C · Λ)−1
)
,

and then we realize that the integral should be the normalization factor (2π)n/2|Σ−1+C ·Λ|−1/2.

Substituting the normalization factor for the integral in (E.2), we get the equation (4.37).
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E.2 The Derivation for Equation (4.39) ∼ (4.41)

The negative log evidence − lnP(D|θ) can be written as

− lnP(D|θ) = S(fMP) +
1

2
ln

∣
∣
∣
∣
I+

C

2βε
ΣM

∣
∣
∣
∣
+ n lnZS

=
1

2
fMP

T · Σ−1 · fMP + C

n∑

i=1

`β,ε(yi − fMP(xi)) +
1

2
ln

∣
∣
∣
∣
I+

C

2βε
ΣM

∣
∣
∣
∣
+ n lnZS

(E.3)

where ZS is defined as in (2.32) and ΣM is a sub-matrix of the covariance matrix Σ which do

not depend on C and ε. Note that f is a function of the hyperparameters.

The derivative of − lnP(D|θ) with respect to lnC can be written as:

∂− lnP(D|θ)
∂ lnC =

{

∂S(f)

∂fT

∣
∣
∣
f=fMP

· ∂f∂C +
∂ C

∑n
i=1 `β,ε(yi−fMP(xi))

∂C + 1
2

∂ ln|I+ C
2βεΣM|

∂C + n∂ lnZS

∂C

}

· ∂C
∂lnC

=

{
∑n

i=1 `β,ε(yi − fMP(xi)) +
1
2 trace

[(

I+ C
2βεΣM

)−1

· ∂(I+
C

2βεΣM)

∂C

]

+ n
ZS

∂ZS

∂C

}

· C
(E.4)

where
∂ZS
∂C

= −
√

βεπC− 3
2 erf(

√

Cβε) − 2C−2 exp(−Cβε). After some simplifications, we will

reach the equation (4.39).

Analogously, the derivative of − lnP(D|θ) with respect to ln ε can be written as:

∂− lnP(D|θ)
∂ ln ε =

{

∂S(f)

∂fT

∣
∣
∣
f=fMP

· ∂f∂ε +
∂ C

∑n
i=1 `β,ε(yi−fMP(xi))

∂ε + 1
2

∂ ln|I+ C
2βεΣM|
∂ε + n∂ lnZS

∂ε

}

· ∂ε
∂ln ε

=

{

C
∑n

i=1
∂`β,ε(yi−fMP(xi))

∂ε + 1
2 trace

[(

I+ C
2βεΣM

)−1

· ∂(I+
C

2βεΣM)

∂ε

]

+ n
ZS

∂ZS

∂ε

}

· ε
(E.5)

where
∂ZS
∂ε

= 2(1− β) +
√

βπ

Cε
erf(
√

Cβε) and

∂`ε,β(yi − fMP(xi))

∂ε
=







−1 if yi − fMP(xi) ∈ ∆C∗ ∪∆C

− (yi − fMP(xi))
2 − (1− β)2ε2

2βε2
if yi − fMP(xi) ∈ ∆M∗ ∪∆M

0 if yi − fMP(xi) ∈ ∆0

Being aware of the relationship between the noise and the set associated with the samples, we

can simplify (E.5) into the form of (4.40).

As for the derivative with respect to lnκ′, we have

∂− lnP(D|θ)
∂ lnκ′

=

{

1

2
fTMP

∂Σ−1

∂κ′
fMP +

1

2
trace

[(

I+
C

2βε
ΣM

)−1

·
∂(I+ C

2βεΣM)

∂κ′

]}

· κ′

= −κ
′

2
fTMPΣ

−1 ∂Σ

∂κ′
Σ−1fMP +

κ′

2
trace

[(
2βε

C
I+ΣM

)−1

· ∂ΣM

∂κ′

]

(E.6)
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where Σ−1 · fMP = (α − α∗) holds at the MAP estimate. Therefore, by using the Lagrangian

multiplier vector α−α∗ in (E.6), we can get (4.41). Here the inversion of the full matrix Σ can

be avoided, while only the inverse of the sub-matrix ΣM with the size of the number of off-bound

SVs is required.

E.3 The Derivation for Equation (4.46)

We begin by reformulating (4.45) as

P(f(x)|D) ∝ exp

(

−1

2

(f(x)− fTMP · Σ−1 · k)2
Cov(x, x)− kT · Σ−1 · k

)

·
∫

exp

(

−1

2
∆fT ·A ·∆f + hT ·∆f

)

d∆f

(E.7)

where ς2 = Cov(x, x) − kT · Σ−1 · k, A =
1

ς2
Σ−1 · k · kT · Σ−1 + Σ−1 + C · Λ, h =

1

ς2
(f(x) −

fTMP · Σ−1 · k) · Σ−1 · k and ∆f = f − fMP.

Here A is a n × n real symmetric matrix and ∆f is a n-dimensional column vector, and

the integral is over the whole of ∆f space. Now we focus on the integral that can be evaluated

by an explicit expression. In order to evaluate the integral it is convenient to consider the

eigenvector equations for A in the form Auk = λkuk. Since A is real and symmetric, we can

find a complete orthonormal set of the eigenvectors that satisfies uTk ul = δkl. We can then

expand the vector ∆f as a linear combination of the eigenvectors ∆f =
∑n

k=1 τkuk. The

integral over the ∆f space can now be replaced by an integration over the coefficient values

dτ1, dτ2, . . . , dτn. The Jacobian of this change of variables is given by J = det(U) where the

columns of the matrix U are given by the uk. Since U is an orthogonal matrix that satisfies

UTU = I, J2 = det(U)T det(U) = det(UTU) = 1, and hence |J | = 1. Using the orthonormality

of the uk, we have ∆fTA∆f =
∑n

k=1 λkτ
2
k . We can also define hk to be the projections of h

onto the eigenvalues as hk = hTuk. These lead to a set of decoupled integrals over the τk of the

form

In =
n∏

k=1

∫ +∞

−∞
exp

(

−1

2
λkτ

2
k + hkτk

)

dτk

The product of the integrals can be evaluated as

In = (2π)n/2
n∏

k=1

λ
−1/2
k exp

(
n∑

i=1

h2k
2λk

)

(E.8)

We note that the determinant of a matrix is given by the product of its eigenvalues, i.e. |A| =
n∏

k=1

λk, and the inverse A−1 has the same eigenvector of A, but with eigenvalues λ−1
k . Since

164



hk = hTuk and A−1uk = λ−1
k uk, we see that htA−1h =

n∑

k=1

h2k
λk

. Using these results, we can

rewrite (E.8) into the following form:

In = (2π)n/2|A|−1/2 exp

(
1

2
hTA−1h

)

(E.9)

Using the explicit expression of the integral (E.9), (E.7) can be written as

P(f(x)|D) ∝ exp

(

−1

2

(
1

ς2
− 1

ς4
kTΣ−1A−1Σ−1k

)(

f(x)− fTMP · Σ−1 · k
)2
)

(E.10)

It is easy to see that the mean of the Gaussian distribution is fTMP · Σ−1 · k which is equivalent

to (α−α∗)T · k at the solution of (4.25), and the variance σ2t is
(

1
ς2 − 1

ς4k
TΣ−1A−1Σ−1k

)−1

.

Now we go ahead to further simplify the variance σ2t . Applying the Woodbury’s equality1,

we obtain that σ2t = ς2 + kTΣ−1(Σ−1 + C · Λ)−1Σ−1k. The first term in σ2t is the original

variance in the Gaussian process prediction, and the last term is the contribution coming from

the uncertainty in the function values f . Note that only off-bound SVs play roles in the predictive

distribution (E.7). The variance of the predictive distribution can be compactly written as

σ2t = Cov(x, x)− kTM ·
(

Σ−1
M − Σ−1

M (Σ−1
M +

C

2βε
I)−1Σ−1

M

)

· kM (E.11)

where ΣM be them×m sub-matrix of Σ obtained by deleting all the rows and columns associated

with the on-bound SVs and non-SVs, i.e., keeping the m off-bound SVs only, and kM is a sub-

vector of k obtained by keeping the entries associated with the off-bound SVs. Let us apply the

Woodbury’s equality again in the bracket of (E.11), we can finally simplify the variance of the

predictive distribution as

σ2t = Cov(x, x)− kTM ·
(
2βε

C
I+ΣM

)−1

· kM (E.12)

Another way to simplify σ2t to the form (E.12) is to use block matrix manipulation by noting

the sparseness in Λ.

1Woodbury’s equality: Let A and B denote two positive definite matrices related by A = B−1 +CDCT where
C and D are two other matrices. The inverse of matrix A is defined by A−1 = B− BC(D−1 +CTBC)−1CTB.
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E.4 The Derivation for Equation (5.36)

The negative logarithm of the evidence − lnP(D|θ) (5.35) can also be equivalently written as

− lnP(D|θ) = S(fMP) +
1

2
ln |I+ΣM · ΛM|

=
1

2
fMP

T · Σ−1 · fMP + 2
∑

m∈SVs
ln sec

(π

4
(1− yxm · fMP(xm))

)

+
1

2
ln |I+ΣM · ΛM|

(E.13)

where I is the identity matrix with the size of SVs, m ∈ SVs denotes m belongs to the index set

of SVs. We note that fMP is dependent on θ. Therefore the derivative of the negative logarithm

of the evidence with respect to θ can be written as

−∂ lnP (D|θ)
∂θ

=
1

2
fTMP ·

∂Σ−1

∂θ
· fMP +

1

2

∂ ln |I+ΣM · ΛM|
∂θ

+
n∑

i=1

(
∂S(fMP)

∂fMP(xi)
+

1

2

∂ ln |I+ΣM · ΛM|
∂fMP(xi)

)

· ∂fMP(xi)

∂θ

(E.14)

The first two terms at the right of the above equation are usually regarded as the explicit parts

for θ, while the last term is the implicit part via fMP.

We notice that ΣM is dependent on θ explicitly, while ΛM is the sub-matrix of Λ which is

a diagonal matrix with ii-th elements
∂2`t(yxi ·fMP(xi))

∂f2
MP(xi)

, refer to (5.10). Obviously ∂S(fMP)
∂fMP(xi)

= 0

and ∂ ln |I+ΣM·ΛM|
∂fMP(xi)

= trace
(

(I+ΣM · ΛM)−1 · ΣM · ∂ΛM

∂fMP(xi)

)

. Only the entry corresponding to

the SVs xm is non-zero in the matrix ∂ΛM

∂fMP(xm) , that exactly is υmM ·Λm
M. Thus the non-zero term

∂ ln |I+ΣM·ΛM|
∂fMP(xm) is equal to the element of υmM ·

(
(Λ−1

M +ΣM)−1 · ΣM

)

mm
. As for the term ∂fMP(xi)

∂θ ,

we notice that fMP = Σ ·υ, refer to (5.19), and the value υi = − ∂`t(yxi ·f(xi))
∂f(xi)

∣
∣
∣
f(xi)=fMP(xi)

is also

a function of θ implicitly. Now we get ∂fMP

∂θ = ∂Σ
∂θ υ + Σ( ∂υ

∂fTMP

∂fMP

∂θ ). Notice that ∂υ
∂fTMP

= −Λ.

Therefore we get (I +Σ · Λ) ∂fMP

∂θ = ∂Σ
∂θ υ, and then

∂fMP

∂θ
= (I +Σ · Λ)−1 ∂Σ

∂θ
υ = Λ−1(Λ−1 +Σ)−1 ∂Σ

∂θ
υ (E.15)

Based on these analysis, we can further simplify (E.14) as

−∂ lnP (D|θ)
∂θ

= −1

2
fTMP · Σ−1 · ∂Σ

∂θ
· Σ−1 · fMP +

1

2
trace

(

(Λ−1
M +ΣM)−1 · ∂ΣM

∂θ

)

+
1

2

∑

m∈SVs
υmM ·

(
(Λ−1

M +ΣM)−1 · ΣM

)

mm
·
(

Λ−1
M (Λ−1

M +ΣM)−1 ∂ΣM

∂θ
υM

)m

(E.16)

Being aware of

∂ − lnP (D|θ)
∂ ln θ

=
∂ − lnP (D|θ)

∂θ

∂θ

ln θ
= −∂ lnP (D|θ)

∂θ
· θ
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and

fTMP · Σ−1 · ∂Σ
∂θ
· Σ−1 · fMP = υTM ·

∂ΣM

∂θ
· υM

we can reach (5.36) finally.
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Appendix F

Noise Generator

Given a random variable u with a uniform distribution in the interval (0, 1), we wish to find a

function g(u) such that the distribution of the random variable z = g(u) is a specified function

Fz(z). We maintain that g(u) is the inverse of the function u = Fz(z): if z = F−1
z (u), then

P(z ≤ z) = Fz(z) (refer to Papoulis (1991) for a proof).

Given the probability density function PS(δ) as in (2.31), the corresponding distribution

function should be

F (δ) =







1
CZS

exp(C(δ + ε)) if δ ∈ ∆C∗

1
2 − 1

ZS

[

(1− β)ε−
√

πβε
C erf

(√
C
4βε (δ + (1− β)ε)

)]

if δ ∈ ∆M∗

1
2 + δ

ZS
if δ ∈ ∆0

1
2 + 1

ZS

[

(1− β)ε+
√

πβε
C erf

(√
C
4βε (δ − (1− β)ε)

)]

if δ ∈ ∆M

1.0− 1
CZS

exp(−C(δ − ε)) if δ ∈ ∆C

(F.1)

Now we solve the inverse problem to sample data in the distribution (F.1): given a uniform

distribution of u in the interval (0, 1), we let δ = F−1
δ (u) so that the distribution of the random

variable δ equals to the distribution (F.1).
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Appendix G

Convex Programming with Trust

Region

Let us consider a general optimization problem, such as min
α
f(α), where f(α) is at least C2

smooth, i.e., the gradient ∂f(α)
∂α and the Hessian matrix ∂2f(α)

∂α∂αT are available. Since the function

is smooth, the local minima occur at stationary points, i.e., zeros of the gradient. Newton’s

method or some variants like the quasi-Newton methods are widely used for finding a zero of

the gradient. The line-search approach is usually employed to determine the optimal step length

along the descent direction. An alternate approach is based on the observation that quasi-

Newton methods model the function by a quadratic approximation around the current point αc.

The quadratic is accurate only in a neighborhood of the current point αc, and then the new

next point αc+1 is now chosen to be an approximate minimizer of the quadratic constrained to

be in the region where we trust the approximation (Steihaug, 1983). Let us approximate the

original problem around the current point αc as f(α) ≈ f(αc) +4αT · gc + 1
2 4αT ·Hc · 4α

with 4α = α−αc, the gradient gc and the Hessian matrix Hc at αc.

Now we attempt to minimize the functional f(α) within the trust region. The consequent

optimization problem is

min
4α

Φ(4α) = 4αT · gc +
1

2
4αT ·Hc · 4α (G.1)

subject to 4αT ·C · 4α ≤ δ, where δ is a fixed upper bound on the step lengths, and C is a

symmetric and positive definite matrix. A general algorithm using conjugate gradient methods

has been proposed by Steihaug (1983) for the solution of (G.1).
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In the problem (5.29), we adapt the popular SMO algorithm for classical SVC (Platt, 1999;

Keerthi et al., 2001) to solve the optimization problem. The basic idea is to update the pair

of Lagrange multipliers associated with βup and βlow towards the minimum iteratively till the

stopping condition (5.31) is satisfied. The updating steps in sub-optimization problems turn out

to be particular cases of (G.1) with two variables only. We may use multiple Newton’s formula or

Newton-Raphson steps to update the two Lagrange multipliers till convergence, then we return

to SMO to update the variables βup and βlow, and check the stopping condition (5.31).

In our particular case of (G.1), it is easy to obtain the unconstrained optimal solution

Hc
−1 · gc, since Hc is positive definite and the size is 2 × 2. If the unconstrained solution

is out of the trust region, we resort to Newton’s methods as an alternative. The details of the

updating steps are as follows. If αi and αj are being optimized in the sub-optimization problem,

the Newton-Raphson formula for updating is






αnewi

αnewj




 =






αi

αj




−Hc

−1 · gc =






αi

αj




−






Hii Hij

Hij Hjj






−1

·






−yxi · Fi
−yxj · Fj




 (G.2)

where Hii = Cov[f(xi), f(xi)] +
8

π2+4·α2
i
, Hij = yxi · yxj · Cov[f(xi), f(xj)] and Fi is as defined

below (5.30). In the case of gTc ·Hc
−1 ·C ·Hc

−1 · gc > δ,1 we use Newton’s formula in place of

Newton-Raphson step (G.2), that is






αnewi

αnewj




 =






αi

αj




− γ ·






−yxi · Fi
−yxj · Fj




 (G.3)

where γ = min{
√

δ
gT
c ·C·gc ,

gT
c ·gc

gT
c ·Hc·gc }. So, before we return to SMO to update the variables βup

and βlow, and check the stopping condition (5.31), we use (G.2) or (G.3) to update αi and αj

iteratively till the change in the α variables is less than 10−6 or the number of iterations is

greater than 100.

1We simply use identity matrix as C, and set δ at 1 in this case.
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Appendix H

Trigonometric Support Vector

Classifier

In a reproducing kernel Hilbert space (RKHS), trigonometric support vector classifier (TSVC)

takes the form of f(x) = 〈w ·φ(x)〉+b, where b is known as the bias, φ(·) is the mapping function,

and the dot product 〈φ(xi) · φ(xj)〉 is also the reproducing kernel K(xi, xj) of the RKHS. The

optimal classifier is constructed by minimizing the following regularized functional

R(w, b) =

n∑

i=1

`t(yxi · fxi) +
1

2
‖w‖2 (H.1)

where ‖w‖2 is a norm in the RKHS and `t(·) denotes the trigonometric loss function. By

introducing a slack variables ξi ≥ 1− yxi · (〈w · φ(xi)〉+ b), the minimization problem (H.1) can

be rewritten as

min
w,b,ξ

R(w, b, ξ) = 2

n∑

i=1

ln sec
(π

4
ξi

)

+
1

2
‖w‖2 (H.2)

subject to yxi · (〈w · φ(xi)〉 + b) ≥ 1 − ξi and 0 ≤ ξi < 2, ∀i, which is referred as the primal

problem. Let αi ≥ 0 and γi ≥ 0 be the corresponding Lagrange multipliers for the inequalities

in the primal problem. The KKT conditions for the primal problem (H.2) are

w =

n∑

i=1

yxiαiφ(xi);

n∑

i=1

yxiαi = 0;
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π

2
tan

(π

4
ξi

)

= αi + γi,∀i. (H.3)

Notice that the implicit constraint ξi < 2 has been taken into account automatically in (H.3).

Following the analogous arguments in Section 5.3.2, we can derive the dual problem as

min
α
R(α) =

1

2

n∑

i=1

n∑

j=1

(yxiαi)(yxjαj)K(xi, xj)−
n∑

i=1

αi

+

n∑

i=1

[

4

π
αi arctan

(
2αi
π

)

− ln

(

1 +

(
2αi
π

)2
)] (H.4)

subject to
∑n

i=1 yxiαi = 0 and αi ≥ 0 ∀i.

Comparing with BTSVC, the only difference lies in the existence of the equality constraint

∑n
i=1 yxiαi = 0 in TSVC. Popular SMO algorithm (Platt, 1999; Keerthi et al., 2001) can be

adapted to find the solution. The classifier is obtained as f(x) = 〈∑n
i=1 yxiαiφ(xi) · φ(x)〉+ b =

∑n
i=1 yxiαiK(xi, x) + b at the optimal solution of the dual problem (H.4), where the bias b can

also be obtained. Cross validation is usually used to choose the optimal parameters for the kernel

function.

We give the experimental results of TSVC on U.S. Postal Service data set of handwritten

digits (USPS) via 5-fold cross validation. USPS is a large scale data set with 7291 training

samples and 2007 test samples of 16 × 16 grey value images, where grey values of pixels are

scaled to lie in [−1,+1].1 It is a 10-class classification problem. The 10-class classifier could be

constructed by 10 one-versus-rest (1-v-r) classifiers. The i-th classifier will be trained with all

of the samples in the i-th class with positive labels, and all other samples with negative labels.

The final output is decided as the class that corresponds to the 1-v-r classifier with the highest

output value. Platt et al. (2000) trained 10 1-v-r classical SVCs with Gaussian kernel in this

way, and reported that the error rate is 4.7%, where the model parameters were determined by

cross validation. Strictly in the same way, we train 10 1-v-r TSVCs with Gaussian kernel where

the hyperparameter is determined by cross validation too. Their individual training results are

reported in Table H.1. The final testing error rate of the ten-class TSVC is 4.58%. Notice that

the CPU time consumed by one TSVC training is around 300 seconds.2

1It is available from http://www.kernel-machines.org/data.html
2In the program implementation, we did not encode the sparseness in dot product or cache the kernel matrix.
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Table H.1: Training results of the 10 1-v-r TSVCs with Gaussian kernel on the USPS handwriting
digits, where κ0 = 15 and κ = 0.02 determined by cross validation. Time denotes the CPU time
in seconds consumed by one TSVC training; Training Error denotes the number of training error;
Test Error denotes the number of misclassified samples in test and Test Error Rate denotes the
test error in percentage of these binary classifiers.

Digit Training Error SVs Time Test Error Test Error Rate

0 0 611 240.0 9 0.448

1 1 176 131.1 9 0.448

2 0 842 398.7 30 1.495

3 0 734 354.9 20 0.997

4 1 755 456.6 31 1.545

5 0 880 425.3 22 1.096

6 0 571 284.5 16 0.797

7 0 502 270.3 14 0.698

8 0 834 418.4 27 1.345

9 0 624 335.4 17 0.847
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