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Abstract

We study the impact of correlated neuronal firing rate variability on the accuracy
with which an encoded quantity can be extracted from a population of neurons.
Contrary to a widespread belief, correlations in the variabilities of neuronal firing
rates do not, in general, limit the increase in coding accuracy provided by using
large populations of encoding neurons. Furthermore, in some cases, but not all,
correlations improve the accuracy of a population code.



Introduction

In population coding schemes, the activities of a number of neurons jointly en-
code the value of a quantity. A frequently touted advantage of population coding
is that it suppresses the effects of neuronal variability. The observation of correla-
tions in the trial-to-trial fluctuations of simultaneously recorded neurons (Gawne &
Richmond, 1993; Zohary et al, 1994; Lee et al, 1998) has raised some doubt as to
whether this advantage is actually realized in real nervous systems. The dramatic
effects of correlated variability can be seen by examining its impact on the average
of N neuronal firing rates. When the fluctuations of individual neurons about their
mean rates are uncorrelated, the variance of the average decreases like 1/N for large
N . In contrast, correlated fluctuations cause the variance of the average to approach
a fixed limit as the number of neurons increases. While illustrative, this example
is not conclusive because the value of an encoded quantity can be extracted from
a population of neurons by methods that do not require averaging their firing rates.
Statements in the literature suggest that correlated variability can either decrease
or increase (Snippe & Koenderink, 1992; Shadlen & Newsome, 1994; Shadlen et
al, 1996; Reike et al., 1996; Oram et al., 1997; Lee et al, 1998) the accuracy of a
population code. The purpose of this paper is to clarify this situation by addressing
two questions: 1) Does correlation necessarily increase or decrease the accuracy
with which the value of an encoded quantity can be extracted from a population of
N neurons? 2) Does this accuracy approach a fixed limit as N increases?

This issue of correlated variability was first addressed by Johnson (1980b), who
discussed circumstances under which correlation is either helpful or harmful for
discrimination. Snippe and Koenderink (1992) studied the effect of correlated vari-
ability on optimal linear discrimination and also found some cases in which corre-
lation improved discrimination and others where discrimination was degraded by
correlation. We will study the effects of correlation on population coding accuracy
by computing the Fisher information (Cox & Hinckley, 1974; Paradiso, 1988; Se-
ung & Sompolinsky, 1993). The inverse of the Fisher information is the minimum
averaged squared error for any unbiased estimator of an encoded variable. It thus
sets a limit on the accuracy with which a population code can be read out by an
unbiased decoding method.

Two simple examples illustrate the subtleties involved in analyzing the effects
of correlation. Consider a set of N neurons with firing rates ri , for i = 1, 2, . . . N ,
which have mean values fi , identical variances σ 2, and correlated variabilities so
that 〈

(ri − fi)(r j − f j)
〉 = σ 2

[
δi j + c(1 − δi j)

]
(1)

with correlation coefficient c satisfying 0 ≤ c < 1. The angle brackets on the left
side of this equation denote an average over trials, and δi i =1 for all i while δi j =0

2



if i �= j . In this case, the variance of the average of the rates

R = 1

N

N∑
i=1

ri (2)

is

σ 2
R

= σ 2

N
[1 + c(N − 1)] . (3)

This illustrates two negative effects of correlation. For fixed N , the variance in-
creases as a function of the degree of correlation c, and beyond N ≈ 1/c the vari-
ance approaches a fixed limit σ 2

R
→ cσ 2, as discussed in the opening paragraph.

Correlation among the activities of neurons in area MT of monkeys viewing mov-
ing random dot displays has been estimated at about c = 0.1 − 0.2 (Zohary et al,
1994; Shadlen et al, 1996). This has led to the suggestion that coding accuracy will
not improve for populations of more than about 100 neurons (Shadlen & Newsome,
1994).

The second example may seem a bit contrived but is nevertheless illustrative.
Consider the sign-alternating sum

R̃ = 1

N

N∑
i=1

(−1)iri . (4)

The variance of this quantity (for even N ) is

σ 2
R̃

= σ 2

N
(1 − c) . (5)

For this variable, positive correlation always decreases the variance, and the vari-
ance is proportional to 1/N whether or not correlation is present.

One reason to think that correlation need not always be harmful is that it gener-
ally reduces the entropy of the variability in a neural population, suggesting that it
should therefore increase the accuracy of a population code. Our results on popula-
tion coding generally concur with this entropy analysis. For the cases we consider,
the lower limit on the averaged squared decoding error provided by the Fisher in-
formation is proportional to 1/N for large N , similar to the behavior of equation (5)
not (3). For additive or multiplicative noise with uniform correlations, the depen-
dence on the degree of correlation c also resembles that of equation (5), and thus
correlation improves population coding accuracy. We also consider correlations of
limited range for which coding accuracy can display both increasing and decreasing
behavior (Snippe & Koenderink, 1992).

2 The Model

We consider a population code in which N neurons respond to a stimulus with
firing rates that depend on a variable x that parameterizes some stimulus attribute
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(Johnson, 1980a&b; Georgopoulos, Schwartz & Kettner, 1986; Paradiso, 1988;
Baldi & Heiligenberg, 1988; Snippe & Koenderink, 1992; Seung & Sompolinsky,
1993; Salinas & Abbott, 1994; Snippe, 1996; Sanger, 1996). The activity of neuron
i , averaged over trials that use the stimulus x , is fi(x), and its activity on any given
trial is

ri = fi(x) + ηi . (6)

We interpret this as the number of spikes fired by the neuron over a fixed time
period. We do not discuss encoding that involves the fine-scale temporal structure
of spike trains. The random terms ηi for i = 1, 2, . . . , N are generated from a
Gaussian probability distribution with zero mean and covariance matrix Q(x). We
consider three different models of variability. In the additive noise model (Johnson,
1980b), the covariance matrix is identical to (1),

Qi j = σ 2[δi j + c(1 − δi j)] . (7)

For multiplicative noise, the variability in the firing rate is still described by Equa-
tion (6), but the covariance matrix is scaled by the average firing rates,

Qi j(x) = σ 2[δi j + c(1 − δi j)] fi(x) f j(x) . (8)

This produces variances that increase as a function of firing rate, and larger corre-
lations for neurons with overlapping tuning curves, as is seen in the data (Lee et al,
1998). We also consider a model in which the correlations can have an even more
dramatic dependence on the distance between tuning curves. This is the limited
range correlation model (Snippe & Koenderink, 1992) with the correlation matrix
written as

Qi j = σ 2ρ |i− j | (9)

where the parameter ρ (with 0 < ρ < 1) determines the range of the correlations
between different neurons in the population. The parameter ρ can be expressed in
terms of a correlation length L by writing

ρ = exp(−�/L) (10)

where � is the spacing between the peaks of adjacent tuning curves.
We use the notation Q to denote the matrix with elements Qi j , and r and f(x)

to denote the vectors of firing rates with elements ri and fi(x) respectively. Note
that in the additive and limited range cases, Q does not depend on x , while for
multiplicative noise it does.

The average firing rates f(x) are the tuning curves of the neurons in the popu-
lation. We imagine the the tuning curves are arranged to cover a range of x values,
with different tuning curves localized to different ranges of x . We assume that the
coverage is dense and roughly uniform (we define these terms below), but otherwise
leave the exact nature of these tuning curves relatively unrestricted.
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3 Fisher Information

The Fisher information provides a useful measure of the accuracy of a population
code. Through the Cramér-Rao bound, the Fisher information limits the accuracy
with which any unbiased decoding scheme can extract an estimate of an encoded
quantity from the activity of a population of neurons. The average value of an unbi-
ased estimate is equal to the true value, x , of the encoded quantity, but the estimate
will typically differ from x on a trial-to-trial basis. For an unbiased estimate, the
average squared decoding error is equal to the variance of these trial-to-trial devi-
ations. The Cramér-Rao bound states that the average squared decoding error for
an unbiased estimate is greater than or equal to 1/IF(x), where IF(x) is the Fisher
information. Although, in some cases, an biased decoding scheme may outper-
form a biased method, no biased estimate can do better than the Cramér-Rao lower
bound. To compute the Fisher information, we need to know the conditional prob-
ability distribution P[r|x] which determines the probability that a given response r
is evoked by the stimulus x . The Fisher information is given in terms of P[r|x] by

IF(x) = −
∫

dr P[r|x]
d2 log P[r|x]

dx2
. (11)

The maximum likelihood estimator, which chooses for an estimate the value of
x that maximizes P[r|x], asymptotically saturates the Cramér-Rao bound as N →
∞. Thus, the bound sets a realizable limit making it a good measure of the accuracy
of a population code (see Paradiso, 1988; Seung & Sompolinsky, 1993; and Pouget
et al, 1998 for discussions of the use of ML techniques and Fisher information
for population codes in the absence of correlation). The psychophysical measure
of discriminability d ′ that quantifies how accurately discriminations can be made
between two slightly different values x and x + �x based on r is related to the
Fisher information by the formula

d ′ = �x
√

IF(x) . (12)

The larger the Fisher information, the better the discriminability and the smaller the
minimum unbiased decoding error.

When the random η terms are generated from a Gaussian probability distribu-
tion as discussed above,

P[r|x] = 1√
(2π)N det Q(x)

exp

[
−1

2
[r − f(x)]T Q−1(x)[r − f(x)]

]
. (13)

This equation does not give zero probability for negative firing rates, but we assume
that the means and variances are such that this has a small effect. Substituting (13)
into Equation (11), we find (see, for example, Kay, 1993)

IF(x) = f ′(x)T Q−1(x)f ′(x) + 1

2
Tr

[
Q′(x)Q−1(x)Q′(x)Q−1(x)

]
(14)

5



where Tr stands for the trace operation,

Q′(x) = dQ(x)

dx
and f ′(x) = df(x)

dx
. (15)

When Q is independent of x , as it is for additive noise and limited range correla-
tions, this reduces to

IF(x) = f ′(x)T Q−1f ′(x) . (16)

Equations (16) and (14) are the basis for all our results. To apply them we need
the inverses of the covariance matrices which are, in the additive case

[Q−1]i j = δi j(Nc + 1 − c) − c

σ 2(1 − c)(Nc + 1 − c)
(17)

in the multiplicative case,

[Q−1(x)]i j = δi j(Nc + 1 − c) − c

fi(x) f j(x)σ 2(1 − c)(Nc + 1 − c)
(18)

and, in the case of correlations with limited range

[Q−1]i j = 1 + ρ2

σ 2(1 − ρ2)

[
δi j − ρ

1 + ρ2

(
δi+1, j + δi−1, j

)]
. (19)

4 Results

4.1 Additive Noise

The Fisher information in the additive case is computed by substituting the corre-
lation matrix (7) into Equation (16) and doing the necessary algebra. The result
depends on two sums,

F1(x) = 1

N

∑
i

(
f ′
i (x)

)2
and F2(x) =

(
1

N

∑
i

f ′
i (x)

)2

. (20)

These have been scaled to be of order one for the case of uniform tuning curve
placement. In terms of these quantities,

IF(x) = cN 2[F1(x) − F2(x)] + (1 − c)N F1(x)

σ 2(1 − c)(Nc + 1 − c)
. (21)

As N tends to infinity,

IF(x) → N [F1(x) − F2(x)]

σ 2(1 − c)
(22)
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which grows with N and c provided that F1(x) − F2(x) > 0. Note that, aside from
the factor of F1(x) − F2(x), the inverse of this expression matches the variance
of Equation (5). For large N , a uniform array of tuning curves should generate
functions F1(x) and F2(x) that are insensitive to the values of either x or N (indeed,
this is our definition of uniform tuning curve placement). Tuning curve arrays that
are symmetric with respect to the sign flip x → −x (that is, for every neuron with
tuning curve f (x) there is another neuron with tuning curve f (−x)) have F2(x)=0.

In the additive noise case, the inverse of the Fisher information, which deter-
mines the minimum unbiased decoding error, decreases as 1/N for large N , and
also decreases as a function of c, the degree of correlation. The Fisher information
diverges, and the minimal error goes to zero as c approaches one. As c → 1, any
slight difference in the tuning curves can be exploited to calculate the noise exactly
and remove it.

Zhang and Sejnowski (1998) have noted an interesting scaling property of the
Fisher information that also appears in our results. They considered the simulta-
neous encoding of D variables by a population of neurons, and studied the effect
of changing tuning curve width on encoding accuracy. If the widths of the tuning
curves of the encoding population are scaled by a parameter w, we expect F1 to
scale like wD−2. The factor of wD reflects the number of responding neurons, while
the factor w−2 is due to the squared derivative. For simplicity, we take F2 = 0.
Then, the Fisher information satisfies IF ∝ NwD−2/σ 2 in agreement with the re-
sults of Zhang and Sejnowski (1998).

The Fisher information we have computed increases as a function of c and N
unless F1(x)− F2(x) = 0 or F1(x)− F2(x) → 0 for large N . By the Cauchy-
Schwartz inequality F1(x) ≥ F2(x). For large N , F1(x)− F2(x) could go to zero
if both F1(x) → 0 and F2(x) → 0. We define the tuning curve coverage as being
dense if F1(x) �→ 0 for any x , since this implies that as more neurons are added,
a fixed fraction respond significantly to x . By the condition for equality in the
Cauchy-Schwartz inequality, the other alternative, F1(x)= F2(x), requires f ′

i (x) to
be independent of i or, equivalently,

fi(x) = p(x) + qi (23)

for any function p and numbers qi . Thus, the Fisher information will fail to grow
as a function of c and N only if there is an additive separation of dependency be-
tween the value x and the index i . This means that correlation is only harmful in
the case where all the neurons share the same tuning dependence on x . This is not
normally the case since neurons almost always have some variability in their stim-
ulus preferences. Of course, we must assume that the mechanism that reads out the
encoded quantity takes advantage of this variability and does not simply perform
an averaging operation.
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4.2 Multiplicative Noise

When Q(x) is given by Equation (8), the Fisher information defined by Equation
(14) depends on the logarithmic derivatives of the average firing rate tuning curves

g′
i(x) = 1

fi(x)

d fi(x)

dx
= d ln fi(x)

dx
. (24)

In particular, it depends on the sums

G1(x) = 1

N

∑
i

(
g′

i(x)
)2

and G2(x) =
(

1

N

∑
i

g′
i(x)

)2

(25)

and is given by

IF(x) = cN 2[[G1(x) − G2(x)] + (1 − c)N G1

σ 2(1 − c)(Nc + 1 − c)

+ [N 2c(2 − c) + 2N (1 − c)2]G1(x) − c2 N 2G2(x)

(1 − c)(Nc + 1 − c)
. (26)

For large N , this approaches the limit

IF(x) → N [G1(x) − G2(x)]

σ 2(1 − c)
+ N [(2 − c)G1(x) − cG2(x)]

(1 − c)
. (27)

The Fisher information for multiplicative noise contains one term that depends
on the noise variance σ 2, and another term that, surprisingly, is independent of σ 2.
This second term arises because, with multiplicative noise, the encoded variable
can be estimated from second-order quantities, not merely from measurements of
the firing rates themselves.

The Fisher information of Equation (27) is proportional to N and is an increas-
ing function of c provided that G1(x) > G2(x). Since G1(x) ≥ G2(x) by the
Cauchy-Schwartz inequality, the only way to modify this behavior is if G1(x) =
G2(x). This condition only holds if g′

i(x) is independent of i or, equivalently, if

fi(x) = p(x)qi + r(x) + si (28)

for any functions p and r and numbers qi and si . This is multiplicative separability
rather than the additive separability of Equation (23). As in the case of additive
noise, the Fisher information with multiplicative noise increases with correlation
and grows linearly with N unless a contrived set of tuning curves is used.

4.3 Limited Range Correlations

In both of the cases we have studied thus far, the accuracy of the population code,
quantified by the Fisher information, increase both as a function of N and c. While
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the linear dependence of the Fisher information on N appears quite general, there
are cases in which introducing correlation decreases rather than increases IF (John-
son, 1980b; Snippe & Koenderink, 1992). One example is provided by the limited
range correlations described by the matrix of Equation (9). The Fisher information
for this case is

IF(x) = N (1 − ρ)F1(x)

σ 2(1 + ρ)
+ N 1−2/DρF3(x)

σ 2(1 − ρ2)
(29)

where F1 is as given above, D is the number of encoded variables, and (provided
that x is away from the edges of the range covered by the population tuning curves)

F3(x) = N 2/D−1
N∑

i=1

(
f ′
i+1(x) − f ′

i (x)
)2

. (30)

The power of N in the definition F3(x) is chosen so that it is independent of N for
uniform tuning curve coverage. As N gets large, the distance between neighboring
tuning curves decreases as N−1/D, and the difference between their derivatives is
proportional to this factor.

For a fixed value of N , the Fisher information in Equation (29) is a nonmono-
tonic function of the parameter ρ that determines the range and degree of the cor-
relations. The first term in Equation (29) is a decreasing function of ρ and hence
of L , the correlation length introduced in Equation (10), while the second term has
the opposite dependence. For a fixed N value, the first term dominates for small L ,
and the second dominates for large L .

For any finite value of D, the first term in Equation (29) will dominate for large
N , so as N → ∞

IF(x) → N (1 − ρ)F1(x)

σ 2(1 + ρ)
. (31)

Note that this limit is approached more rapidly for small D than for large D. The
expression in (31) is a decreasing function of ρ, so in this case, unlike the additive
and multiplicative cases, increasing correlation decreases the Fisher information.
However, the Fisher information still grows linearly with N for any ρ < 1. The
only way to prevent the Fisher information from growing with N is to force ρ

nearer and nearer to 1 as N → ∞. For example, if ρ = c1/N , for 0 < c < 1, the
Fisher information tends to a constant as N → ∞.

5 Discussion

We have studied how correlations between the activities of neurons within a coding
population affect the accuracy with which an encoded quantity can be determined
or discriminated (Johnson, 1980b). We find that, generically, correlations between
units do not prevent the Fisher information from growing linearly with the number
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of encoding neurons, and correlations can either improve or degrade decoding ac-
curacy depending on the form of the correlation matrix. Only in the limit as the
correlations get very close to 1 can this behavior change in some circumstances.
Since our results are based on the Fisher information, they apply only to unbiased
estimates. However, biased estimates would presumably be used only to further
improve accuracy, and thus the increase in accuracy with N would not be destroyed
by using a biased estimate. Thus, optimal population-based estimates do not suffer
from the limitations that correlation imposes on estimates of average firing rates.
While averaging can be used to obtain more accurate firing-rate estimates from a
group of neurons, it does not improve the accuracy of a population decoding proce-
dure.

There are nevertheless possible lacunæ in our analysis. We only considered rel-
atively simple noise models. We also used noise with Gaussian statistics. Poisson
noise would be an obvious alternative and would entail slightly different calcu-
lations. Finally, we did not consider the computational complexity or biological
implementation of the optimal decoding algorithms, although a good point of de-
parture would be the work of Pouget et al (1998) showing how to perform ML
inference using a recurrent network in the case without correlations.

The most relevant requirement for retaining the improved accuracy provided
by large populations of encoding neurons is that the neurons should have different
selectivities to the quantity they are jointly encoding. In particular, their tuning
curves must not be additively or multiplicatively separable. Tuning functions that
are commonly adopted in modeling work and seen in biological systems do not
appear to have these problematic features.
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