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1 Introduction

Unsupervised learning is largely concerned with finding structure among
sets of input patterns such as visual scenes. One important example of
structure comes in cases that the input patterns are generated or caused in
a systematic way, for instance when objects with different shapes, surface
properties and positions are lit by lights of different characters and viewed
by an observer with a digital camera at a particular relative location. Here,
the inputs can be seen as living on a manifold that has many fewer dimen-
sions than the space of all possible activation patterns over the pixels of the
camera, otherwise random visual noise in the camera would appear like a
normal visual scene. The manifold should correctly be parameterized by
the generators themselves (ie the objects, the lights, etc) (see Hinton and
Ghahramani, 1997).

The Helmholtz machine (Dayan et al, 1995) is an example of an approach
to unsupervised learning called analysis by synthesis (eg Neisser, 1967).
Imagine that we have a perfect computer graphics model, which indicates
how objects appear to observers. We can use this model to synthesize in-
puts patterns that look just like the input patterns the observer would nor-
mally receive, with the crucial difference that, since we synthesized them,
we know in detail how the images were generated. We can then use these
paired images and generators to train a model that analyses new images
to find out how they were generated too, ie that represents them accord-
ing to which particular generators underlie them. Conversely, if we have
a perfect analysis model, which indicates the generators underlying any
image, then it is straightforward to use the paired images and generators
to train a graphics model. In the Helmholtz machine, we attempt to have
an imperfect graphics or generative model train a better analysis or recog-
nition model; and an imperfect recognition model train a better generative
model.

There are three key issues for an analysis by synthesis model. First is the
nature of the synthetic or generative model – for the Helmholtz machine,
this is a structured belief network (Jordan, 1998) that is a model for hier-
archical top-down connections in the cortex. This model has an overall
structure (the layers, units within a layer, etc), and a set of generative pa-
rameters, which determine the probability distribution it expresses. The
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units in the lowest layer of the network are observable, in the sense that it
is on them that the inputs are presented; units higher up in the network are
latent, since they are not directly observable from inputs. The second issue
for an analysis by synthesis model is how new inputs are analyzed or rec-
ognized in the light of this generative model, ie how the states of the latent
units are determined so that the input is represented in terms of the way
that it would be generated by the generative model. For the Helmholtz
machine, this is done in an approximate fashion using a second structured
belief network (called the recognition model) over the latent units, whose
parameters are also learned. The recognition network is a model for the
standard, bottom-up, connections in cortex. The third issue is the way
that the generative and recognition models are learned from data. For
the wake-sleep learning algorithm for the stochastic Helmholtz machine
(Hinton et al 1995), this happens in two phases. In the wake phase, the
recognition model is used to estimate the underlying generators (ie the
states of the latent units) for a particular input pattern, and then the gen-
erative model is altered so that those generators are more likely to have
produced the input that is actually observed. In the sleep phase, the gen-
erative model fantasizes inputs by choosing particular generators stochas-
tically, and then the recognition model is altered so that it is more likely to
report those particular generators, if the fantasized input were actually to
be observed.

2 The Generative Model

Figure 1 shows an example of a three layer Helmholtz machine, involving
(for the sake of simplicity) binary, stochastic, units. The generative model
uses top-down biases and weights G = fgx; gy

; g
d
;G

xy
;G

ydg to parameter-
ize a probability distribution over the input units d = (d1; d2; : : : ). In this
model, the units within each layer are conditionally independent given the
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binary states of the layer above (this is called a factorial property). Thus
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P[xi;G] (1)
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and so
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X
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where �(u) = 1=(1+ exp(�u)) is the standard sigmoid function. Although
the units y are conditionally independent given the states of the units x

in the layer above, they are not marginally independent, ie x can capture
correlations in the states of y, and likewise for d. This top-down genera-
tive model is a simple example of a sigmoid belief net (Neal, 1992; Jordan,
1998). The conditional independence within a layer makes it very straight-
forward to generate a sample d from P[djG] by fantasizing a sample x ,
then y given x and then d given y .

3 The Recognition Model

When the generative model is used to create such a complete fantasy, we
consider x and y as the generators of d . The task for the recognition
model is to take a new example d and report the state(s) of x and y that
might have generated it. Using Bayes theorem, we know that

P[x;yjd;G] = P[djx;y;G]
P[x;G]P[yjx;G]

P[d;G]
(6)
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It is straightforward to calculate all the terms on the right hand side except
for the denominator P[d;G], which involves a sum over all the possible
states of x and y (a set which grows exponentially large as the number of
elements in x and y grows). Thus, an approximation to P[x;yjd;G] is usu-
ally required. The stochastic version of the Helmholtz machine (the only
version we discuss here) uses for approximate recognition a bottom-up,
belief network (see figure 1) over exactly the same units giving a probabil-
ity distribution Q[x;yjd;R] = Q[yjd;R]Q[xjy;R] using a separate set of
parameters, the bottom-up biases and weights R = frx; ry;Rdy

;Ryxg. A
critical approximation is that the recognition model is assumed to be fac-
torial in the bottom-up direction, eg y1 is independent of y2 given d. Over
the course of learning, it is intended that Q[x;yjd;R] should come to be as
close to P[x;yjd;G] as possible. Just as it is simple to generate a sample,
ie a fantasy, top-down from the generative model; it is easy to generate
a sample, ie to recognize the input in terms of its generators, bottom-up
from the recognition model.

4 Wake-Sleep Learning

As for many unsupervised learning methods, the underlying goal
of wake-sleep learning is to perform maximum likelihood density
estimation by maximising the log probability of the observed data
D = fd(1);d(2); : : :g under the generative model, that is E(G) =P

t
logP[d(t)jG]. One key idea, due to Neal and Hinton (1998); Zemel

(1994) is that

logP[d;G] =
X
x;y

P[x;yjd;G] logP[x;y;d;G] +H [P[x;yjd;G]] (7)

�
X
x;y

Q[x;y;d;R] logP[x;y;d;G] +H [Q[x;y;d;R]] (8)

= logP[d;G]� KL [Q[x;y;d;R];P[x;yjd;G]] (9)
� �F [d;R;G] (10)

where, H[A] = �
P

a
A[a] logA[a] is the entropy of probability distri-

bution A, KL[A;B] =
P

a
A[a] logA[a]=B[a] is the Kullback-Liebler (KL)

divergence between two distributions A and B, and, in inequality 8,
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Q[x;y;d;R] can be any probability distribution over x;y. From equa-
tion 9, equality holds when Q[x;y;d;R] is the true analytical distribution
P[x;yjd;G]. Expression F [d;R;G] can be seen as a Helmholtz free energy,
hence the name of the machine.

During the wake phase, a single pattern dÆ is sampled from D, and is pre-
sented to the recognition model. This is executed bottom-up to produce
a single sample yÆ given d and xÆ given yÆ. Then, the parameters G of
the generative model are changed using stochastic gradient ascent of the
lower bound to the log probability, ie proportionally to

rG logP[x
Æ
;yÆ;d;G] = rG flogP[x

Æ;G] + logP[yÆjxÆ;G] + logP[dÆjyÆ;G]g

For activation functions such as those in equation 5, this leads to particu-
larly simple ‘delta’ learning rules such as
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in which the output of the recognition model is used as the target for the
generative model.

The ideal for the sleep phase would be to change the recognition weights
R using stochastic gradient descent also of the KL divergence in equa-
tion 9. Unfortunately, this is not generally tractable. The second key
idea in wake-sleep learning is to attempt during sleep to minimize
KL [P[x;yjd;G];Q[x;y;d;R]] instead. This is not the same, since the KL
divergence is not symmetric, although they are equal at their joint min-
imum where P[x;yjd;G] = Q[x;y;d;R]. The KL divergence the wrong
way round can be minimized by fantasizing sample x ;y and d from the
generative model, and then changing the recognition weights according to

rR logP[x ;y ;d ;R] = rR flogP[d ;R] + logP[y jd ;R] + logP[x jy ;R]g

For activation functions such as those in equation 5, this leads to the same
simple ‘delta’ learning rules as for the generative model, except that the
output of the generative model is used as the target for the recognition
model.

Since sleep learning involves an approximation, it is only in very special
cases (see Neal and Dayan, 1997) that it is possible to prove even that it
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is appropriately stable. Nevertheless, the model has been shown to work
quite well in practice. Figure 1B shows the result of applying wake-sleep
learning to a set of input patterns (left column) that are binary images
of the handwritten digit ‘9’. The right column shows fantasized samples
following learning, and these can be seen to be generated by a distribution
close to that in the training distribution.

5 Discussion

As a directed belief network for analysis by synthesis that is trained ac-
cording to maximum likelihood density estimation, the Helmholtz ma-
chine lives in what has become a rather crowded space. Congeners in-
clude probabilistic autoencoders (see Zemel, 1994); forward-inverse mod-
els (Kawato, Hayakama and Inui, 1993), maximum likelihood Indepen-
dent Component Analysis (Bell and Sejnowski, 1995), sparse coding mod-
els (Olshausen and Field, 1996), hierarchical Gaussian models (Luettgen
and Willsky, 1995; Rao and Ballard, 1997), mean field models (see Jordan,
1998), and rectified Gaussian belief networks (Hinton and Ghahramani,
1997). In this context, the key property of the Helmholtz machine is that
it uses an explicit recognition model which has its own parameters rather
than performing recognition by an iterative process involving only the pa-
rameters of the generative model. In some ways this is an advantage – in
particular, recognition can occur swiftly in a single pass. Learning during
the sleep phase can be considered as a way of caching knowledge about
how to do recognition effectively. In other ways it is a disadvantage, since
the recognition model introduces a extra set of parameters that need to
be learned and since, unlike the iterative mean field recognition methods
that underlie most of the architectures mentioned above, the approxima-
tion involved in the recognition model in the Helmholtz machine cannot
be tailored on-line to the particular input pattern that is presented. An-
other key feature is that, unlike many of these methods, the Helmholtz
machine is explicitly designed to be hierarchical – units in one layer cap-
ture (ie both represent and generate) correlations in the layer below. Un-
like Independent Components Analysis, for instance, units within a layer
are not forced to be marginally independent in the generative model, only
conditionally independent given the activities in the layer above. This po-
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tentially allows it a much richer representation of the inputs. Also, the
recognition model in the Helmholtz machine allows at least some correla-
tions among the states of the hierarchical generators, a feature denied to
mean field methods.

The Helmholtz machine also bears an interesting relationship to the Boltz-
mann machine (Hinton and Sejnowski, 1986), which can be seen as an
undirected belief net. In the Boltzmann machine, which also lacks an ex-
plicit recognition model, a potentially drawn-out process of Gibbs sam-
pling is used to recognize and generate inputs, since there is nothing like
the simple, one-pass, directed recognition and generative belief networks
of the Helmholtz machine. Also, the Boltzmann machine learning rule
performs true stochastic gradient ascent of the log likelihood using a con-
trastive procedure, which, confusingly, involves wake and sleep phases
that are quite different from the wake and the sleep phases of the wake-
sleep algorithm. The two phases of the Boltzmann machine contrast the
statistics of the activations of the network when input patterns are pre-
sented with the statistics of the activations of the network when it is run-
ning ‘free’. This contrastive procedure involves substantial noise and is
therefore slow. In the wake-sleep learning procedure for the Helmholtz
machine, the wake and sleep phases are not contrastive. Rather, the recog-
nition and generative models are forced to chase the other. Hinton’s (1999)
recent product of experts (PoE) architecture, which can be seen as a re-
stricted Boltzmann machine, is more closely related to the Helmholtz ma-
chine, since it uses a model for which recognition truly has the factorial
structure that is only approximate here. The PoE model also uses a differ-
ent, and more efficient, learning rule than the Boltzmann machine.

The most important open issue for the Helmholtz machine as a model
of top-down and bottom-up connections in the cortex is how to weaken
the approximation that the recognition and generative models are facto-
rial within layers, without destroying the simplicity of sampling from and
learning the models.
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Figure 1: Helmholtz machine. A) Structure of a three-layer Helmholtz
machine, with generative weights and biases G (dashed) and recognition
weights and biases R (solid). B) Handwritten digit example. The left col-
umn shows eight samples from a training set of binarised, 8�8, handwrit-
ten ‘9’s; the right column shows eight samples produced by the generative
model after training. The training set is as described in Hinton et al (1995).
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