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Levels of analysis in neural modeling

Abstract

Neural systems are analyzed by building multiple levels of descriptive and ex-
planatory mathematical models. Parallel to these are interpretive, computational,
models, showing how information is represented and manipulated.

1 Levels of Organization in the Brain

The construction and refinement of qualitative and quantitative models for observed phe-
nomena is the standard practice in neuroscience, just as it is in all other scientific disci-
plines. What particularly distinguishes neural modeling, apart from the sheer complexity
of the phenomena, is that brains are computational devices, transducing, representing,
manipulating, and storing information, and using this information to control actions. The
most comprehensive neural models must therefore play the dual role of accounting for
experimental data and interpreting it in terms of underlying computations. Understand-
ing what neural models are, what their connections to experimental data are, and how to
build and use them in practice, is tricky because of the complexity and the multiple goals
for modeling.

One key idea for structuring the enterprise of modeling that has many, and confusingly
different, manifestations, is that of different levels of organization. The confusion comes
because there are at least four different, though partially overlapping, threads to this idea.
One thread is the standard one of scientific reduction, describing observable phenomena
in qualitative and quantitative detail, and explaining them in terms of descriptions of their
underlying substrates at lower and less abstract levels. A second thread, that is dual to
this one, is that of the construction or synthesis of systems to execute some particular task.
Here, the use of different levels (just like the use of subroutines and procedures in writing
computer programs) is a conventional divide-and-conquer strategy in the face of design
complexity. A third thread, originally suggested by David Marr, and widely attacked for
being too rigid, is associated specifically with computational modeling and involves a com-
putational level, which is an abstract description of the goal of the task, and the logic of the
strategy by which it is to be satisfied, an algorithmic level, which is a description of the
way that information should be represented and algorithmically manipulated in the ser-
vice of carrying out the task, together with an implementational level, which is a description
of the way that these representations and manipulations are instantiated in neural hard-
ware. To avoid confusion, we will reserve the word planes for these three computational
levels. Understanding these threads of levels of organization is critical to understanding
the construction and critique of neural models.

The fourth and final thread is that of levels of processing as a strategy for manipulating
and extracting information from input. This is best exemplified by the visual system of pri-
mates. In some primates, tens of different structurally- and functionally-defined areas of
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the brain are devoted wholly or partially to analyzing visual information. On the basis of a
number of lines of evidence, including characteristic layers of termination of connections,
these areas appear to be organized in a somewhat loose hierarchy, starting from the low-
est level in primary visual cortex, where cells tend to have comparatively small receptive
fields (ie are directly responsive only to a small area of visual space) and simple response
properties (for instance, responding to small bars of light at particular orientations), all
the way up to much higher levels involving areas such as inferotemporal cortex, where
cells have large receptive fields and complex response properties (for instance, responding
to pictures of particular classes of faces, but not other, apparently similar objects). Simi-
larly, when building machines to process images for such tasks as object recognition, one
can build a processing hierarchy, in which the visual input is subjected to sequences of
manipulations leading to the answer.

This idea of a processing hierarchy is distinct from the idea of an analytical hierarchy. The
latter, which is the main focus of this review, applies whatever form neural computations
happen to take – it is about describing and explaining the behavior of systems of any sort.
The former applies because this is how neural information processing often appears to be
organized.

2 Types of Neural Model

Conventional reductive models

The first thread to the idea of levels concerns standard reductive modeling. For the practi-
cal (as opposed to the philosophical) aspects of this, models are useful in at least two ways:
i) describing neural phenomena, and ii) providing a means for reductionist explanations of
the phenomena, by appealing to the mechanisms that might actually be responsible for
generating the phenomena in the first place. These mechanisms themselves are usually
understood in terms of models, and so the modeling process is recursive. Although mod-
els need not be expressed as a set of mathematical equations, quantifying them in some
way is essential to be able to check whether the mechanisms postulated (or rather the
models of the mechanisms postulated) are really capable of capturing the phenomena to
the desired degree of accuracy.

An example is modeling of the shape over time of the voltage inside an axon (relative to
extra-cellular space) during the passage of an action potential or spike. The data can be
characterized at some level of detail, such as the time course of the voltage averaged over
a large number of spikes. The data can be summarized, at least within the approximation
of experimental error, by any number of different descriptive quantitative models. For
instance one could tune the parameters of various high order polynomials or piecewise
linear functions to replicate the shape of the spike accurately. By contrast to these non-
mechanistic descriptions, Alan Hodgkin and Andrew Huxley, in their classic study, were
interested in explaining how action potentials arise, and therefore constructed a model on
the basis of what they expected about the way that cells might manipulate the potential
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difference between inside and outside. They had evidence that the basic mechanism was
some way for the axon to change its permeability to particular ions, and so postulated as
a mechanism a form of channel or gate in the cell’s membrane. They built an quantitative
explanatory model of the action potential from a quantitative descriptive model of the gate,
fitting the parameters of the model to make correct the form of the overall action potential
it produced.

Following the advent of more powerful experimental techniques, we can now understand
Hodgkin and Huxley’s deterministic phenomenological channel model in terms of a large
number of tiny individual channels in the membrane which open and close in a stochas-
tic manner. The summed effect of all these individual channels matches Hodgkin and
Huxley’s model very closely. So we can now build an explanatory model of the action po-
tential using descriptive models of these gates. Based on even more recent experimental
evidence, we could go further, and try to build explanatory models of these gates from our
knowledge of their molecular structure.

Another example is the phenomenon of the behavior of an interconnected network of neu-
rons. This can be described in terms of a (relatively complicated) dynamical state descrip-
tion, but it might also be explained in terms of descriptions of the properties of the indi-
vidual neurons and their connections. In turn, the descriptions of the individual neurons
can be explained in terms of their detailed geometry and the membrane-bound channels
they contain.

The general conclusions from such examples are that there are different levels of model, cor-
responding to different levels of reduction of a phenomenon, and, often in neuroscience,
different levels of anatomical detail. There are descriptive models at a level, which capture
the behavior without much regard to the substrate, and explanatory models, which capture
the behavior by reducing it to models at lower levels. Quantitative models tie together
the different levels because they allow proof, or at least numerical demonstration, that the
behavior assumed at one level can truly account for the behavior that it is intended to ex-
plain. Almost always the models at a level are only approximate, with models at lower
levels being faithful to more intricate details of the experimental observations. Indeed,
there is typically a match between the degree of abstraction of the models at a level, and
the degree of abstraction in the description of the data at that level. For instance, the gating
model for spiking is inherently deterministic, whereas its single-channel explanation is in-
herently stochastic, and, thereby, is able to fit more detailed aspects of experimental data.
Equally, we later consider models of neurons at different levels of abstraction, from firing-
rate models, which abstract out even spikes, to compartmental models that capture even
the detailed geometry of neurons and the effect of this on things like dendritic integration.

One can think of the models at different levels as constraining each other – the model of the
stochastic channel has to behave correctly to produce the overall spike, if such gates are
really to be responsible for generating action potentials. Similarly, explanatory models of
the action potential are constrained by what is possible at lower levels. One can also think
of the different levels as liberating each other – there are many different gating mechanisms
that have the same qualitative behavior – so if one is only interested in the effect of gating
and not its cause, then one need not be concerned with the explanatory details of the
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model. In practice, there is not really such a strong separation between explanatory and
descriptive models. For instance, Hodgkin and Huxley did not just build any descriptive
model of their phenomenological gate. Indeed, so close was their descriptive model to the
true underlying mechanism, that we can now interpret in terms of the latter some of the
parameter values that they found by their fitting process.

Computational interpretive models

Computational models start from the premise that many of the tasks for brains are best
characterized as involving computations. For example, for a bee to forage optimally in a
field containing two types of flowers with different characteristics of provision of nectar, it
must continually compute the choice between sorts of flower to land on. Equally, to catch
a flying ball in a hand, the brain has to take visual input about where the ball is and how
it is moving, and transform this into a sequence of motor commands to move the hand
to an appropriate place at an appropriate time, with the fingers arranged correctly. This
transformation happens in various parts of the visual and motor systems of the brain.

Computational modeling is about imputing a computational task and interpreting the col-
lective behavior of the neural components of the system in terms of this task. In these
cases, the tasks involve generating the appropriate output, such as the choice of the better
flower or the sequence of actions to catch the ball, from the input, such as the past quali-
ties of the flowers or the visual impression of the ball over time. The issue is not whether
brains actually are computers – it is about these imputations and interpretations.

The key aspects of computations are representation, storage, and transformation or algorithmic
manipulation. Computational modeling is therefore about understanding (ie interpreting)
how neural machinery can represent and store information about aspects of the outside
world, and how it can transform information from one form to another in the satisfaction
of tasks. As in a standard computer, the semantics of the computation are implemented
by the syntax of the physical substrate. Computational models can themselves be decom-
posed into the three planes described above, from an abstract description of the underlying
task, through a more concrete description of the representations and algorithms adopted
to satisfy the task, to a description of how these representations and algorithms are actu-
ally implemented. There is not necessarily a single description in the computational and
algorithmic planes – eg there can be many different algorithmic ways of expressing the
same transformation.

Computational models satisfy many of the same properties as conventional models. First,
in the same way that there are different levels of conventional models, there are different
levels of computational models, paralleling a decomposition of the underlying compu-
tation. Second, there are both descriptive and explanatory computational models. For
example, take the case of a single, spiking, neuron. One can build a descriptive model of
what the output of a neuron represents by presenting all possible classes of input to the
animal and recording what spikes it produces. However, one can also build an explana-
tory model by working out what inputs the neuron has, what these inputs represent, and
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what transformations the neuron performs on these inputs.

The third similarity between computational and conventional models is functionalism,
that the same abstractly defined computation can, in principle, be carried out by many
different representations and algorithms, and the same algorithm instantiated in many
different forms of hardware. Since the overall tasks that need be solved (such as visual
object or speech recognition) are extremely complex, it is quite likely that the neural sub-
strate, as an evolved rather than a designed system, is only capable of instantiating an
approximation to the sort of computational description of the tasks that we can write suc-
cinctly. Therefore, the system does not really possess functional equivalence between the
planes – the implementational planes implement functions that might be slightly different
from the idealised ones described in the computational planes, with differences that have
observable consequences.

From the perspective of analyzing neural systems, computational and conventional mod-
eling should work hand in hand. Consider a single level. At the implementational plane of
the computational model lies exactly the experimental phenomena for which conventional
reductive modeling provides an account. The explanatory reduction of these phenomena
comprises the lower level of the conventional model. It must also comprise the imple-
mentational plane of the lower level of the computational model. The algorithmic and
computational planes at multiple levels of the computational model, which go along with
the implementational plane, will duly be forced to be consistent with the multiple levels
of the conventional model.

The ultimate goal is to have conventional and computational models for neural function
that are mutually consistent, extending from the lowest levels of molecular dynamics to
the highest levels of ethology. We would then have a complete, quantitative, multi-level
understanding of how the brain executes which tasks. Of course, such exhaustiveness is far
off at the moment. The coverage of conventional and computational models of any sorts
is very poor, and appropriate reductions and interpretations are few and far between.

In practice, computational models are often used synthetically rather than analytically.
That is, networks of neurons, described down to some level of abstraction, are constructed
to perform a computational task, and the behavior of the model neurons is compared with
that observed in physiological (and other) experiments, justifying the model. In such syn-
thetic treatments, the multiple levels of computational modeling can be made explicit, and
the reduction between the levels can be shown to be exact. One popular synthetic tech-
nique is to start from an idea about optimal or normatively correct ways to perform a task,
and to seek implementations involving biologically reasonable components.

3 Degrees of Modeling Detail

To a very coarse approximation, one can separate out three different classes of quantita-
tive models in common use, namely conductance-based models, integrate-and-fire mod-
els, and firing-rate models. The different models are naturally couched at different levels
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of abstraction and, as described in general terms above, are used to account for data that is
similarly collected at different levels of abstraction. Far from all the models that are built
and used fit neatly into these categories, but they nevertheless give a flavor of the differing
degrees of neural and analytical detail that are regularly employed.

Conductance-based models

Conductance-based models place their emphasis on describing single or just a few neu-
rons with a high degree of detail. They typically approximate the structure of an individ-
ual neuron by multiple, interconnected, compartments, each of which is treated as being
electrically compact. The whole set of compartments is designed to be more or less faithful
to the geometry of the neuron, including such facets as branching points of dendrites and
the diameters and lengths of different parts. There is an elaborate art to representing cells
that have complex geometrical structures in terms of just a few compartments, or even just
a single compartment, a reduction that is often necessary to make computations involving
the models adequately quick. In standard conductance-based models, each compartment
is given an assortment of active channels, such as voltage sensitive or synaptic channels.

Conductance-based models of single cells are ideal for explaining phenomena to do with
spikes and the thresholds for initiating spikes, the precise effects of synaptic input, burst-
ing, spike adaptation, spikes that propagate backwards up the dendritic tree, and the like.
One problem with these models is that there is rarely good experimental data on the ac-
tual locations on the dendritic tree or the strengths of the active channels. Such data are
obviously critical to making the models faithful to the neural substrate. More generally,
conductance-based models involve a very large number of parameters, and the values of
only a few of these can be determined from experiments. A second problem with these
models is that they are so complex that they cannot readily be analyzed, and yet can ex-
hibit a huge range of behaviors depending on the exact values of the parameters.

There are various extensions of this single-cell use of conductance-based models. One is
that it is common to model networks of neurons by connecting together simple (eg single
compartment) conductance-based models through model synapses. This allows simple
network properties to be explored; more complicated networks are typically modeled us-
ing integrate-and-fire models. A second extension is to modeling important internal states,
such as intracellular calcium levels, using the same compartmental structure. This is par-
ticularly important for things like calcium-sensitive potassium channels, which can lead
to phenomena such as spike-rate adaptation. Although compartmental models capture
the electrical geometry of single cells, they rarely capture the three dimensional milieu in
which the cells live.

Integrate-and-fire models

Integrate-and-fire models lie at a level of abstraction above conductance-based models.
Rather than using active channels to implement action potentials, they make the approx-
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imation of using a symbolic model of spike generation coupled with a leaky integrator
model of a cell when its voltage is below the threshold for spike initiation. They also radi-
cally simplify the geometry of cells, eliminating the compartmentalization and including,
at best, a stereotyped time-course for synaptic input and for other time-dependent factors
such as those allowing spike-rate adaptation.

Integrate-and-fire models are good for simulating large, recurrently connected, networks
of neurons. Many mathematical issues about networks, such as the synchronization and
desynchronization of spiking across the whole population, and the effects of different sorts
and sources of noise have been explored through using them. Furthermore, recent evi-
dence suggests that the details of such phenomena as synaptic plasticity are dependent on
such phenomena as precise time differences between pre-synaptic and post-synaptic activ-
ity. The integrate-and-fire model is the simplest form that still outputs spikes, and so can
be used to address such issues. However, integrate-and-fire models pose substantial ana-
lytical difficulties themselves, and sometimes end up being an unhappy medium between
more realistic, but analytically intractable, compartmental models, and highly abstract, but
tractable, firing-rate models.

Firing-rate models

The most abstract level of characterization of neurons abandons spiking altogether, and in-
stead treats the output of cells as being continuous-valued, time-varying, firing rates. This
can be derived as an abstract approximation to integrate-and-fire neurons, under some
assumptions about the time-constants of processes inside cells. Networks of firing-rate
models can be constructed, in which the influence of one cell on another is given by the
product of the pre-synaptic cell’s firing rate and the synaptic strength for the connection.

The main advantages of the firing-rate models are their empirical and analytical tractabil-
ity. Firing-rate models usually involve a mild non-linearity, turning an internal contin-
uous variable like somatic voltage or current into a firing rate (which must be positive).
Therefore, networks of neurons described using firing-rate models can be treated as cou-
pled, non-linear differential equations that can be shown to exhibit dynamical behaviors
such as attraction to one of a set of fixed points, oscillations or chaos. By contrast with
conductance-based models, these often evolve to relatively simple fixed-point or limit-
cycle attractors. The regularities implied by attractor and oscillatory dynamical behaviors
make them ideal as substrates on which to hang analyses of network computation.

Although it is possible to study the effects of synaptic plasticity in the context of
conductance-based or integrate-and-fire models, by far the bulk of the work on compu-
tational analyses has been performed using firing-rate models. Here, with the exception
of studies on recurrent attractor networks, a majority of the work has focused on non-
recurrent, feedforward network models, which are analytically much simpler to handle.
These models take information represented in one way at one level of a processing hier-
archy by the firing rates of a population of neurons, and transform and manipulate it to
represent it in a different way by the firing rates of a population of neurons at a higher
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level of the hierarchy. Rules for plasticity have been seductive for computational model-
ing, since they offer an obvious way for large networks of fairly simple processing units
to come to perform computationally sophisticated tasks, apparently without requiring so-
phisticated programming.

Although the boundaries between them are somewhat blurred, there are three main classes
of learning model. Unsupervised learning models act in a self-organizing manner, extract-
ing statistical structure from input data. They are often used to capture activity-dependent
adaptive processes that are assumed to be operational during development. Reinforce-
ment learning models use evaluative information, ie rewards and punishments, in tempo-
rally complex and controllable environments (such as mazes) and specify how to predict
future returns and choose actions in order to maximize these returns. Supervised learning
models are rather special in that adaptation is based on information both about the in-
puts to the network and the desired outputs. Supervised learning is very extensively used
outside the context of neural modeling. However, in two incarnations, it is important for
neural modeling too. One is when the output of one network is used to train another net-
work. This requires an intricate dance by which neurons in the trained network must have
two sets of input, one of which controls synaptic plasticity in the other. It has been sug-
gested that this might take place under the control of neuromodulators. The other case for
supervised learning is when the key question is whether a particular design of network of
neurons is capable of executing a particular computational task or exhibiting some partic-
ular behavior, or whether the activity of some neurons in a network is consistent with their
playing a role in the solution of a task. In this case, one can attempt to train the network
(for instance by minimizing the discrepancy between the target and the actual outputs),
using procedures that need have no relation to the rules governing neural adaptation.

4 Summary

Partnering conventional, multi-level, reductive, models of experimental observations on
neural mechanisms, are models offering computational interpretations, couched at exactly
the same multiple levels. These models indicate how the neural mechanisms implement
computations, in the sense of representing information and performing algorithmic ma-
nipulations which are appropriate for solving a computationally well-specified task. The
computational and conventional models should ideally mesh completely at all the levels.
Few existing conventional and computational models actually achieve this degree of mu-
tual coherence. Most current modeling is either conventional, at the compartmental and
integrate-and-fire level, or computational, using sophisticated models of synaptic adap-
tation in the face of extremely simplified models of individual neurons, but rarely both
conventional and computational.

There are various suggestions that modeling should really proceed top-down, from the
definition and computational decomposition of abstract tasks to the reductive neural im-
plementation. However, such a strict policy is not productive as a strategy for analyzing
neural systems, because it means throwing away constraints from the experimental data,
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and because it relies on us having adequate, multi-level accounts of the underlying com-
putational tasks, which we presently lack. Instead, both conventional and computational
modeling at multiple levels should progress together.
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