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Abstract

Many recent analysis-by-synthesis density estimation models of cortical

learning and processing have made the crucial simplifying assumption that

units within a single layer are mutually independent given the states of units

in the layer below or the layer above. In this paper, we suggest using either

a Markov random field or an alternative stochastic sampling architecture to

capture explicitly particular forms of dependence within each layer. We de-

velop the architecture in the context of real and binary Helmholtz machines.

Recurrent sampling can be used to capture correlations within layers in the

generative or the recognition models, and we also show how these can be

combined.

1 Introduction

Hierarchical probabilistic generative models have recently become popular for density es-

timation (Mumford, 1994; Hinton & Zemel, 1994; Zemel, 1994; Hinton et al, 1995; Dayan et
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al, 1995; Saul et al, 1996; Olshausen & Field, 1996; Rao & Ballard, 1997; Hinton & Ghahra-

mani, 1997). They are statistically sound versions of a variety of popular unsupervised

learning techniques (Hinton & Zemel, 1994), and they are also natural targets for much of

the sophisticated theory that has recently been developed for tractable approximations to

learning and inference in belief networks (Saul et al, 1996; Jaakkola, 1997; Saul & Jordan,

1998). Hierarchical models are also attractive for capturing cortical processing, finally

giving some computational purpose to the top-down weights between processing areas

which ubiquitously follow the rather better-studied bottom-up weights.

To fix the notation, figure 1 shows an example of a two-layer belief network which pa-

rameterises a probability distribution P[x] over a set of activities of input units x as the

marginal of the generative model P[x;y;G]:

P[x;G] =
P
y
P[x;y;G]

where y are the activities of the coding or interpretative units and G consists of all the

generative parameters in the network. If y are real-valued, then the sum is replaced by

an integral.

One facet of most of these generative models is that the units are organised into layers,

and there are no connections between units within a layer, so that:

P[y;G] =
Y
j

P[yj;G] (1)

P[xjy;G] =
Y
i

P[xijy;G] (2)

This makes the xi conditionally factorial, that is independent of each other given y. The

consequences of equations 1 and 2 are that the generative probability P[x;y;G], given

a complete assignment of x and y is extremely easy to evaluate, and it is also easy to

produce a sample from the generative model. The Helmholtz machine (Hinton et al, 1995;
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Figure 1: One-layer, top-down, generative model which specifies P[y;G] and P[xjy;G]

with generative weights G. The recognition model specifies P[yjx] – the figure shows the

Helmholtz machine version of this in which this distribution has parameters R.

Dayan et al, 1995) uses bottom-up weights to parameterise a recognition model, which is

intended to be the statistical inverse to the generative model. That is, it uses parameters

R to approximate P[yjx;G] with a distribution Q[y;x;R]. One typical approximation in

Q is that the units in y are also treated as being conditionally factorial, ie independent

given x.

Although these factorial assumptions are computationally convenient, there are various

reasons to think that they are too restrictive. Saul & Jordan (1998) describe one example

from a generative standpoint. They built a hierarchical generative model that learns to

generate 10 � 10 binary images of handwritten digits. However, the patterns that even

a well-trained network tends to generate are too noisy – Saul & Jordan (1998) cite their

network for lacking the means to perform ‘clean-up’ at the output layer. Clean-up is a

characteristic role for Markov random fields in computer vision (eg Geman & Geman,
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1984; Poggio, Gamble & Little, 1988), and is a natural task for lateral interactions. Equally,

such lateral interactions can be used to create topographic maps, by encouraging neigh-

bouring units to be correlated (Zemel & Hinton, 1995; Ghahramani & Hinton, 1998).

Even for a generative model such as that in equations 1 and 2 in which the units y are

marginally independent, once the values of x are observed, the y become dependent.

This fact lies at the heart of the belief network phenomenon called explaining away (Pearl,

1988). In the simplest case of explaining away, two binary stochastic units ya and yb are

marginally independent, and are individually unlikely to turn on. However, if one (or

indeed both) of them does actually turn on, then binary x is sure to come on too. Oth-

erwise, x is almost sure to be off x = 0. This means that given the occurrence of x = 1,

the recognition probability distribution over fya; ybg should put its weight on f1; 0g and

f0; 1g, and not on f0; 0g (since some y has to explain x = 1) or f1; 1g (since ya and yb are

individually unlikely). Therefore, the presence of ya=1 explains away the need for yb=1

(and vice-versa). Modeling this conditional dependence requires something like a large

and negative lateral recognition influence between ya and yb. Therefore, it is inadequate

to model the recognition distribution Q[y;x;R] as being factorial.

Finally, although all the statistical models are still much too simplistic, we are interested

in using them to capture aspects of cortical processing and learning. As has long been

known from work in Markov random fields, statistical models whose units have lateral

connections (ie undirected connections and loops) require substantially different treat-

ment from statistical models without lateral connections. It is worthwhile exploring even

simple members of the latter class, even though they may not be accurate models of the

cortex, since lateral connections are so ubiquitous.

Even at a coarse level of descriptive detail, there are at least two different classes of lat-
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eral connections, and we might expect these to have distinctive roles. These have been

most extensively studied in area V1. One set of connections comprises the connections

that form the intra-columnar canonical microcircuit (see Douglas, Martin & Whitteridge,

1989; Douglas & Martin, 1990;1991), connecting cells in layer IV, which receive inputs

from lower layers in the hierarchy, to cells in layer II/III (these are sometimes called ver-

tical connections). The other set is inter-columnar, connecting cells in layers II/III (see

Gilbert, 1993; Levitt, Lund & Yoshioka, 1996; Fitzpatrick, 1996). The latter class (also

called horizontal) are more conventionally thought of as being the lateral connections. In

fact, even these are likely to comprise two classes: the local isotropic connections, that al-

low for interactions within hypercolumns, and the longer range, patchy and anisotropic

connections that mediate interactions between hypercolumns.

Some hints come from the course of development as to the nature of these connections.

For instance, in humans, top-down connections from area V2 to area V1 innervate V1

from birth. However, these fibres terminate in the lowest layers of the cortex, making just

a few synaptic contacts until around three months. At this point they grow up through the

cortical layers and form what are the majority of their synapses, onto cells in layers II/III.

At just this same juncture, axons from other layer II/III neurons in V1 are also growing

and making contacts (Burkhalter, 1993). This suggests the possibility that top-down and

lateral connections might play similar roles, putatively both being part of the generative

model.

We therefore seek ways of using lateral interactions to represent dependencies between

units within a layer. The issues are how lateral weights can parameterise statistically

meaningful lateral interactions, how they can be learned, and how it is possible to capture

both generative and recognition dependencies in one network. The Boltzmann machine

(BM; Hinton & Sejnowski, 1986) is a very natural model for lateral connections, and sam-
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pling and learning in such Markov random fields is quite well understood. We consider

the BM, and also a different recurrent sampling model that obviates the need for the BM’s

negative sampling phase (also called the sleep phase). We will focus on two models. One

is the simplest linear and Gaussian generative model, which performs the statistical tech-

nique of factor analysis (see Everitt, 1984), since this is a paradigmatic example of the

Helmholtz machine (Neal & Dayan, 1997), and since a mean field version of it has been

extensively investigated (Rao & Ballard, 1997). However, lateral models are more interest-

ing in non-Gaussian cases, an extreme example of which involves just binary activations

of the units, and we discuss and experimentally investigate this too.

2 Factor Analysis

Consider the special case of figure 1 and equation 2 in which the units are linear and the

distributions are Gaussian:

y � N [000;�] (3)

xjy � N
�
G

T
y;	

�
(4)

	 = diag
�
�
2
1 ; : : : ; �

2
n

�
(5)

where N [���;�] is a multivariate Gaussian distribution with mean ��� and covariance matrix

�.1 We have omitted the bias terms for convenience. This is just the standard factor

analysis model in statistics (eg Everitt, 1984). If � is a multiple of the identity matrix, I,

then the y are marginally independent (and therefore satisfy equation 1); otherwise they

1Note the different symbols: G is the entire set of generative parameters, including the

weights G and the variances f�2i g. For the moment, we treat the covariance matrix � as

being fixed.
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are marginally dependent. The task for maximum likelihood factor analysis is to take

a set of observed patterns fx�g and fit the parameters G of the model to maximise their

likelihood.

The recognition model is just the statistical inverse of the generative model in equation 5.

In this case, P[yjx;G] is also Gaussian:

P[yjx;G] � N [R�T
x;��]; where (6)

R
� = 	�1

G

�
��1 +G	�1

G
T
��1

(7)

���1 = ��1 +G	�1
G

T (8)

Note that the mean of yjx depends just linearly on the input x, and the covariance matrix

�� does not depend on x at all. The covariance matrix captures the conditional depen-

dence amongst the y during recognition.

One standard way of performing factor analysis is the expectation maximisation algo-

rithm (EM; Dempster et al, 1977; Rubin & Thayer, 1982). During the E phase, an input x is

presented, and the distribution P[yjx] is determined. During the M phase, the generative

weights (G and 	 here) are updated in the light of x and P[yjx;G]. Neal & Dayan (1997)

showed that the wake-sleep algorithm (Hinton et al, 1995) can be used to learn the gener-

ative and recognition weights. Wake-sleep is an iterative approximate form of EM, which

explicitly maintains parametersR for a current recognition modelQ[y;x;R], and requires

for learning nothing more than two phases of application of the delta rule. During the

wake phase, patterns x� are drawn from their distribution in the environment, and a

sample y� is drawn using the current recognition distribution, Q[y�;x�;R]. Then the delta

rule is used to adaptG and f�2i g to reduce
�
x
� �GT

y
�
�T

	�1
�
x
� �GT

y
�
�
+
P

i log �
2
i . For
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instance, the delta rule specifies weight changes to Gia as

�Gia /
�
x
� �GT

y
�
�
a
y
�

i

involving the estimation error x� � GT
y
� of x�. During the sleep phase, samples yÆ

;x
Æ

are drawn top-down from the generative model, and the parameters of the recognition

model are changed using the delta rule again to decrease � logQ[yÆjxÆ;R]. The obvious

parameterisation to use for Q is R = fR;�g, where R is an approximation of R� and �

an approximation of ��.

An important property of the wake-sleep algorithm is that the activities of the hidden

units are specified by the recognition model whilst the generative model is plastic, and

vice-versa. This implies that it is unnecessary to extract samples from a model when its

weights are actually being changed.

We have therefore specified both generative (�) and recognition (�) covariances. In this

paper, we focus on their representation and acquisition in lateral connections. Neal &

Dayan (1997) suggested two possibilities for representing �. One is to note that if the

generative prior over y is rotationally invariant, so � is a multiple of I (which itself is easy

to represent), then there is rotational redundancy in the definition of y andG. This means

that both can be multiplied appropriately by any unitary matrix without affecting the

underlying generative model. In particular, there will always be one privileged rotation

in which the recognition covariance matrix � will be diagonal. The diagonal terms are

straightforward to learn, again using the delta rule. In tests, this model worked quite

well, but would occasionally get stuck in a local minimum.

In the more interesting case in which � is not completely rotationally invariant, it may

not be possible to choose a rotation of the factors consistent with � that makes a general

� diagonal. The other suggestion in Neal & Dayan (1997) was to connect the units in
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Figure 2: The ladder of connections L and the individual covariance terms �
2
i that are

required to capture a full recognition covariance matrix.

y with the ladder (Markov mesh) structure shown in figure 2 (see also Frey et al, 1996;

Frey, 1997). This has just enough representational capacity to model an arbitrary full

covariance matrix �, and can also be learnt using the standard delta rule. However, the

requirement that the connections be laddered is rather inelegant. In non-Gaussian cases,

arbitrary dependencies can be captured by laddered models only if the unit activation

functions are allowed to be sufficiently complex. For a given activation function, it can be

that some dependence is overlooked, and that omitting half the connections is harmful.

Further, if � is not rotationally invariant, then these generative covariances need to be

represented too.

It is therefore natural to seek a model which can represent arbitrary � and � with fully

bidirectional (but not necessarily symmetric-valued) connections, and can also learn ap-

propriate values for these connections.

3 Lateral Models

Consider the case of representing and learning the generative covariances �. The task

becomes: given samples y� (which are produced by the recognition model), specify an
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architecture and learning scheme such that arbitrary new samples can be drawn from the

distribution P[y�] during the sleep phase.

The Gaussian Boltzmann Machine

An obvious choice for a lateral model for the case of factor analysis is a Gaussian-valued

Boltzmann machine. In this, one would have an energy function defined as:

E[y] = �
1

2
y
T
Wy

with a symmetric, negative definite matrix W with Wii< 0 and Wij=Wji.2 This energy

function is used to define a probability distribution according to

P[y] = e
�E[y]

=Z[W] (9)

where Z[W] is the partition function (
R
y
e
�E[y]

dy = (2�)n=2=
p
j�Wj, where n is the di-

mensionality of y). Clearly, equation 9 is just a Gaussian distribution, with covariance

matrix �W�1. We would therefore like W to come to equal ���1.

Given W, we can extract samples from the distribution using the Markov chain Monte-

Carlo method called Gibbs sampling (see Neal, 1993 for an excellent review of Markov

chain methods). For this, we sample yi from the distribution defined by all the other

yj; j 6= i (which we will call y��). This is the Gaussian:

P[yijy��] = N

"
�1

Wii

X
j 6=i

Wijyj;
�1

Wii

#
(10)

2The choice of W rather than �W is somewhat arbitrary – there is a difference of no-

tation between the Hopfield net (and therefore the Boltzmann machine) and a standard

multivariate Gaussian distribution. The Hopfield net uses a convention that the energy

is �1
2
y
T
Wywhereas a Gaussian distribution with covariance matrix � has as its negative

log probability (the equivalent of energy) yT��1
y.
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Provided that we choose the order of updates appropriately, Gibbs sampling is a natural

(albeit possibly slow) way by which to express the distribution. The standard alternative

method involves diagonalising �, which is less practicable using local operations.

The next issue for the Gaussian BM concerns learning, which, at least traditionally, in-

volves two phases (both of which happen during the wake phase of Helmholtz machine).

Of course, learning the matrix � is trivial, since one only needs to observe the correlations

hy�

iy
�

j i where y� are samples provided by the recognition model. However, sampling

during the sleep phase (and, as we shall see, the recognition model) depends on ��1, and

learning this is more complicated.

Positive learning for the BM with fully specified samples is again easy:

�W+
ij / rWij

h�E [y�]i /


y
�

iy
�

j

�
where, y� are once more samples provided by the recognition model. The negative phase

of BM learning is not so easy. Since the partition function is analytically calculable, we

know that

�W�

ij / rWij
logZ[W]� / rWij

log j�Wj = �W�1
ij

(since W = W
T ). Here, and throughout the paper, we write W�1

ij for the ij element of

W
�1. Since, according to equation 9, y really has a multivariate Gaussian distribution

with covariance matrix �W�1, one could estimate �W�1
ij = hy

y

iy
y

ji, producing samples

y
y using Gibbs sampling. It is the closed form for Z[W] that makes it unnecessary.

Combining the two contributions to the weight change, this would make:

�Wij = �W+
ij ��W�

ij /


y
�

iy
�

j

�
+W�1

ij :

The last term discourages W from becoming positive definite since W�1 like W itself is

negative definite. Just as in Amari (1998), the requirement for invertingW can be averted
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through multiplying this learning rule by WW
T =WW, giving the (non-local) learning

rule:

�W /WW



y
�
y
�T
�
+W:

In this Gaussian case, it is therefore possible to avoid the BM’s normal requirement for

a negative phase of learning, since the partition function is analytically calculable. This

simplification is not available for the case of stochastic binary units.

The Direct Method

There is an alternative to using the Gaussian Boltzmann machine. Equation 10 specifies

as a Gaussian the conditional distribution of yi given all the other y��. The mean of this

Gaussian depends linearly on these other variables and its variance is independent of

them. Imagine just learning the parameters of these conditional distributions – ie learning

V and �
2
i = e

�i where

P[yijy��;V] = N

"X
j 6=i

Vijyj; �
2
i

#
(11)

using the delta rule:

�Vik /
1

�
2
i

�
y
�

i �
P

j 6=iVijy
�

j

�
y
�

k

��i /
1

�
2
i

��
y
�

i �
P

j 6=iVijy
�

j

�2
� �

2
i

�
:

based on samples y� drawn from the recognition model. The delta rule is perfectly local,

and is exactly the learning rule used for all other parts of the Helmholtz machine. In this

linear case, when applied with suitable schedule for changing the learning rates, the delta

rule is provably a convergent way of determining P[yijy��] (see, for example, Widrow &

Stearns, 1985). Therefore, the rule will ultimately find appropriate lateral weights. This
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is again without requiring a negative phase of learning, and also without requiring an

analytical form for the partition function.

However, this rule is quite different in form from the BM learning rule. For instance, note

that in general, Vij 6= Vji. Potentially more worrying, for intermediate values of V and

�
2
i before convergence, the sampler (a stochastic cellular automaton, see, eg, Marroquin &

Ramirez, 1991) defined by equation 11 is not nearly as well behaved as that defined by

equation 10. As an example, for equation 10, the precise details of the way that the order

of update of the fyig is irrelevant, provided that all the states are updated sufficiently

often. This is not true for equation 11, since there can be the stochastic equivalent of

cycles. For instance, consider the case in which there are just two factors y1 and y2, whose

states are updated sequentially according to

u1) y
0

2 = by1 + �2

u2) y
0

1 = ay
0

2 + �1

where �i are Gaussian random variables (distributed according to N [0; 1]) and a and b

are weights. If these updates have well-defined terminal behavior (we will see later cir-

cumstances in which they may not) then we can ask whether the distribution of fy1; y2g

depends on whether we stop to take samples before update u1 or before update u2. In fact,

the distribution does indeed depend on this – solving for the fixed points, the asymptotic

covariance matrices of the samples would be

�u1=
1

1� a
2
b
2

0
B@ 1 + a

2
a(1 + b

2)

a(1 + b
2) 1 + b

2

1
CA �u2=

1

1� a
2
b
2

0
B@ 1 + a

2
b(1 + a

2)

b(1 + a
2) 1 + b

2

1
CA

and so only if a= b (or the degenerate case of ab=1) are these the same. Of course, at the

point of convergence of learning, since equations 10 and 11 are the same, the order ceases

to matter. Also, one could artificially force the connections to be symmetric by averaging

the weight changes in both directions.
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Provided the update order is consistent (or consistently random) this might not matter.

Worse is the possibility that the iteration in equation 11 is divergent. This arises from the

fact that making the individual conditional probabilities closer to being correct does not

have a provable relationship to making correct the stationary distribution defined by the

full Markov chain Monte-Carlo method. For the simple example above, if ab > 1, then

the magnitudes of y1 and y2 will get ever larger and the iteration will not lead to a well

defined terminal distribution. This never happened in empirical investigations, and is in

any case avoided in non-linear cases with saturation such as stochastic binary units.

We have therefore defined two ways of allowing for a full generative covariance matrix

for Gaussian factor analysis, at the expense of having to use a Markov chain Monte-Carlo

technique to generate samples. One of the methods is based on the Gaussian BM. The

positive phase of the BM is in any case easy, since there are no hidden units. The nega-

tive phase was made redundant by virtue of the exact partition function and the natural

gradient trick of Amari (1998). The other method, which we call the ‘Direct’ method,

abandoned the energy function of the BM, and instead set out to learn a sampler directly.

This has some attractive features, although one cannot rule out a priori the possibility that

at some intermediate point of learning, the resulting sampler may not work.

The Recognition Model

Exactly the same architecture and learning as the Direct method can be used to learn the

recognition model instead of the generative model. In this case, samples xÆ and yÆ are

drawn from the generative model during the sleep phase of the HM, there are feedfor-

ward recognition weights R from x to y, lateral weights V and variances �2i = e
�i within
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the y layer, and a Gaussian sampling distribution:

P[yijy��;x] � N

"�
R

T
x

�
i
+
X
j 6=i

Vijyj; �
2
i

#
(12)

The weights can be learnt using exactly the delta rule that is used for wake-sleep:

�Rki /
1

�
2
i

�
y
Æ

i �
�
R

T
x
Æ
�
i
�
P

j 6=iVijy
Æ

j

�
x
Æ

k (13)

�Vik /
1

�
2
i

�
y
Æ

i �
�
R

T
x
Æ
�
i
�
P

j 6=iVijy
Æ

j

�
y
Æ

k (14)

��i /
1

�
2
i

��
y
Æ

i �
�
R

T
x
Æ
�
i
�
P

j 6=iVijy
Æ

j

�2
� �

2
i

�
: (15)

This again involves no sampling during learning and nothing like the negative phase of

the BM.

However, there is an alternative way of implementing the recognition model that fits

better with a putative mapping onto cortex in a hierarchical case. This uses the lateral

weights that define the generative model to help implement the recognition model too

– making recognition statistically correct and obviating the use of two sets of lateral

weights, one for the generative model, one for the recognition model. We derive this

scheme in the factor analysis case in equations 3, 4 and 5. The distribution of yi given x

and y�� is

P[yijx;y��] �
1

Zi

e

�
1

2
((x�GT

y)T	�1(x�GT
y)+yT��1y)

where Zi is a normalisation constant. The term inside the exponential is a quadratic form

in yi (as it must be, since yi has a Gaussian distribution), and, writing �

y
i = [G	�1

G]ii ;

�

y
i = ��1

ii , we can complete the square to give:

P[yijx;y��] � N

"
1

�

y
i + �

y
i

 
�
X
j 6=i

��1
ij yj +

�
G	�1(x�GT

y)
�
i
+ �

y
i yi

!
;

1

�

y
i + �

y
i

:

#
(16)
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where the extra �

y
i yi in the conditional mean compensates for counting the y

2
i term in�

G	�1(x�GT
y)
�
i
. In the context of the Direct method, we have Vy

ij = ���1
ij =�

y
i , and so

we can write the mean as

1

�

y
i + �

y
i

 
�

y
i

X
j 6=i

V
y
ijyj +

�
G	�1(x�GT

y)
�
i
+ �

y
i yi

!
(17)

The reason to write equations 16 and 17 is that they allow us to understand how a sam-

pled recognition model emerges correctly from the generative model. What remains is to

determine how the terms in this expression might be calculated by simple cortical archi-

tectures.

There are two ways to treat the expression in equations 16 and 17. The first is to define

dynamics within the x layer such that the difference between the actual activities and the

top-down predictions of those activities (ie 	�1(x�GT
y)) is propagated bottom-up. Rao

& Ballard (1997) use this effect to model various properties of cortical representations,

and suggest how the required bottom-up weightsGT could be learnt. It is then necessary

to learn �

y
i , which is used as a weighting factor which determines the relative influence of

top-down and bottom-up connections during the phase of recognition sampling.

The second way to treat equations 16 and 17 is exactly as in equations 13, 14 and 15. Here,

one would learn a set of weights
�
G	�1

G
T
�
ij

between units i and j in the y layer which

are in addition to the weights Vy that define the generative model. One would also use as

bottom-up weights from the x layer essentially the transpose of the generative weights.

Hinton & Ghahramani (1997) suggest a close analogue of this for their rectified Gaussian

belief nets, and suggest exactly how these bottom-up and lateral weights could be learnt.

Unless symmetry in the weights is explicitly enforced, the resulting architecture at any

intermediate state of learning must be analysed as an example of the Direct method rather

than a BM.
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The final twist in the model comes if the generative model is truly hierarchical. If there is

a z layer with:

P[yjz] � N
�
H

T
z;�

�

then, sampling in the generative model uses

P[yijy��; z] � N

�



y
i +

�
H

T
z

�
i
;

1

�

y
i

�

where




y
i =

X
j 6=i

V
y
ij

�
y �HT

z
�
j

is the effective net input to yi from all the other units in the y layer. In the recognition

model, the variance of yi given x;y��; z is still 1
�
y
i+�

y
i

, but the mean is given by:

1

�

y
i + �

y
i

 
�

y
i

X
j 6=i

V
y
ij

�
y �HT

z

�
j
+
�
G	�1(x�GT

y)
�
i
+ �

y
i yi

!
:

The first term of the mean is essentially the net input 
yi . The twist is that, by direct

comparison with the mean in equation 17, the information sent from the y-layer to the

z-layer is H��1(y � HT
z). If the bottom-up weights are the transpose of the top-down

weights, then, once learning is complete, note that

�
��1(y �HT

z)
�
i
= �

y
i

�
yi �

�
H

T
z

�
i
� 


y
i

�

which can be calculated naturally from the current state of yi, the top-down input to yi

from the z-layer and the net input to yi from all the other units in the y-layer. Of course,

in the linear Gaussian case, the hierarchical model does not have greater representational

power than a model with a single hidden layer. This is not true in non-Gaussian or non-

linear cases.
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Even though equations 16 and 17 suggest how to perform stochastic sampling, both these

ways of handling explaining away have emerged in various deterministic mean field al-

gorithms (Jaakkola et al, 1996; Rao & Ballard, 1997; Olshausen & Field, 1996; Dayan, 1997).

In the terms of this paper, Rao & Ballard (1997) suggest finding the representation y for a

particular x by minimising an expression:

E[y] =
1

2

��
x�GT

y

�T
	�1

�
x�GT

y

�
+ yT��1

y

�

which, up to some constant factors, is exactly the negative log-likelihood under the factor

analysis model. Olshausen & Field (1996) pointed out that there are two obvious iterative

gradient descent algorithms for doing this:

_y = ���1
y +G	�1

x�
�
G	�1

G
T
�
y (18)

_y = ���1
y +G	�1

�
x�GT

y

�
: (19)

Both iterations use the transpose of the top-down weights as bottom-up weights. Equa-

tion 18 uses additional lateral connections �
�
G	�1

G
T
�

between the y units; equation 19

uses the dynamics in the x layer. Of course, in this simple Gaussian case, it is not neces-

sary to perform either iteration to find the true mean y. Rather, this can be accomplished

in a single bottom-up step using the weights given in equation 7, although integrating

bottom-up and top-down information correctly will require iteration.

These mean field methods just find the mode of the distribution (which, because of its

Gaussian form, is also the mean). However, of course, having the capacity to sample

from the correct full distribution, including the covariance, requires the same information.

The only difference is that the influence of yi itself has to be subtracted out according to

a constant factor �i that, crucially, does not depend on the value of the inputs x. For

the Gaussian model, the deterministic and the stochastic models are extremely close. By
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reducing the variance of the added noise in equation 16 away from its normative value,

one could move smoothly between slower, sampled, but statistically correct recognition

and faster, deterministic, but mean-field recognition.

Note that there is a difference between the correct bottom-up weights in equation 7 which

are intended for bottom-up inference in the absence of information about the activities

of the other y��, and the bottom-up weights (G	�1) in the iterative sampling scheme in

equation 16. The difference is the ‘shrinkage’ factor ��1 +G	�1
G

T . This arises since, if

there is to be no repeated sampling, then the bottom-up weights have to take account of

the prior over y; whereas if there is repeated sampling, then this prior is taken account of

directly. For instance, if � = �I for some very small �, then the mean value of y given x

will also be quite small. If bottom-up weights from x are used as in equation 7, then they

will have small magnitudes; if an iterative scheme is used instead, then this is captured

in the multiplication factor 1=(��1
ii + �i) for the mean.

4 The Binary Case

We can also consider the Direct method in the case of the binary stochastic belief net that

was the original target of the wake-sleep algorithm and the Helmholtz machine. In the

simple case of figure 1, this has for equations 1 and 2:

P[y;G] =
Y
j

�(bj)
yj
�(�bj)

1�yj (20)

P[xjy;G] =
Y
i

�

��
G

T
y

�
i

�xi
�

�
�
�
G

T
y

�
i

�1�xi (21)

where �(a) = 1=(1 + e
�a) is the standard sigmoid function, and b are the biases for the

activities of y.
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We will consider using lateral connections in the recognition model. In this case, there is

no such convenient representation for the true recognition distribution as equation 6. In

the Helmholtz machine, we attempted to learn a factorial model:

Q[y;x;R] =
Y
j

�

��
R

T
x

�
j

�yj
�

�
�
�
R

T
x

�
j

�1�yj
(22)

even though, in cases such as explaining away, the true distribution of y given x is not

factorial. The effect of this lack of expressive power is made more severe in the wake-sleep

algorithm by the fact that the learning rule during sleep is based on the ‘wrong’ Kullback-

Leibler divergence. Rather than choosing R to minimise an expression equivalent to

KL[Q[y;x;R];P[yjx;G]] =
X
y

Q[y;x;R] logQ[y;x;R]=P[yjx;G];

sleep learning minimises

KL[P[yjx;G];Q[y;x;R]];

and, in the case that it is impossible to get to P[yjx;G] = Q[y;x;R] (which is the optimum

point for both), minimising the two different Kullback-Leibler divergences can lead to

two different answers.

In this case, it is again natural to express the dependence between ya and yb using a binary

stochastic BM. Including the biases and the effect of the input x, the energy function and

associated probabilities are:

E[yjx] = �
1

2

P
ij yiWijyj �

P
i yi

�
bi +

�
R

T
x

�
i

�
P[yjx] = e

�E[yjx]
=Z[W;x];

where Wij = Wji and Wii = 0, and Z[W;x] is the partition function, which is a sum

over the 2n possible discrete binary states. In this case, Z[W;x] can depend on x. For the
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binary BM, the conditional distributions of yi given y�� and x that can be used for Gibbs

sampling are:

P [yi = 1jy��] = �

 
bi +

�
R

T
x
�
i
+
X
j 6=i

Wijyj

!

The trouble for the BM is that there is generally no closed form expression for the partition

function. This leads directly to the requirement for the negative phase of learning.

The Direct method has exactly the same form as above. Now, the weights V directly

parameterise the conditional probabilities for sampling,

P [yi = 1jy��;x] = �

 
bi +

�
R

T
x

�
i
+
X
j 6=i

Vijyj

!
;

and learning again uses the delta rule:
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based on samples xÆ and yÆ from the process that truly generates the data. If this process

happened to be a Boltzmann machine, then this method will learn to invert it exactly.

If the generative process was not a BM, then it is not so clear to what it will converge.

Again, making the conditional probabilities as close as possible (ie as close as the method

can parameterise) to being correct does not necessarily make the stationary distribution

for the overall Markov chain as close as the method can parameterise.

Unfortunately, because of the non-Gaussian nature of the probabilities, it is no longer

possible to derive a sampling scheme such as that in equations 16 and 17 to combine top-
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down and bottom-up inference. True Gibbs sampling in this method requires significantly

more complicated calculations whose neural instantiation is uncertain.

5 Comparisons

The Direct method is more interesting in the case of binary rather than Gaussian units,

since we can calculate the partition function for the BM in closed form in the Gaussian

case. We performed two experiments – one which studies the two methods in isolation,

and the second which uses them in the context of wake-sleep sampling and a hierarchical

generative model.

Isolated Models

Figure 3 shows results comparing the BM with the Direct method for learning two sizes of

BM. First, random weights (WR) were drawn from a uniform distribution in [�3; 3], and

the resulting BM used to generate a set of 5000 learning patterns. Then these patterns were

fed either to a BM or to the Direct method. The proximity between the resulting model

and the original BM was assessed by measuring the Kullback-Leibler distance between

their distributions, measured as

X
y

P[y;WR] log
P[y;WR]

P[y;V]

where P[y;WR] is the exhaustively calculated generative distribution of the original BM

and P[y;V] is the generative distribution of the learned BM or Direct method models.

For the BMs, this latter distribution was calculated explicitly. For the Direct method,

this was assessed by calculating empirically the stationary distribution of the stochastic

automaton.
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Figure 3: BM versus the Direct method. The graphs show the average KL distance after

5000 learning samples between 100 target distributions over 6 (left) and 10 (right) units

and the stationary distribution of a learned network. The target distributions were gen-

erated from BMs with random weights. � is the learning rate in both cases. ‘BM (1)’

indicates that only one Gibbs sampling update was used in the negative phase of BM

learning before a learning sample was drawn; ‘BM (64)’ indicates that 64 Gibbs sampling

updates were used.

Since the Direct method avoids the negative phase of learning, we compared it both with

a BM whose computational demands are equivalent (called BM(1) in the figure) and a

more accurate implementation of the BM (called BM(64)). The difference between these

two is the number of Gibbs sampling sweeps across all the units on each negative phase

before taking a single learning sample. BM(1) only takes one sweep, and therefore the

statistics of its learning sample are unlikely to be that close to that of the real underly-

ing Boltzmann distribution. BM(64) takes 64 sweeps. Although its learning samples are

undoubtedly better (as is confirmed by the fact that it learns faster), BM(64) pays a sub-

stantial computational cost, and still absorbs significantly less information from training

examples than the Direct method. It is possible that the BM results could have been im-

proved given an appropriate annealing schedule.
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Wake-Sleep Learning

Although these results favor the Direct method when run in isolation, it remains to be

shown that the Direct method will actually work when embedded in the full context of

wake-sleep. We therefore tried it on the bars problem that has been extensively used as

a test case for unsupervised learning algorithms. For our version, 6 � 6 binary images

contain either horizontal or vertical bars, but not both. Figure 4a shows some examples of

the training patterns. The wake-sleep algorithm should infer that bars are hidden ‘causes’

of correlations in the activity of input units, and should therefore learn to represent new

images of bars in their terms. It should also pick out the further regularity that horizontal

and vertical bars do not co-occur. In earlier work on the bars problem (Hinton et al,

1995) we used a hierarchical generative model, in which a single unit in the top layer

made the decision between horizontal and vertical bars (figure 4c(i)). However, this can

equally well be done using connections between units within a single hidden layer, as

in figure 4c(ii), in which the units representing all the horizontal bars inhibit the units

representing the vertical bars, and vice-versa. We sought to learn such a lateral generative

model using either the BM or the Direct method. We employed 15 hidden units in the

y layer (which is 3 more than necessary). This earlier work had shown that it is not

necessary for good learning to employ lateral connections in the recognition model, and

so we omitted them.

Hinton et al (1995) arranged for the wake-sleep algorithm to work on a 4 � 4 version of

the bars problem by forcing the generative weights from y to x to be positive and by

using a high learning rate. Rather than forcing positivity, we adopted the statistically-

motivated competitive activation function of Dayan & Zemel (1995; see also Saund, 1995)

which embodies an effective constraint that the activity of each input unit is caused on
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Figure 4: 6 � 6 binary bars patterns and network model. a) 8 random samples from the

training set. b) 8 random samples drawn from the Direct method network’s generative

model after 100; 000 trials. The gaps in the bars show that the model is not yet quite

perfect. c) Two different architectures: i) a standard hierarchical form; ii) the recurrent

form, for use either with the Direct sampling method or the BM.

each occasion by at most one of the causes that are present, and uses weights which act

like probability odds and are therefore bound to be positive.

Simulations suggest that the main effect of using a high learning rate is to encourage the

network to store in the generative weights of units complete input patterns, which the
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wake-sleep algorithm then manipulates. However, this is an imperfect method of achiev-

ing such a result, since it only stores such patterns properly at the start of learning. Rather

than do this, at random (on average, once every 5000 pattern presentations), we initialised

an unused hidden unit with a pattern that the network fails to explain competently. Hid-

den units were considered unused if sum of their generative weights were less than 1=10

of the maximum value across units. A pattern was deemed incompetently represented if

the cost of coding the output units was more than 4 standard deviations away from the

mean across recent other patterns. The algorithm is insensitive to manipulations in these

parameters, although using a longer periodicity slows down learning. It is easy to see

that there is a (non-zero) value of the generative bias for the added unit such that adding

the unit is bound to increase the likelihood. However, it is generally impossible to know

how to set this critical value. Therefore we set the generative bias arbitrarily to 1:0 and

let wake-sleep modify it.3 These modifications made wake-sleep work consistently on

bars problems from 4 � 4 to the largest we tried, 20 � 20, and with either the BM or the

Direct method. Figure 4b shows some samples generated by a Direct method version of

the network – note that it has captured the regularity that horizontal and vertical bars do

not coexist.

Finally, it would normally be substantially more work per iteration to learn BM than to

learn the Direct method, because of the negative phase of BM learning (note that both

phases will happen during the wake phase of the Helmholtz machine, since the recurrent

model is in the generative model rather than the recognition model). However, we can

take advantage of the fact that the network only has one hidden layer and perform this

negative phase whilst drawing (the 75) samples during sleep. This would not be possible

3Note that this means that the likelihood can decrease rather than increase on the intro-

duction of the unit.
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for a hierarchical network with more than one hidden layer.

The left of figure 5 shows an example of the generative weights learned for the 6� 6 bars

problem using the Direct method with 15 hidden units (and 75 random unit updates dur-

ing the sleep phase). The top line shows the generative biases and the recurrent weights;

the lower lines the generative weights for these units. The units have been re-ordered

according to what they generate. Clearly 12 of the units have come to represent the 12

horizontal and vertical bars; the remaining units have such low generative biases that

they very rarely turn on. The recurrent weights show that there is mutual inhibition be-

tween the hidden units representing vertical and horizontal bars, and weak excitation

within each group, as one would expect, although the actual values are not completely

uniform. The right of figure 5 shows the activities of the hidden units and the input units

during generative sampling. Although the initial states of the units can include horizon-

tal and vertical bars, stochastic sampling ‘cleans’ up the activity so that only vertical bars

are generated. More quantitatively, even just 5 sweeps of sampling through the units (ie

75 unit updates) reduces cases in which both horizontal and vertical bars are generated

from about 20% to about 1%.

Since there are 215 possible states of the hidden units, it is computationally expensive to

work out the true generative distribution for the BM (which would require calculation of

the partition function) or the Direct method (would require calculation of the equilibrium

distribution). This inability is, of course, orthogonal to the capacity of the network to

extract the bars. Therefore, we took advantage of the fact that the recognition model does

not require sampling and merely report running averages of the cost of coding just the

input units. For the optimal model, this would be 0 nats, since this measure ignores the

cost of coding the activities of the hidden units. Nevertheless, it is a metric of sorts for how

having a more faithful generative model in the y layer helps learning of the generative
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bias recurrent

Figure 5: Learned model. Left) The generative weights learned by the Direct model for

the 6� 6 bars problem where the units have been reordered to reflect what they generate.

The same organisation for the hidden units 3 � 5 is used for all the plots – the recurrent

weights show the 15� 15 intra-cortical connection matrix. The biases and the generative

weights are scaled between �8 (black) and 8 (white); the recurrent weights between �4

and 5. Right) Sample activities from the generative model. The top row shows the activity

of the hidden units; the bottom row sample activity of the output units. Hidden units

were picked at random to be updated – the successive pictures are after 15; 30; 45; 60 and

75 steps.

model from y to x.

Figure 6a shows this measure of the performance of the network for various learning

rates for the lateral weights for the Direct method. Figure 6b summarises learning curves

for Direct method and the BM, together with those for the standard architecture for this

task (an extra hidden layer and no connections between units in the y layer), and an

incomplete architecture without the lateral connections or the extra layer. We see that

both Direct and BM methods work quite well, and, that there is a definite advantage in

having these weights even for the task of learning the mapping from y to x. They perform

at least as well as the fully hierarchical version of the machine.
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Figure 6: Learning curves for the bars problem. Both graphs show on a linear-log scale,

average, low-pass filtered costs (in nats) of coding input patterns as a function of the num-

ber of training trials (together with standard errors about the mean). Averages are over

300 trials. The legends are ordered according to the intersection with the right y�axis. a)

Four different learning rates (�g) for the lateral connections using the Direct method. Note

the relative insensitivity to the learning rate. b) Comparison of learning curves for four

different methods. The architecture labelled no ‘structure’ does not have the representa-

tional power to capture the fact that there are either horizontal or vertical bars. Although

this incapacity need not affect the cost of coding the input units, it evidently makes learn-

ing significantly slower.

6 Discussion

In this paper we have discussed the issue of using lateral interconnections between units

to express dependencies in their activities. A Markov random field, in the form of either

a Gaussian or a binary Boltzmann machine is the obvious candidate, and we presented

two particular examples of this. We also suggested an alternative sampling model, which

takes advantage of the key property of wake-sleep learning that, during the sleep phase,

the states of all the hidden units in the network are known. This allows the use of the sim-
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ple and local delta rule to learn the conditional distribution of each unit, given the states

of all its peers. The delta rule is exactly the learning rule that is used in the rest of the

wake-sleep algorithm, and its use here obviates the need for anything like the negative

phase of the Boltzmann machine. Of course, having to perform sampling at all may incur

a severe cost (but see Hinton & Ghahramani (1997) for arguments against this). We also

observed that it is possible to use essentially exactly the same connections for determin-

istic mean-field iterations and stochastic sampling.

For the case of factor analysis, we used the models to answer a question posed by earlier

work (Neal & Dayan, 1997) as to how to represent arbitrary covariance matrices in a

natural way, without requiring the sort of laddered architecture seen in figure 2. Here, by

using the natural gradient version of Amari (1998), the Direct method and the BM have

similar complexities, since one can avoid the apparent requirement for the BM of having

either a sample-based negative phase of learning, or of inverting the lateral connection

matrix.

We also saw how to use lateral weights within a layer to mediate dependencies within

the generative model, and a particular form of Gibbs sampling to mediate dependencies

within the recognition model. This form of Gibbs sampling requires computing the dif-

ference between the activities of units in a layer and the top-down prediction of those

activities based on the states of units in the layer above.

The Gaussian factor analysis model is clearly a poor model for cortical representations,

for instance lacking non-linearities and requiring activity levels to be both positive and

negative. However, it can be useful as a metaphor to think about the roles of different

aspects of cortical micro- and macro-circuitry (Rao & Ballard, 1997). One important issue

is exploring ways of allowing both fast bottom-up inference and slower ‘interactive’ in-
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ference that integrates bottom-up and top-down information (Dayan, 1997). Thorpe et al’s

(1996) results showing that fairly complex visual recognition tasks can be accomplished

in as little as 150ms suggests that there will not always be enough time to do extensive

Gibbs sampling to explore a recognition distribution. Indeed, this is one of the advan-

tages of the conventional Helmholtz machine with its computationally straightforward

(albeit approximate) bottom-up model. However, in other cases, top-down influences are

key (see Ullman (1996) for discussion).

In the context of the integrated Gaussian model in equations 16 and 17, one attractive,

though speculative, possibility is that bottom-up connections to layer IV calculate R�T
x

directly, to give a first, and fast, estimate of y. Then, if this estimate is incorrect or in-

adequate, or, maybe, just that there is enough time, then some form of sampling can be

performed using the two sets of lateral connections. The vertical connections (between

layer IV and layers II/III) mediate local interactions between cells that account for similar

structure in the input; the horizontal connections between layer II/III cells in different

columns represent longer range interactions and form part of the generative model as

hinted at by the results of Burkhalter (1993) on the similar times of development of the

lateral and top-down weights in human V1. The switching between bottom-up and in-

tegrative modes could result from neuromodulatory effects of acetylcholine or GABA at

GABAB receptors (Hasselmo, 1995; Hasselmo & Cekic; 1996; Hasselmo, personal com-

munication, 1997), in a way that somewhat parallels the role Carpenter & Grossberg (see

1991) suggest for neuromodulators in altering dynamics in the ‘hidden’ layer of their

adaptive resonant pattern recognisers. In this case, rather than eliminating a y unit from

competition, it would allow a correct balance to be made between all possible influences

on the representation y.

We also developed sampling methods for a stochastic binary model. In this case, there
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is no easy shortcut for the BM, since there is no getting around the negative phase of

learning. The Direct method will still work (in fact this case is theoretically preferable

for the Direct method, since there is no possibility of divergence), and can still perfectly

recover certain distributions, including ones created by a BM. A laddered architecture can

do very well too, but at the cost of asymmetry. It is not possible to specify such a simple

recognition architecture to perform correct Gibbs sampling in a general binary model

using just lateral connections whose values are determined by the generative model, since

one cannot correctly account for explaining away by subtracting the predicted state of an

input from the actual binary state of that input. It is not clear if the lateral connections

really parameterise a recognition model, or if, as in the Gaussian case, they can be used

as part of both the generative and recognition processes.
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