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1 Introduction
Bayesian treatments of animal conditioning start from a generative model that speci-
fies precisely a set of assumptions about the structure of the learning task. Optimal
rules for learning are direct mathematical consequences of these assumptions. In
terms of Marr’s (1982) levels of analyses, the main task at the computational level
would therefore seem to be to understand and characterize the set of assumptions
from the observed behavior. However, a major problem with such Marrian analyses 
is that most Bayesian models for learning are presumptively untenable due to their
radically intractable computational demands.

This tension between what the observer should and what she can do relates to
Marr’s (1982) distinction between the computational and algorithmic levels,
Chomsky’s (1965) distinction between performance and competence, and Simon’s
(1957) notion of bounded rationality. As all these examples suggest, we need not sim-
ply abandon normative considerations in favor of unconstrained, cheap and cheerful
heuristics. Indeed, the evolutionary argument often taken to justify a normative
approach (that organisms behaving rationally will enjoy higher fitness) in fact sug-
gests that, in light of computational costs, evolution should favor those who can best
and most efficiently approximate rational computations.

In short, some irrational models are more rational than others, and it is these that
we suggest should be found to model behavior and its neural substrates best. Here, in
search of such models, we look to the burgeoning and theoretically sophisticated field
studying approximations to exact Bayesian inference.

The major difficulty facing such analyses is distinguishing which characteristics of
observed behavior relate to the underlying assumptions, and which to approxima-
tions employed in bringing them to bear. This is particularly challenging since we do
not know very much about how expensive computation is in the brain, and therefore
the potential tradeoff between costs and competence. As with all model selection
questions, the short answer to the question of assumption versus approximation is, of
course, that we cannot tell for sure.

In fact, that assumption and approximation are difficult to distinguish is a particu-
larly acute problem for theorists attempting to study normative considerations in 

19-Charter&Oaksford-Chap19  11/5/07  11:22 AM  Page 427



isolation, which motivates our attempt to study both together. In practice, we may
hope that credible candidates for both assumptions and approximations have differ-
ent and rather specific qualitative fingerprints. In this chapter, we explore these ideas
in the context of models of Pavlovian conditioning and prediction experiments in
animals and humans. In particular, we address the recent trenchant discussion 
of Kruschke (2006), who argued against pure Bayesian learning models in favor of a
particular heuristic treatment based on the effects of trial ordering in tasks such as
backward blocking (Lovibond et al., 2003; Shanks, 1985; Wasserman and Berglan,
1998) and highlighting (Kruschke, 2003, 2006; Medin and Bettger, 1991). His ‘locally
Bayesian’ model, while drawing on Bayesian methods, neither corresponds to exact
inference nor is motivated or justified as an approximation to the ideal.

While we agree with Kruschke that features of the data suggest something short of
ideal reasoning in the statistical models we consider, we differ in the substance of the
alternative modeling frameworks that we employ. On our analysis, at the computa-
tional level, effects of the ordering of trials bring up the issue of assumptions about
how task contingencies change. The qualitative fingerprint here is recency – for most
credible such models, recent trials will provide more information about the present
state of affairs than distant trials. We show that some trial order effects emerge from
optimal inference. For others, notably highlighting, which appears to be inconsistent
with recency, we consider the effects of inferential approximation. We show how 
primacy effects, as seen in highlighting, qualitatively characterize a number of simpli-
fied inference schemes.

We start by describing the Kalman filter model of con  ditioning (Dayan et al.,
2000), which arises as the exact inference process associated with an analytically
tractable, but highly simplified, Bayesian model of change. We show that this model
leads to certain trial order effects, including those associated with backward blocking;
we then consider inferential approximations in this framework and their implications
for trial ordering in highlighting. We conclude with a discussion of how approxima-
tions might be explicitly balanced by reasoning about their accuracy.

2 Learning as Filtering

2.1 The Generative Model
Consider a prediction problem in which, on trial t, the subject observes a possibly
multidimensional stimulus xt and must predict an outcome rt. In a classical condi-
tioning experiment, x might be a binary vector reporting which of a set of stimuli
such as tones and lights were present and r some continuously distributed amount of
food subsequently delivered. (We denote possible stimuli as A, B, C and write a unit
amount of food as R.) In this case, the animal’s prediction about r is of course meas-
ured implicitly, e.g. through salivation. In a human experiment using, for instance,
a medical cover story, x might report a set of foods (e.g.x=AC), with r being a binary
variable reporting whether a patient developed an allergic reaction from eating them
(e.g. r = R or 0).

We briefly review a familiar statistical approach to such a problem (e.g. Dayan and
Long, 1998; Griffiths and Yuille, this volume). This begins by assuming a space of
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hypotheses about how the data (D, a sequence of x→r pairs) were generated. Such
hypotheses often take the form of a parameterized stochastic data generation process,
which assigns probability P(D|q) to each possible data set D as a function of the (ini-
tially unknown or uncertain) parameter settings q. Then, conditional on having
observed some data (and on any prior beliefs about q), one can use Bayes’ rule to
draw inferences about the posterior likelihood of the hypotheses (here, parameter set-
tings),P(q |D). Finally, to choose how to act on a new trial T, with stimuli xT, the sub-
ject can calculate the posterior distribution over rT using the likelihood-weighted
average over the outcomes given the stimuli and each hypothesis:

(1)

The interpretive power of the approach rests on its normative, statistical foundation.
Indeed, the whole procedure is optimal inference based on just the generative model
and priors, which collectively describe what is known (or at least assumed) about how
the data are generated.

The generative models of conditioning based on these principles typically split into
two pieces. First, they assume that included in q is one or more sets of values wt that
govern a distribution P(rt|xt,wt) over the output on trial t given the stimuli. Second,
they assume something about the probabilistic relationship between the parameters
wt and wt +1 associated with successive trials. The job of the subject, on this view, is to
estimate the posterior distribution P(w|D) from past outcomes so as to predict future
outcomes. We discuss the two pieces of the models in turn.

2.2 Parameterized Output Distribution
One standard assumption is that the outcome rt on trial t is drawn from a Gaussian
distribution:

(2)

Here, the weights wt specify the mean outcomes wtj expected in the presence of each
stimulus j individually, and s0 is the level of noise corrupting each trial. We typically
assume that s0 is known, although it is formally (though not necessarily computa-
tionally) easy to infer it too from the data.

There are various points to make about this formulation. First, note that Equation 2
characterizes the outcome rt conditional on the input xt, rather than modeling the
probability of both variables jointly. In this sense it is not a full generative model for
the data D (which consist of both stimuli and outcomes). However, it suffices for the
present purposes of asking how subjects perform the task of predicting an rt given an xt.
We have elsewhere considered full joint models (Courville et al., 2003, 2004, 2006).

Second, in Equation 2, the mean of the net prediction is assumed to be a sum of the
predictions wtj associated with all those stimuli xtj present on trial t. This is ecologi-
cally natural in some contexts, and is deeply linked to the Rescorla–Wagner (1972)
model’s celebrated account of cue combination phenomena such as blocking and
conditioned inhibition. However, there are other possibilities in which the stimuli are
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treated as competing predictors (rather than cooperating ones: Jacobs et al., 1991a,b).
For instance, one alternative formulation is that of an additive mixture of Gaussians,
which uses an extra vector of parameters ptŒq to capture the competition:

(3)

Here, on each trial, a single stimulus j is chosen from those present with probability ptj

(or a background stimulus with the remaining probability) and its weight alone pro-
vides the mean for the whole reward. This is known to relate to a family of models of
animal conditioning due to Mackintosh (1975; see Dayan & Long, 1998; Kruschke,
2001), and formalizes in a normative manner the notion in those models of cue-
specific attentional weightings, with different stimuli having different degrees of
influence over the predictions.

Finally, the Gaussian form of the output model in Equation 2 is only appropriate in
rather special circumstances (such as Daw et al., 2006). For instance, if rt is binary
rather than continuous, as in many human experiments, it cannot be true. The obvi-
ous alternative (a stochastic relationship controlled by a sigmoid, as in logistic regres-
sion) poses rather harder inferential problems. The common general use of the
Gaussian illustrates the fact that one main route to well-found approximation is via
exact inference in a model that is known to be only partially correct.

2.3 Trial Ordering and Change
Equation 2 and its variants capture the characteristics of a single trial, t. However, the
data D for which the subject must account are an ordered series of such trials. The
simplest way to extend the model to the series is to assume that the observations are
all independent and identically distributed (IID), with , and:

(4)

Since the product in Equation 4 is invariant to changes in the order of the trials t,
exact inference in this model precludes any effect of trial ordering. Kruschke (2006)
focuses his critique on exactly this issue.

However, the assumption that trials are IID is a poor match to a typically 
nonstationary world (Kakade and Dayan, 2002). Instead, most conditioning tasks (and
also the real-world foraging or inference scenarios they stylize), involve some sort of
change in the contingencies of interest (in this case, the coupling between stimuli x and
outcomes r, parameterized by w). If the world changes, an ideal observer would not
treat the trials as either unconditionally independent or having identical distributions,
but instead, different outcome parameters wt may obtain on each trial, making:

(5)

Nonstationarity turns the problem facing the subject from one of inferring a single 
w to one of tracking a changing wt in order to predict subsequent outcomes.
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To complete the generative model, we need to describe the change: how the wt that
applies on trial t relates to those from previous trials. A convenient assumption is
first-order, independent Gaussian diffusion:

(6)

As for the observation variance , we will assume the diffusion variance is
known.

Together, Equations 2, 5, and 6 define a generative model for which exact Bayesian
inference can tractably be accomplished using the Kalman (1960) filter algorithm,
described below. It should be immediately apparent that the assumption that wt is
changing gives rise to trial ordering effects in inference. The intuition is that the
parameter was more likely to have been similar on recent trials than on those further
in the past, so recent experience should weigh more heavily in inferring its present
value. That is, the model exhibits a recency bias. But note that this bias arises auto-
matically from normative inference given a particular (presumptively accurate)
description of how the world works.

Here again, the Gaussian assumption on weight change may accurately reflect the
experimental circumstances, or may be an approximation of convenience. In particu-
lar, contingencies often change more abruptly (as between experimental blocks). One
way to formalize this possibility (Yu and Dayan, 2003, 2005) is to assume that in addi-
tion to smooth Gaussian diffusion, the weights are occasionally subject to a larger
shock (e.g. another Gaussian with width sj >> sd). However, the resulting model pres-
ents substantial inferential challenges.

2.4 The Kalman Filter

Consider the generative model of Equations 2, 5, and 6. As is well known, if prior
beliefs about the weights P(w0) take a Gaussian form, , then the posterior
distribution having observed data for trials up to t – 1, P(wt|x1…xt-1,r1…rt-1) will also
be Gaussian, . That is, it consists of a belief about the mean of the
weights and a covariance matrix Σt encoding the uncertainty around that mean.
Because of the Gaussian assumptions, these quantities can tractably be updated trial
by trial according to Bayes theorem, which here takes the form (Kalman, 1960):

(7)

(8)

with Kalman gain vector . Note that the update rule
for the mean takes the form of the Rescorla–Wagner (1972) (delta) rule, except with
each stimulus having its own individual learning rate given by the appropriate entry
in the Kalman gain vector.

The Kalman filter of Equations 7 and 8 is straightforward to implement, since 
the sufficient statistics for all the observations up to trial t are contained in the 
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fixed-dimensional quantities and Σt. Indeed, this is why the assumptions underly-
ing the Kalman filter have been made as approximations in cases in which they are
known not to hold.

This completes the normative treatment of learning in a non-stationary environ-
ment. In the next section, we apply it to critical examples in which trial order has a
significant effect on behavior; in Section 4, we consider approximation schemes
employing inexact inference methods, and consider the sorts of normative trial order
effects they capture, and the non-normative ones they introduce.

3 Backward Blocking and Highlighting
We illustrate the effects of trial ordering in the Kalman filter model using two key
order sensitive paradigms identified by Kruschke (2006), backward blocking 
(e.g. Lovibond et al., 2003; Shanks, 1985; Wasserman and Berglan, 1998) and high-
lighting (Kruschke, 2003, 2006; Medin and Bettger, 1991). In particular, we consider
the effect of a priori nonstationarity in the Kalman filter ( ) compared, as a
baseline, against the same model with , which is equivalent to the IID
assumption of Equation 4 and is therefore trial ordering invariant.

3.1 Backward Blocking
Table 19.1 details an experiment in which stimuli A and B are paired with reinforce-
ment over a number of trials (we write this as AB→R), and responding to B alone is
then tested. Famously, predictions of R given B probes are attenuated (blocked) when
the AB→R training is preceded by a set of A→R trials, in which A alone is paired with
reinforcement (Kamin, 1969). One intuition for this forward blocking effect is that 
if reinforcement is explicable on the basis of A alone, then the AB→R trials do not
provide evidence that B is also associated with reinforcement. This particular intu-
ition is agnostic between accounts in which stimuli cooperate or compete to predict
the outcome.

The next line of the table shows the experimental course of backward blocking
(Shanks, 1985), in which the order of these sets of trials is reversed: AB→R trials are fol-
lowed by A→R trials and then by a test on B alone. Backward blocking is said to occur if
responding to B is attenuated by the A→R post-training. The intuition remains the
same – the A→R trials indicate that B was not responsible for reinforcement on the
AB→R trials. However, what makes backward blocking interesting is that this lack of
responsibility is only evident retrospectively, at a point that B is no longer provided.

σd
2 = 0

σd
2 0>

ŵt

SEMI-RATIONAL MODELS OF CONDITIONING: THE CASE OF TRIAL ORDER432

Table 19.1. Experimental paradigms

Phase 1 Phase 2 Test Result

Forward blocking A→R AB→R B? R attenuated

Backward blocking AB→R A→R B? R less attenuated

Highlighting AB→R ×3n & AB→R × 1n & A? R

AC→S ×1n AC→S × 3n BC? S

19-Charter&Oaksford-Chap19  11/5/07  11:22 AM  Page 432



Backward blocking is an example of ‘retrospective revaluation,’ in which subse-
quent experience (with A) changes the interpretation of prior experience (with B). As
we will discuss, the mere existence of retrospective revaluation strongly constrains
what sort of inferential approximations are viable, because particular information
must be stored about the initial experience to allow it to be reevaluated later. Critically,
backward blocking tends to be weaker (that is, responding to B less attenuated) than
forward blocking (e.g. Lovibond et al., 2003). Since forward and backward blocking
just involve a rearrangement of the same trials, this asymmetry is a noteworthy
demonstration of sensitivity to trial order (Kruschke, 2006), and thus refutation of
the IID model.

The simulation results in figure 19.1a confirm that forward and backward blocking
are equally strong under the IID Kalman filter model. It may not, however, be 
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Fig. 19.1. Simulations of forward and backward blocking using Kalman filter model. 
a: Estimated mean weights (upper thin lines) and (lower thick lines) as a func-
tion of training in IID Kalman filter ; the endpoints for forward and
backward blocking are the same. b: Joint posterior distribution over wA and wB at start
of phase 2 of backward blocking; the two weights are anticorrelated. c & d: Same as 
a & b, but using non-IID Kalman filter ; backward blocking is attenuated.( )σd =2 0.1

( )σ σd o= ; =2 20 0.5
ŵBŵA
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obvious how the rule accomplishes retrospective revaluation (Kakade and Dayan,
2001). Figure 19.1b illustrates the posterior distribution over wA and wB following
AB→R training in backward blocking. The key point is that they are anticorrelated,
since together they should add up to about R (1, in the simulations). Thus, if wA is
greater than R/2, then wB must be less than R/2, and vice-versa. Subsequent A→R
training indicates that wA is indeed high and wB must therefore be low, producing the
effect. In terms of the Kalman filter learning rule, then, the key to backward blocking
is the off-diagonal term in the covariance matrix Σ, which encodes the anticorrelation
between wA and wB, and creates a negative Kalman gain ktB for stimulus B during the
A→R trials in which B is not present (Kakade and Dayan, 2001).

Figure 19.1c shows the same experiments on the non-IID Kalman filter. Here, con-
sistent with experiments, backward blocking is weaker than forward blocking. This
happens because of the recency effect induced by the weight diffusion of Equation 6 –
in particular (as illustrated in Figure 19.1d), the presumption that wA and wB are
independently jittered between trials implies that they become less strongly anticorre-
lated with time. This suppresses retrospective revaluation. Forward blocking is not
similarly impaired because the presumptive jitter on wA is mean-preserving and does
not therefore attenuate the belief (from A→R trials) that A is responsible for subse-
quent reinforcement on AB→R trials, in which .

3.2 Highlighting
The phenomenon of highlighting, which involves the base rates of outcomes,
is rather more challenging for the Kalman filter (Kruschke, 2006). In this paradigm
(see Table 19.1), three stimuli A,B,C are associated with two outcomes R and S
according to AB→R and AC→S. However, although equal numbers of both trial types 
are delivered, they are presented unevenly across the course of training, with 
AB→R predominating early (e.g. by a factor of three), and AC→S late (by the 
same factor).

The results show a mixture of what appear to be recency and primacy effects. In
particular, tested on A after training, subjects predict R (the more common outcome
in the first block); but tested on the novel combination BC, subjects predict S (the
more common outcome in the second block of trials). Note that in the balanced form
of the task presented here (Medin and Bettger, 1991; Kruschke, 2006) overall, B (and
indeed A) is paired with R exactly as many times as C with S, so any asymmetry in the
predictions must result from trial ordering.

These equalities imply that the IID model does not exhibit highlighting, a fact con-
firmed by the simulations in Figure 19.2a. To make the point in an extreme way, we
assumed that R = 1 and S = –R = –1, so the two outcomes are in direct competition.i

What may be less immediately obvious is that the non-IID model also fails to show

r =t t t− ⋅ŵ x 0
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i This assumption may be more or less appropriate to particular empirical settings, depending
for instance on whether the cover story and response requirements frame the outcomes as
mutually exclusive. In any case, our models and arguments extend to the case with two
nonexclusive outcomes.
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highlighting (Figure 19.2b). This can be seen in two ways; first the recency bias
implies that both A and BC slightly favor S, the outcome predominantly received in
the second block. Second, it is straightforward to verify that it will always be true that

, for all parameters and after any sequence of the two trial types. Thus
the model can never capture the pattern of results from highlighting, in which A and
BC finish with opposite associations.

Further, given sufficient trials, even the non-IID Kalman filter will actually con-
clude that , and use only and to predict R and S respectively – with all
predictions balanced even though the base rates are locally skewed (Figure 19.2c). It is
intuitive that the Kalman filter should be asymptotically insensitive to the base rates
of stimuli, since it is attempting only to estimate the probability of R conditional on
the stimuli having occurred, i.e. regardless of their base rate. The mechanism by
which this occurs is again dependent on retrospective revaluation: initially,
the Kalman filter attributes the predominance of S trials in the second block to 
both A and C (Figure 19.2b); given more experience, and through the medium of the

ŵCŵBŵ =A 0

ˆ ˆ ˆw = w + wA B C
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Fig. 19.2. Simulations of highlighting using the Kalman filter model. Development of
mean estimates for test stimuli ( and ) illustrated as thick line (both are
the same, see main text); and illustrated individually with thin lines. a: IID 
Kalman filter ; b: non-IIDKalman filter shown with few
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of non-IID Kalman filter with many trials .( )σ σd o= ; =2 20.1 0.5

σo =2 1.0

( )σd =2 0.1( )σ σd o= ; =2 20 0.5
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anticorrelation in the posterior between wA and both wB and wC, it revalues A as
wholly unpredictive and attributes all S to C (Figure 19.2b).

3.3 Summary
We have so far examined how trial ordering effects arise naturally in a simple Bayesian
model. Because they follow from assumptions about change, these generally involve
some sort of recency effect, though this can be manifest in a fairly task-dependent
manner.

Backward blocking is a straightforward consequence of the generative model
underlying the non-IID Kalman filter. The pattern of results from highlighting is
not: Quite uncharacteristic for inference in a changing environment, the latter seem
to involve in part a primacy effect for A→R.

One noteworthy aspect of these investigations is the importance of retrospective
revaluation to both experiments. Backward blocking, of course, is itself a retrospective
revaluation phenomenon; however, that it is weaker than forward blocking indicates
that the revaluation is less than perfect. Similarly, one feature of highlighting is the
failure retrospectively to determine that stimulus A is unpredictive, after it had been
initially preferentially paired with R. (This is particularly clear in a version of high-
lighting discussed by Kruschke, 2003, 2006, which starts just like backward blocking
with a block of only AB→R trials.) Retrospective revaluation is closely tied to
Bayesian reasoning, in that it typically seems to involve reasoning about the whole
distribution of possible explanations (as in Figure 19.1d), rather than just a particular
estimate (as in the Rescorla–Wagner model, which fails to produce such effects).

As we discussed in the introduction, there are at least three strategies to follow in
the face of the failure of this simple model to account for highlighting. The first is to
downplay the emphasis on principled reasoning and seek a heuristic explanation
(Kruschke, 2006). The second is to consider it as a failure of the generative model and
to seek a more sophisticated generative model that perhaps better captures subjects’
beliefs about the task contingencies. While there are doubtless exotic beliefs about
change processes and cue-combination rules that would together give rise to highlight-
ing, we have not so far discovered a completely convincing candidate. Instead, we
would suggest that the Kalman filter’s behavior is characteristic of inference in a
changing environment more generally. As we have seen, trial order sensitivities in
Bayesian reasoning ultimately arise from the a priori belief that trials are not identi-
cally distributed. A reasonable general assumption is that trials nearer in time are more
similar to one another than to those farther away – predicting, all else equal, a recency
bias. Together with the fact that failures of retrospective revaluation are characteristic
of a number of well-founded inferential approximation strategies, as we discuss below,
this observation motivates the third approach: to consider that the phenomenon actu-
ally arises from a failure of the brain to implement correct inference.

4 Approximate Inference
In the face of generative models that are much more complicated and less tractable
than that in Equations 2, 5, and 6, statisticians and computer scientists have 
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developed a menagerie of approximate methods. Such approximations are attractive
as psychological models because they offer plausible mechanistic accounts while
maintaining the chief advantage of Bayesian approaches: viz a clear grounding in nor-
mative principles of reasoning.

Tools for inferential approximation may crudely be split into two categories,
though these are often employed together. Monte Carlo techniques such as particle
filtering (e.g. Doucet et al., 2000) approximate statistical computations by averaging
over random samples. While these methods may be relevant to psychological model-
ing, the hallmarks of their usage would mainly be evident in patterns of variability
over trials or subjects, which is not the focus of the present work. We will focus
instead on deterministic simplifications of difficult mathematical forms (e.g. Jordan
et al., 1999), such as the usage of lower bounds or maximum likelihood approxima-
tions. One critical feature of these approximations is that they often involve steps that
have the consequence of discarding relevant information about past trials. This can
introduce trial order dependencies, and particularly effects similar to primacy. In this
section, we will demonstrate some simple examples of this.

4.1 Assumed Density Filtering
The Kalman filter (Equations 7, 8) updates its beliefs recursively: the new belief distri-
bution is a function only of the previous distribution and the new observation. In
many cases, we may wish to maintain this convenient, recursive form, but simplify the
posterior distribution after each update to enable efficient approximate computation
of subsequent updates. Such methods are broadly known as assumed density filters
(see Minka, 2001, who also discusses issues of trial ordering). Typically, the posterior
distribution is chosen to have a simple functional form (e.g. Gaussian, with a diagonal
covariance matrix), and to have its parameters chosen to minimize a measure (usually
the so-called Kullback–Liebler divergence) of the discrepancy between it and the best
guess at the true posterior. Because of this minimization step, this approximation is
sometimes called variational (Jordan et al., 1999).

Clearly such an approximation introduces error. Most critical for us is that these
errors can be manifest as trial ordering effects. In the Kalman filter update, the previ-
ous belief distribution can stand in for all previous observations because the posterior
distribution is a sufficient statistic for the previous observations. The recursively com-
puted posterior equals the posterior conditioned on all the data, and so for instance
the IID filter (the Kalman filter with sd = 0) can correctly arrive at the same answer no
matter in what order trials are presented. In backward blocking, for instance, is
retrospectively revalued on A→R trials without explicitly backtracking or reconsider-
ing the previous AB→R observations: the posterior covariance Σ summarizes the rel-
evant relationship between the variables. A simplified form of the posterior will not,
in general, be a sufficient statistic; how past trials impact the posterior may then
depend on the order they arrived in, even in cases (e.g. the IID filter) for which the
exact solution is order-invariant. This can disrupt retrospective revaluation, since the
ability to reinterpret past experience depends on its being adequately represented in
the posterior.

ŵB
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4.1.1 Simulations
Perhaps the most common assumed density is one in which the full posterior factor-
izes. Here, this implies assuming the joint distribution over the weights is separable
into the product of a distribution over each weight individually. For the Kalman filter,
this amounts to approximating the full Kalman filter covariance matrix Σ by just its
diagonal entries,ii thus maintaining uncertainty about each weight but neglecting
information about their covariance relationships with one another.

Since we have already identified the covariance terms as responsible for backward
blocking we may conclude immediately (and simulations, not illustrated, verify) that
this simplification eliminates backward blocking while retaining forward blocking.

A subtler trial order dependence also arises in the form of a robust highlighting
effect (Figure 19.3a). This traces to three interlinked features of the model.
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Fig. 19.3. Simulations of highlighting in approximate Bayesian reasoning. (a) Highlight-
ing in Kalman filter with diagonalized assumed covariance . 
(b) Posterior uncertainty about each weight as a function of training; is more uncer-
tain in first phase, highlighting it. (c) Highlighting in additive Gaussian mixture model
using EM (η= 0.1; illustrated are the point estimates of the three individual weights and,
for compound BC, the net outcome expectation weighted by mixing proportions). 
(d) Development of estimates of mixing proportions with training; C is highlighted.

ŵC
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ii This minimizes the KL-divergence from the full covariance Gaussian among the class of all
diagonal distributions.
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First, much like attentional variables in associative accounts of highlighting
(Kruschke, 2003), in the Kalman filter, the uncertainties about the weights (the diago-
nal elements of the covariance matrix) control the rate of learning about those
weights (Dayan and Long; Kakade and Dayan, 2002). More uncertain weights get a
larger gain k and a bigger update from Equation 7; when stimuli are observed, the
uncertainties about them (and subsequent learning rates) decline, whereas when
stimuli are unobserved, their uncertainties increase. This means (Figure 19.3b) that
on AC→S trials in the first block, C (which is rarely observed) learns more rapidly
than A (which is commonly observed). Conversely, A is likely to be paired with R the
first few times it is seen, when its learning rate is highest. Second, the weights of pre-
sented stimuli must interact additively to produce the outcome (Equation 2).A’s asso-
ciation with R will therefore reduce B’s association with it (since the two weights must
additively share the prediction on AB→R trials), whereas C’s association with S will
be correspondingly enhanced by additionally having to cancel out A’s opposing pre-
diction of R. Finally, since the covariance is not represented, A is never retrospectively
revalued as a nonpredictor – its initial association with R instead persists indefinitely
as a primacy effect. There is a continuum of possible values , and that
together add up to explain exactly the results of both trial types (specifically

and for any ); lacking revaluation, this model sticks
with the first one it finds.

Note also that the venerable Rescorla–Wagner model results from one further sim-
plification over this one: the assumption that the learning rates are simply constant 
(if perhaps stimulus-dependent), i.e. that the uncertainties are never updated. This is
motivated by the fact that, under special circumstances, for instance, if each stimulus
is presented on every trial, the Kalman filter ultimately evolves to a fixed asymptotic
learning rate (the value at which information from each observation exactly balances
out diffusion in the prior). However, from the perspective of highlighting, this is a
simplification too far, since without dynamic learning rates C’s learning about S is not
boosted relative to A. Similar to the full Kalman filter, no highlighting effect is seen:
the local base rates predominate. The lack of covariance information also prevents it
from exhibiting backward blocking.

4.2 Maximum Likelihood and Expectation Maximization
Similar phenomena can be seen, for similar reasons, in other approximation schemes.
We exemplify this generality using a representative member of another class of inex-
act but statistically grounded approaches, namely those that attempt to determine just
a maximum likelihood point-estimate of the relevant variables (here the means )
rather than a full posterior distribution over them. Often, these methods learn using
some sort of hill climbing or gradient approach, and, of course, it is not possible to
employ Bayes’ theorem directly without representing some form of a distribution. As
for assumed density filters (and for the Rescorla–Wagner model, which can also be
interpreted as a maximum-likelihood gradient climber), the failure to maintain an
adequate posterior distribution curtails or abolishes retrospective revaluation.

Another example is a particular learning algorithm for the competitive mixture of
Gaussians model of Equation 3. We develop this in some detail as it is the canonical

ŵ

ŵAˆ ˆw = wC A− −1ˆ ˆw = wB A1 −

ŵCŵBŵA
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example of a particularly relevant learning algorithm and is related to a number of
important behavioral models (Kruschke, 2001; Mackintosh, 1975), though it does
have some empirical shortcomings related to its assumptions about cue combination
(Dayan and Long, 1998). Recall that, according to this generative model, one stimulus
out of those presented will be chosen and the outcome will then be determined solely
based on the chosen stimulus’ weight. Learning about the weight from the outcome
then depends on unobserved information: which stimulus was chosen. Expectation-
maximization methods (Dempster et al., 1977; Griffiths and Yuille, this volume)
address this problem by repeatedly alternating two steps: estimating the hidden infor-
mation based on the current beliefs about the weights (‘E step’), then updating the
weights assuming this estimate to be true (‘M step’). This process can be understood
to perform coordinate ascent on a particular error function, and is guaranteed to
reduce (or at least not increase) the error at each step (Neal and Hinton, 1998).

An online form of EM is appropriate for learning in the generative model of
Equation 3. (Assume for simplicity that the weights do not change, i.e., that Equation 4
obtains.) At each trial, the E step determines the probability that the outcome was
produced by each stimulus (or the background stimulus 0), which involves a Bayesian
inversion of the generative model:

qtj µ xtjπtj exp(–(rt – wtj)
2/σ0)

Here, the background responsibility and the constant of
proportionality in qt arrange for appropriate normalization. The model then learns a
new point estimate of the weights and the mixing proportions using what is
known as a partial M step, with the predictions associated with each stimulus chang-
ing according to their own prediction error, but by an amount that depends on the
responsibilities accorded to each during the E step:

(9)

(10)

Here, η is a learning rate parameter, which, as for the Rescorla–Wagner rule, by being
fixed, can be seen as a severe form of approximation to the case of continual change in
the world.

4.2.1 Simulations
Like most other more or less local hill climbing methods, the fact that the M-step in
this algorithm is based on the previous, particular, parameter settings (through the
medium of the E-step) implies that there are trial order effects akin to primacy. As
Figure 19.3c illustrates, these include highlighting, which arises here because the
responsibilities (and the estimated mixing variables that determine and are deter-
mined by them) take on an attentional role similar to the uncertainties in the diago-
nalized Kalman filter account. In particular, A and B share responsibility q (Figure 19.3d)
for the preponderance of R in the first block. This reduces the extent to which 
learns about R (since the effective learning rate is ηqB), and the extent to which B

ŵB

π̂π

ˆ ˆ ( ˆ ),π π η πt j tj tj tj tjx q+ = + −1

ˆ ˆ ( ˆ ),w w q r wt j tj tj t tj+ = + −1 η

π̂ŵ

ˆ max( ˆ )πt t t= ,0 1 0− ⋅ππ x
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contributes to the aggregate prediction during the BC probe (since B’s contribution to
the expectation is proportional to ). Meanwhile, by the second block of trials, the
model has learned that A has little responsibility ( is low), giving a comparative
boost to learning about during the now-frequent S trials. Less learning about 
due to its lower responsibility also means its association with R persists as a primacy
effect. These biases follow from the way the evolving beliefs about the stimuli 
participate in the approximate learning rule through the determination of responsi-
bilities – recall that we derived the model using the IID assumption and that optimal
inference is, therefore, trial order independent.

Note that unlike the diagonal Kalman filter example of Figure 19.3a, the highlight-
ing effect here doesn’t arise until the second block of trials. This means that this EM
model doesn’t explain the ‘inverse base rate effect,’ (Medin and Edelson, 1988) which
is the highlighting effect shown even using only the first block when R predominates.
One reason for this, in turn, is the key competitive feature of this rule, that the 
predictions made by each stimulus do not interact additively in the generative rule
(Equation 3). Because of this, while stimuli may share responsibility for the outcome,
the net prediction doesn’t otherwise enter into the learning rule of Equation 9, which
still seeks to make each stimulus account for the whole outcome on its own. In high-
lighting, this means A’s association with R cannot directly boost C’s association with S
during the first phase. The same feature also causes problems for this model (and its
associative cousins) explaining other phenomena such as overshadowing and
inhibitory conditioning, and ultimately favors alternatives to Equation 3 in which
cues cooperate to produce the net observation (Dayan and Long, 1998; Hinton, 1999;
Jacobs et al., 1991a).

Despite this failure, the competitive model does exhibit forward blocking, albeit
through a responsibility-sharing mechanism (Mackintosh, 1975) rather than a
weight-sharing mechanism like Rescorla–Wagner (simulations not illustrated). More
concretely, stimulus A claims responsibility for R on AB→R trials, due to already pre-
dicting it. This retards learning about B, as in blocking. However, given that it is based
only on a point-estimate, it retains no covariance information, and so, like
Rescorla–Wagner, cannot account for backward blocking.

4.3 Summary
We have shown how two rather different sorts of inferential approximation schemes,
in the context of two different generative models for conditioning, both disrupt retro-
spective revaluation – abolishing backward blocking and producing a highlighting
effect. Exact Bayesian reasoning is characterized by simultaneously maintaining the
correct likelihood for every possible hypothesis. This is what enables retrospectively
revisiting previously disfavored hypotheses when new data arrive, but it is also the
main source of computational complexity in Bayesian reasoning and the 
target for simplification schemes. In short, primacy effects – the failure retrospectively
to discount an initially favored hypothesis – are closely linked to inferential 
approximation.
We have used extreme approximations to expose this point as clearly as possible.
While the experiments discussed here both suggest that retrospective revaluation is

ŵAŵC

π̂A

π̂B
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attenuated, that effects like backward blocking exist at all rules out such extreme
approaches. In the following section, we consider gentler approximations.

5 Blended and Mixed Approximations
So far, neither the Bayesian nor the approximately Bayesian models actually exhibit
the combination of recency and primacy evident in backward blocking and highlight-
ing. In fact, this is not hard to achieve, as there are a number of models that naturally
lie between the extremes discussed in Sections 3 and 4. The cost is one additional
parameter. In this section, we provide two examples, based on different ideas associ-
ated with approximating the Kalman filter.

5.1 Reduced-rank Approximations
In Section 4.1, we considered the simplest possible assumed density version of the
Kalman filter, in which the posterior fully factorized, having a diagonal covariance
matrix (Figure 19.3a). This method fails to exhibit backwards blocking, since it can-
not represent the necessary anticorrelation between the predictions of the two CSs
that arises during the first set of learning trials.

A less severe approximation to the posterior is to use a reduced-rank covariance
matrix. We use one that attempts to stay close to the inverse covariance matrix, which
(roughly speaking) characterizes certainty. An approximation of this sort allows the
subject to carry less information between trials (because of the reduction in rank),
and can also enable simplification of the matrix calculations for the subsequent
update to the Kalman filter (Treebushny and Madsen, 2005).

More precisely, we approximate the inverse posterior covariance after one trial,
(St – κt xt St)

-1, by retaining only those n basis vectors from its singular value decom-
position that have the highest singular values, thereby minimizing the Frobenius norm
of the difference. On the next trial we reconstruct the covariance as the pseudo-inverse
of the rank-n matrix plus the uncertainty contributed by the intervening drift, .

Figure 19.4a,b shows the consequence of using a rank-2 approximation (n = 2) to
the covariance matrix. This results in highlighting without further disrupting back-
ward blocking, which, in any case, only requires a two-dimensional posterior. A gen-
eral prediction of this sort of resource bottleneck approach is that the effects of
approximation should become more pronounced – e.g. retrospective revaluation
more attenuated – for problems involving higher dimensional and more intricately
structured posteriors.

5.2 Mixing Filters
A different possibility is to mix the exact and diagonally approximated Kalman filters
more directly. Here the idea is that there may be mixing at the behavioral level of dis-
tinct underlying psychological and/or neural processes, one corresponding to each
model. In some circumstances – for instance, when the diagonal elements of the
covariance matrix are anyway small – the additional accuracy to be gained by main-
taining the full covariance matrix may not justify the additional energetic costs rela-
tive to the particularly simple diagonal version. Such considerations suggest that the

σd
2I
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brain could adaptively trade off whether to employ approximation based on a sort of
meta-rational cost-benefit analysis. (In this case, blending would appear in results via
the average over trials or subjects.) A slightly different version of this idea would sug-
gest that subjects actually compute both forms simultaneously, but then reconcile the
answers, making an adaptive decision how much to trust each, much as in other cases
of Bayesian evidence reconcilation (Daw et al., 2005). The ‘exact’ computation might
not always be the most accurate, if in biological tissue the extra computations incur
additional computational noise; it might therefore be worthwhile to expend extra
resources also computing a less noisy approximation.

Figure 19.2c,d shows simulations of a model which performs mixing by multiply-
ing the off-diagonal elements of the covariance S by 0.7 at each step. This restricts the
efficacy of retrospective revaluation without totally preventing it, allowing both back-
ward blocking, which is curtailed relative to forward blocking, and highlighting.

6 Discussion

6.1 Summary
In this chapter, we have focused on the intricacies of inference in Bayesian models of
conditioning. We used theory and simulations to show how particular classes of effects
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Fig. 19.4. Simulations of two approximate Bayesian models exhibiting highlighting 
and backwards blocking. (a,b) Reduced-rank covariance Kalman filter

. (c,d) Blended full/diagonal covariance Kalman filter
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in learning (e.g. backward blocking) can arise from optimal inference in the light of a
simple generative model of a task, and others (e.g. highlighting) from more or less
extreme, but still recognizable approximations to optimal inference. This work on sen-
sitivity to trial order is clearly only in its infancy, and the data to decide between and
refine the various different models are rather sparse. However, just as we try to differ-
entiate subjects’ assumptions in exact Bayesian modeling, we hope in the future to
adjudicate more definitively between different approximation methods by identifying
tasks that better expose their fingerprints. Here, we have focused on trial order, but
many similar issues arise in other areas of conditioning, such as stimulus competition.

6.2 Locally Bayesian Learning
One spur to study trial order was the recent article by Kruschke (2006). He pointed
out the apparent contradiction between the recency in backward blocking and the
primacy in highlighting, and noted the implications of the IID assumption for both
phenomena. Kruschke framed these findings by contrasting classic associative learn-
ing models (which explain highlighting via ideas about stimulus attention) with a
particular IID Bayesian model (which explains retrospective revaluation). Rather than
addressing the IID assumption (which, of course, Bayesian models need not make),
he proposed a ‘locally Bayesian’ model blending features of both of these approaches.
This model consists of interconnected modules that are Bayesian-inspired in that
each updates a local belief distribution using Bayes’ rule, but heuristic in that the
‘observations’ to which Bayes’ rule is applied are not observed data but instead syn-
thetic quantities constructed using an ad-hoc message-passing scheme. Although the
individual modules treat their synthetic data as IID, trial ordering effects emerge from
their interactions. The theoretical status of the heuristic, for instance as a particular
form of approximation to a well-found statistical procedure, is left unclear.

We have attempted to address the issues central to highlighting and backwards
blocking in unambiguously Bayesian terms. We develop a similar contrast between
exact and approximate approaches, but rather than seeing statistical and associative
learning as contradictory and requiring reconciliation, we have stressed their connec-
tion under a broader Bayesian umbrella. The approximate Kalman filters discussed in
Section 5 retain a precise flavor of the optimal solutions, while offering parameterized
routes to account for the qualitative characteristics of both backwards blocking and
highlighting.

It is also possible to extend this broader Bayesian analysis to the mixture model of
Section 4.2, and hence nearer to Kruschke’s (2006) locally Bayesian scheme. The mix-
ture model fails to exhibit retrospective revaluation since it propagates only a point,
maximum likelihood, estimate of the posterior distribution over the weights. This
could be rectified by adopting a so-called ensemble learning approach (Hinton and
van Camp, 1993; Waterhouse et al., 1996), in which a full (approximate) distribution
over the learned parameters is maintained and propagated, rather than just a point
estimate. In ensemble learning, this distribution is improved by iterative ascent (anal-
ogous to E and M steps) rather than direct application of Bayes’ rule.

One online version of such a rule could take the form of inferring the unobserved
responsibilities, and then conditioning on them as though they were observed data
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(see also the mixture update of Dearden et al. 1998). Since it conducts inference using
synthetic in place of observed quantities, this rule would have the flavor of Kruschke’s
locally Bayesian scheme, and indeed would be a route to find statistically justifiable
principles for his model. However, this line of reasoning suggests one key modifica-
tion to his model, that the unobserved quantities should be estimated optimally from
the statistical model using an E step, obviating the need for a target propagation
scheme.

6.3 Bayes, Damn Bayes, and Approximations
At its core, the Bayesian program in psychology is about understanding subjects’
behavior in terms of principles of rational inference. This approach extends directly
beyond ideal computation in the relatively small set of tractably computable models
into approximate reasoning in richer models. Of course, we cannot interrogate 
evolution to find out whether some observable facet of conditioning arises as exact
inference in a model that is a sophisticated adaptation to a characteristic of the learn-
ing environment that we have not been clever enough to figure out, or as an inevitable
approximation to inference in what is likely to be a simpler model. Nevertheless,
admitting well found approximations does not infinitely enlarge the family of candi-
date models, and Occam’s razor may continue to guide.

Waldmann et al. (2007; this volume) pose another version of our dilemma. They
agree with Churchland (1986) that the top-down spirit of Marrian modeling is always
violated in practice, with practitioners taking peeks at algorithmic (psychological)
and even implementational (neural) results before building their abstract, computa-
tional accounts. However, unlike the approach that we have tried to follow, their solu-
tion is to posit the notion of a minimal rational model that more explicitly elevates
algorithmic issues into the computational level.

We see two critical dangers in the Waldmann ‘minimal rationality’ programme, one
associated with each of the two words. One danger Marr himself might have worried
about, namely the fact that minimality is in the eye of the beholder (or at least the
instruction set), and that our lack of a justifiable account of the costs of neural pro-
cessing makes any notion of minimality risk vacuity. The second danger is that by
blending normative considerations with incommensurate pragmatic ones, minimal
rationality risks being a contradiction in terms. We agree with Waldmann and col-
leagues’ criticism that rational theorists have sometimes been a bit glib relating theo-
ries of competence to performance, but we see the solution in taking this distinction
more seriously rather than making it murky. Since computational and algorithmic
levels involve fundamentally different questions (e.g. why versus how), we suggest
preserving the innocence of the computational account, and focusing on approxima-
tions at the algorithmic level.

Finally, as we saw in Section 5.2, one important facet of approximate methods is
that it is frequently appropriate to maintain multiple different approximations, each
of which is appropriate in particular circumstances, and to switch between or blend
their outputs. To the extent that different approximations lead to different behavior, it
will be possible to diagnose and understand them and the tradeoffs that they (locally)
optimize. Our understanding of the blending and switching process is less advanced.
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In the present setting, the idea goes back at least to Konorski (1967) that Pavlovian
learning can employ both a stimulus-stimulus pathway (which is more cognitive in
this respect and echoes our full Kalman filter’s representation of interstimulus covari-
ance) and a simpler stimulus-reward one (perhaps related to our diagonalized
Kalman filter); such processes also appear to be neurally distinguishable (Balleine and
Killcross, 2006). In fact, there is evidence for similar behavioral dissociations coming
from attempts to demonstrate retrospective revaluation in rats (Miller and Matute,
1996). When training is conducted directly in terms of stimulus-reinforcer pairings,
no retrospective revaluation is generally seen (as with our diagonalized covariance
Kalman filter), but revaluation does succeed in the more obviously cognitive case in
which the paradigms are conducted entirely in terms of pairings between affectively
neutral stimuli, one of which (standing in for the reinforcer) is finally associated with
reinforcement before the test phase.

Parallel to this in the context of instrumental conditioning is an analogous division
between an elaborate, cognitive, (and likely computationally noisy) ‘goal-directed’
pathway, and a simpler (but statistically inefficient) ‘habitual’ one (Dickinson and
Balleine, 2002). In this setting, the idea of normatively trading off approximate value-
inference approaches characteristic of the systems has been formalized in terms of
their respective uncertainties, and explains a wealth of data about what circumstances
favor the dominance of goal-directed or habitual processes (Daw et al., 2005). It
would be interesting to explore similar estimates of uncertainty in the mixed Kalman
filters and thereby gain normative traction on the mixing.
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