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Abstract

A striking recent finding is that monkeys behave maladaptively in a class of tasks in which
they know that reward is going to be systematically delayed. This may be explained by a
malign Pavlovian influence arising from states with low predicted values. However, by very
carefully analyzing behavioural data from such tasks, La Camera & Richmond (PLoS Computa-
tional Biology, doi : 10. 1371/ j our nal . pcbi . 1000131) observed the additional important
characteristic that subjects perform differently on states in the task that are equal distances from
the future reward, depending on what has happened in the recent past. The authors pointed
out that this violates the definition of state value in the standard reinforcement learning models
that are ubiquitous as accounts of operant and classical conditioned behavior; they suggested
and analyzed an alternative temporal difference model in which past and future are melded.
Here, we show that, in fact, a standard temporal difference model can actually exhibit the same
behavior, and that this avoids deleterious consequences for choice. At the heart of the model is
the average reward per step, which acts as a baseline for measuring immediate rewards. Rela-
tively subtle changes to this baseline occasioned by the past can markedly influence predictions
and thus behavior.

Author Summary

When monkeys perform a sequence of identical tasks before getting a reward, they have been
found to make many errors when they know the reward is far away. Oddly, these errors do not
only depend on the number of trials to the future reward, they also depend, retrospectively, on the
length of the sequence. A recent suggestion for modeling this result suggests an heuristic modifi-
cation to an otherwise normative account. Here, we show an alternative way that the retrospective
dependence could have arisen in a model based on estimating the average reward per step.

Introduction

Richmond and his colleagues (Liu and Richmond, 2000; Liu et al., 2000; Shidara and Richmond,
2002; Shidara et al., 1998; Sugase-Miyamoto and Richmond, 2005; Bowman et al., 1996; Liu et al.,
2004; Ravel and Richmond, 2006; La Camera and Richmond, 2008) have investigated many behav-
ioral and neural aspects of an appealingly simple problem for monkeys that they call the reward
schedule task. The task is illustrated in figure 1A. Ostensively, it involves repeated performance
of a simple vigilance task (releasing a touch-bar between 200-800ms after a visually presented
dot turns from red to green). However, the monkey is not rewarded after each successful per-
formance; rather reward comes at the end of schedules, ie after performing certain numbers of
successful trials (up to four). The key finding is that if the monkey’s position in the schedule is
signalled uniquely (the ‘Valid” condition) by a visual cue (the brightness of the elongated bar in



figure 1A), then it is found to perform poorly on trials it knows to be far from the reward, even
though it has to repeat these trials until it acts correctly. If it executes the same sequence of tasks
but without any reliable cue (the ‘Random’ condition), then it performs uniformly well.

This graded performance poses two important challenges to standard views of adaptive decision-
making. The first is that performance should be systematically poor on some trials. This is surpris-
ing, since the monkey cannot advance along the schedule until it gets a task instance correct, and
so bad performance merely delays the ultimate reward. One explanation for this is that it is an ex-
ample of the maladaptive interference of Pavlovian predictions (in this case of the excess distance
of the future reward) over instrumentally optimal behavior (Breland and Breland, 1961; Williams
and Williams, 1969; Hershberger, 1986). Pavlovian predictions lead automatically to responses
that are presumably programmed by evolution to be beneficial in natural environments. These re-
sult in animals approaching and engaging with stimuli predictive of more reward or of increasing
reward, and withdrawing and disengagement from stimuli predictive of more punishment or of
decreasing reward. Although the exact rules of this interference are not completely clear, there are
many examples in the behavioral literature, and it has also been the subject of modeling (Dayan
et al., 2006), relating it to various anomalies of neuroeconomic decision-making (Dayan and Sey-
mour, 2008). Here, the trials that are farthest from the reward are comparatively worse than trials
that are nearest, and so might inspire withdrawal or disengagement, thus harming performance.

The second challenge, which was described and analyzed by La Camera and Richmond (2008),
is both more subtle and more pernicious. Consider the schedules involving three and four task
instances. The second trial of the three-instance case (which is called 2/ 3) is formally similar
to the third trial of the four instance case (3/ 4), since in both cases, successful performance of
two more tasks is necessary to get reward. All standard reinforcement learning methods (Sutton
and Barto, 1998), and indeed more general approaches to optimal control (Puterman, 2005) are
prospective, focusing on predicting and controlling future rewards. Apart, therefore, from any
systematic biases arising from generalization along the dimension of the cue to the schedule state,
they would therefore naively expect these tasks to be performed similarly irrespective of their
different pasts along their different schedules, because they share a common future. Importantly,
this is true of Pavlovian predictions just as much as quantities associated with operant actions.
La Camera and Richmond (2008) analyzed the behavior of the monkeys, and showed that this
principle (which they called the principle of invariance) is violated. Figure 1B shows the key data
from one monkey in terms of error rates. Although there is substantial variability in the data, on
average, the monkey performs much more accurately (and also more quickly) on the 3/ 4 trials
than the 2/ 3 trials. The same is true for the other would-be matched pairs, except for the trials
nearest the reward (1/ 1, 2/2, 3/3, 4/4).

Standard temporal difference (TD) learning schemes (Sutton, 1988) in reinforcement learning have
been recently omnipresent as formal accounts of animal and human decision-making (e.g., (Daw
and Doya, 2006; Johnson et al., 2007; Doya, 2008)). Part of the ubiquity arises from the fact that
these schemes realize optimal or approximately optimal control control in a quite wide range of
circumstances, and therefore provide a firm statistical, engineering and computational foundation
for substantial bodies of psychological and neural data (Sutton and Barto, 1998; Bertsekas and Tsit-
siklis, 1996). However, La Camera and Richmond (2008) suggested that this retrospective regard
for the past rules them out, and advocated a heuristically-motivated alternative to standard TD
learning, which we call retrospective-TD, in which values of states in the past as well as those in
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the future are used to criticize present value predictions.

La Camera and Richmond (2008) showed that their new scheme does not greatly disturb some
cases of decision-making. However, there is a legacy from earlier attempts in reinforcement learn-
ing to include information from the past as well as the future in defining learning rules (Baird,
1995) suggesting that this can be problematical in terms of leading to suboptimal choice. Indeed,
we exhibit just such an example in the next section. Thus, retrospective-TD does have qualita-
tively different, and quantitatively worse behavior, than regular TD, and does not enjoy even the
approximate general optimality guarantees of conventional TD.

However, there are at least two routes by which information from the past of a schedule can
affect present performance in regular, unaltered TD. One is that the Pavlovian misbehavior might
include an immediate effect of the prediction error associated with the change from one state to
the next, rather than only an effect via the learned values of states. That is, the TD prediction error
depends on the difference between the values of two successive states. This difference (perhaps,
when it is positive, acting via its dopaminergic report to the striatum (Satoh et al., 2003; Montague
etal., 1996; Schultz et al., 1997)) could itself influence the monkeys’ engagement with the trial. The
prediction error will be 0 for deterministic transitions, but not for stochastic ones. In particular,
in the first trials of the longer schedules (1/ 3, 1/ 4), there will be substantial negative prediction
errors, given that one of the shorter schedules (1/ 1, 1/ 2) could have been picked instead. This
could lead to particularly poor performance, as seen in figure 1.

The other route to an influence of the past on the present concerns the fact that in long sched-
ules, subjects directly experience the recession of the past reward, and so on-line predictions of
the average rate of reward will be decreasing as the monkey progresses. In the average reward
framework, this quantity acts as a form of a comparator or variable baseline for ongoing prediction
errors. Thus, as it decreases in long schedules, the effective learning signal will increase, leading to
larger values, and thus better performance. Adaptive baselines are often thought of just in terms
of variance reduction (Williams, 1992; Dayan and Sejnowski, 1993; Greensmith et al., 2004) or the
balance between exploration and exploitation (Aston-Jones and Cohen, 2005). However, our re-
sults show that they can also provide a powerful way for past events to influence future-oriented
predictions.

We first describe the reward schedule task more formally, along with La Camera and Richmond
(2008)’s suggested solution. We then show a simple Markov chain in which the effect of the past
in their algorithm leads to evidently suboptimal behavior. Next, we consider the two alterna-
tives associated with conventional TD. One of these effects, namely the diminishing average rate
of reward, appears to be more critical in accounting for the behavior. Finally we elucidate the
consequences of this finding.



Results

The Reward Schedule Task and Retrospective-TD

Figure 1A-C shows the reward schedule task and the basic behavioral data in question. The overall
data come from a large number of different individual experiments performed on 24 different
monkeys, and a wide range of different stimuli reporting the state of the schedule. Following La
Camera and Richmond (2008), we will work with aggregate results, which are representative.

The schedules in figures 1B;C are labelled ast ri al / schedul e,so 1/ 1 is the sole trial in a sched-
ule involving just one single vigilance task, 1/ 2 is the first trial of a two schedule task, and so
forth. As mentioned, monkeys only progress along the schedule, from 1/ 1 to get the reward, or
from 1/ 2 to 2/ 2 if they perform the vigilance task correctly, otherwise they just have to repeat the
trial until they do get it right. Figure 1B shows the mean error rates for each trial in each schedule
for one monkey. In fact, few monkeys are willing to perform a schedule of length four at all. Fig-
ure 1C shows the performance of the twelve monkeys on schedules of up to length three. These
monkeys were selected because they all had significant differences between the error rates on the
1/ 2 and 2/ 3 trials. The substantial inter-subject variability is readily apparent.

The misbehavior of the subjects must somehow be occasioned (though not necessarily directly)
by values v(s) associated with the current state s = {7/s} (i.e., trial 7 on schedule s). According
to RL, these values are the long run expected utilities starting from each state. We consider two
different definitions of long run utility. One is the discounted value, defined self-consistently as

v7(st) = (r(se) + 107 (St41)) - 1)

Here, r(s;) is the immediate reward associated with state s; at time ¢. This reward is 0 except
for being 1 on the state after the successful completion of all trials in a schedule, which we call
0/ 0. Further, s;; is the next state. This is the same as S; given unsuccessful completion of a
trial, and 7+ 1/s following successful completion or 0/ O at the end of a schedule. In the case
that s; =0/ 0, we make S, another unrewarded special state called - / - . Finally, we assume that
S¢+1 is equiprobably 1/ 1, 1/2, 1/3 or 1/ 4 following s; =-/-. The angle brackets indicate
that these values are averaged over the expected performance (i.e., including the chance of error),
and 0 < v < 1 is the discount factor which downweights rewards in the distant future. The solid
lines in figure 2A show the discounted values for all the schedule states in an analogous form to
tigure 1B for v = 0.4, and for a simulated case in which there is no error.

A perhaps more natural way to define the long run utility in the task is in the form of p, which
is the average reward per time step (Schwartz, 1993; Mahadevan, 1996; Puterman, 2005), and was
used, for instance, by Niv et al. (2007) to study operant vigor. In this case, the state values v*(S;)
are called differential values, and satisfy

v(s¢) = (r(se) + v*(St+1)) — p (2)

It is apparent that adding any constant to v*(s) for all s will leave this relationship fixed; thus it
is conventional to set the differential value of one state to 0. We set v®(-/ - ) = 0. Figure 2B shows
these average values in the same format as figure 2A (also without errors), assuming that the true
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value of p is used. Later we consider the consequences of learning p from experience. Average
case TD endows each timepoint with the same weight, and so the solid lines connecting the points
within each single schedule are straight rather than curved.

Ignoring for the moment the errors the subjects make, figure 2A;B also shows the essential problem
for RL that was identified by La Camera and Richmond (2008). Equations 1 and 2 are exclusively
forward-looking. Thus the discounted or average values of states such as 2/ 3 and 3/ 4 are bound
to be the same, and thus might be expected to lead to the same performance. The dashed lines
in figures 2A;B connect these equivalent points in the schedules. That they are flat implies that
performance based solely on v”(s) or v*(s) would not vary by schedule. What is needed is some
dependence on the past of the individual schedule.

The standard TD learning rule associated with the discounted definition in equation 1 is
0(s¢) = 7(St) + 707 (St41) —v7(S4) - ©)
La Camera and Richmond (2008) suggested modifying it to give the retrospective-TD rule

0"(st) =7(St) + Y7 (St41) + 007 (Se—1) — 07 (S¢) . 4)

where s;_; is the state that precedes state s;. Figure 2C shows the consequence of doing this for the
schedule case (for convenience, (again following La Camera and Richmond (2008), setting o = 0
for -/ - to reset the trace and not accumulating beyond each reward). By making ¢ = 0.3 > 0,
the values of the states can depend on those of their predecessors, and so generate the sort of
schedule dependence that is apparent in the data, with the decreasing dashed lines connecting
prospectively, but not retrospectively, equivalent trials. Making the additional assumption that
the value of a state is turned into the probability of an error at that state by a sigmoid relationship
Plerror;s] = 1/(1 4+ exp(fv(s))), where (3 is an inverse temperature parameter, figure 2D shows
the implied error rates with their retrospective dependence. Iterating this to find error rates and
values that are mutually consistent (since the values depend on averages that include the effects
of the errors) leads to a good match with the experimental data.

La Camera and Richmond (2008) show directly that this retrospective-TD rule behaves just like
regular TD in various circumstances. They also note that if retrospective-TD values are used to
make choices between states (treating them like O-values (Watkins, 1989)), then there are some
circumstances under which the behavior produced can be different from that implied by regular
TD. However, in those problems (e.g., a reward schedule task in which an initial choice leads
to one of two sequences of short or long delays to large or small rewards), regular TD would
make the same choice as retrospective-TD, but for a different discount factor. La Camera and
Richmond (2008) therefore conclude that “in simple choice tasks and in choice-schedule tasks, the
context-sensitive model [retrospective-TD] predicts the same qualitative behavior as the standard
TD model.”

Unfortunately, this result is not generic. The consequence of corrupting the value of a state accord-
ing to its past on paths, means that the state can look unreasonably attractive. Figure 3 shows an
example of a Markov decision problem with exactly this characteristic. State ‘c’ is very valuable,
and so, for a non-zero o, dramatically boosts the value of its successor (state e”). This can make
state ‘e’ appear better than state 'd’, despite itself leading to a punishment rather than a reward.



The consequence is that subjects would make an error at their sole choice point, i.e., state 'b’,
between heading for state ‘d” and state ‘e’. The table in figure 3 shows this directly, comparing
the values of discounted and retrospective-TD for the various states. No manipulation of the dis-
counting for regular TD would have this effect. The amount by which v(’e”) > v(’d’), and thus the
incorrect preference, scales with the reward at 'c’.

TD and the Past

The behavioral data from the subjects in the reward schedule tasks show that aspects of the past
can play a role in determining choices, along with aspects of the future. However, before adopting
retrospective-TD, along with its potentially suboptimal policies, it is important to consider how
the past influences standard TD. We consider two factors. One is based on the observation that
the immediate value of the temporal difference error signal itself might play a role in corrupting
instrumental behavior. This explanation does not depend at all on the values of the equivalent
schedule points being different — it is a ‘performance’ rather than a ‘learning’ effect. The second
possibility does depend on learning, and is based on the nature and role of the reward rate p in
temporal difference learning.

First, as we have discussed, there is not a normative reason for the poor performance of the mon-
keys on the distant trials of reward schedule tasks, and so one has to make a linking assumption
as to the neural/psychological process underlying it. La Camera and Richmond (2008) suggested
that it arises purely from the value. However, it is conceivable that the TD prediction error itself
d(S¢—1) in equation 3 might also be involved. That is, if the subjects go from a state S;_; that is
better, to one s; that is worse, then, by creating a negative prediction error, this could induce poor
performance, even if the actual value v7(s;) or v*(s;) is by itself quite high. Note that the predic-
tion error is 0 for deterministic transitions, but not necessarily for stochastic transitions such as
that associated with the choice of schedule.

One (albeit far from conclusive) reason to think that this might have an influence is that trial-
by-trial fluctuations in the activity of dopamine neurons, which putatively code for appetitive
prediction errors (i.e., when states are getting better) are positively related to the vigor of respond-
ing (Satoh et al., 2003; Murschall and Hauber, 2006; Lex and Hauber, 2008). Vigorous responding
is an obvious relative of strong engagement in a task, and thus, putatively low error rates. For
instance, just such an effect has been observed in a human monetary incentive task, in which a
cue indicating that an upcoming trial will actually be rewarded on successful completion leads to
faster and more accurate choices, and also leads to a stronger BOLD signal in areas that are tar-
gets of dopaminergic processing (Wittmann et al., 2005) (although sufficiently excess vigor can, of
course, itself lead to errors (Cools et al., 2005)) Something similar is true in a primate task involving
mandatory, unrewarded, actions (Kawagoe et al., 2004).

Niv et al. (2007) provides a discussion of operant control over vigor and tonic levels of dopamine
(Salamone and Correa, 2002), and notes the possibility that the tonic signal is realized partly
(though not wholly (Goto and Grace, 2005)) through accumulated phasic signalling, having the
same energising effect (Watanabe et al., 2001; Lauwereyns et al., 2002; Roitman et al., 2004). Whether
pauses in dopamine firing (Bayer and Glimcher, 2005) or an aversive opponent system to dopamine
(Solomon and Corbit, 1974; Grossberg, 1984; Daw et al., 2002) represent negative prediction errors



is not completely clear, but either could exert Pavlovian influences over instrumental vigor and
choices via the nucleus accumbens (Reynolds and Berridge, 2002, 2008; Talmi et al., 2008; Balleine,
2005). Ravel and Richmond (2006) recorded the activity of dopamine neurons in the reward sched-
ule task, showing a range of interesting responses, albeit ones that are hard to relate to the current
analysis because of the possible existence of an opponent system.

An effect of this sort of the TD prediction error signal could play an important role in the reward
schedule task. For instance, in the error free case, consider the prediction error associated with the
transition from -/ - to 1/ 3 versus the transition from 1/ 4 to 2/ 4 for the discounted case values
in figure 2A. Since a shorter schedule could have been chosen, the transition to a relatively longer
schedule (involving three trials) is a small negative step from v?(-/ - ) = 0.067 (an outcome that
can be further enhanced when errors are also taken into account). This makes the TD prediction
error affecting 1/ 3 (0 = —0.04; for the numbers in the figure). By comparison, since it involves
a deterministic transition, the TD prediction error affecting 2/ 4 is § = 0, since the effect of the
unfortunate choice of a length four schedule has already been discounted through the low value
v7(1/ 4) = 0.026. Thus performance of 1/ 3 could be comparatively impaired.

However, although this is a proof of principle for an effect of the past on regular TD signals,
it seems unlikely to be the sole factor governing the behavioral findings in figure 1B. Even in
simulations taking account of errors (not shown), the fact that 2/ 3 has a higher error rate than
3/ 4 turns out to be particularly difficult to accommodate, because the prior states (1/ 3 and 2/ 4
respectively) are both already part of their schedules (rather than being external to the schedule
as in - / - ). Note, though, that few monkeys perform the schedules of length 4 at all, and indeed
one of the three reported did not show a significant retrospective effect.

Another way that the past may influence the present arises through the p term in the average case
TD rule of equation 2. In figure 2B, the exact value of p was used given knowledge of the (error-
free) policy. However, in practice, this has to be learned, along with the average TD values. One
common way to implement this is to define two learning processes (Tsitsiklis and Van Roy, 2002).
One is a standard delta or Rescorla-Wagner rule producing a running estimate of p;

per1 = pt + 0P (r(Se) — pt) )

where 7)” is the learning rate associated with the running average. The other learning process
implements TD learning, but with the TD prediction error being

3(se) =7(st) — pt + v (Se41) — v*(St) (6)

In this formulation, p; acts as a form of comparator or baseline for the reward r(S;), and so small
values of p; lead to larger differential values, and vice-versa. One of the differences between
prospectively equivalent states such as 2/ 3 and 3/ 4 is that, retrospectively, the latter is farther
from the reward in the reward schedule task (an outcome that is exacerbated by the poor per-
formance of the monkey at the previous points in the schedules). Thus, following equation 5,
the value of p; will be lower by this point, and so, over learning, the values will come to satisfy
v*(3/ 4) > v*(2/ 3). This will make performance at 3/ 4 better than at 2/ 3. The same applies
for the other context-dependent differences. This did not arise in figure 2B, since the values there
were based on the true, infinite-horizon, value of p that was not estimated.



Figure 4A shows this effect in the case that there is no error in performance, in terms of the values
of p at each point of each trial (for n” = 0.1). Figure 4B shows that the decreasing values of p as the
schedules progress duly turn into increasing values of v*(s) as predicted from this analysis, with
the dashed lines joining equivalent trials no longer being flat.

In considering the effect of the values on behavior, the average reward case requires one further
assumption, since the absolute level of the values is undetermined. This led us to set one state
(-1 -) to have the value 0; however it also means that there is a potentially arbitrary mapping to
the error rate. This particularly affects v*(1/ 4), which becomes negative. Given that the minimum
observed error rate is 40%, and that there is substantial variability among the subjects, we simply
used the crude Plerror|s] = min{1/(1 + exp(fv*(s)),0.4} rather than attempting to match the
averages in detail. Using this, figure 4C shows the final, self-consistent, error rates, together with
the empirical values from figure 1B (squares) for comparison. The qualitative match is readily
apparent — given the variability between different animals, we did not attempt to fit the data
precisely. Indeed, the qualitative results are not strongly dependent on the parameters — although
the smaller the learning rate n” governing p, the smaller this effect.

Finally, one might wonder about the behavior of this rule in the instrumental choice task of fig-
ure 3. In this particular problem, the effect of making 7” very high is actually to depress the value
of state “e’, from the times that it is preceded by state ‘¢’ with its large reward. Thus the choice at
state 'b” will actually tend to be more correct. In other decision problems, choice can be skewed.
However, if 1)” is decreased to make p a longer-run average, then these problems should not affect
the optimal solution. To put it another way, the key difference between this explanation and that
of retrospective-TD is that the underlying definition of the values is exactly as it should be under
properly prospective TD models, the rule for learning p concerns the modality of achieving the
optimal values. By comparison, retrospective-TD alters the representational goal of the values,
away from a normatively reasonable basis. Similarly, this form of average TD can cope with the
equivalence of schedule states in the random cue condition of the reward schedule task.

Discussion

In this paper, we have considered the interesting challenge to TD that comes from the retrospectiv-
ity apparent in the reward schedule task. Although it is possible to address the challenge through
the heuristic modification to TD (retrospective-TD) suggested by La Camera and Richmond (2008),
this is not normatively based, and can lead to suboptimal behavior, weakening one of the main
original strengths of TD.

We therefore showed two ways that retrospective factors can influence the otherwise prospective
TD rule. One involves detailed consideration of the provenance of the malign Pavlovian influence
over instrumental behavior, and the suggestion that the TD prediction error itself might affect the
monkey’s engagement with the task, and hence error rate. The other concerns the effect that the
long-run average reward has on learning TD values in an average-case RL setting, acting as a
sort of baseline. As this long-run average changes through learning, it acts to inject retrospective
information about the time since the reward, and hence the length of the current schedule, into the
values. It thereby has the same effect as retrospective-TD in this task. However, since it is nothing



more than an instantiation of regular TD, it is benign with respect to policy choices.

This magnitude and nature of this effect is controlled by the learning rate »” for the long run
average reward. That subjects might adjust this learning rate in the light of the task is suggested by
various experiments in monkey and human decision-making (Lau and Glimcher, 2005; Corrado
et al., 2005; Behrens et al., 2007) and may offer a route for testing our account. Along with the
well-known effect that in choice tasks there is a sampling bias that leads to variance aversion (Niv
et al., 2002; March, 1996; Hertwig et al., 2004; Weber et al., 2004), this influence of past events on
future predictions is a reminder of the complexities of on-line learning.

Although average-case TD is a little less common than discounted TD for application to computa-
tional problems and neural data, it is actually more reasonable for ongoing tasks that do not have
either an obvious end point or a natural timescale. The idea that monkeys are trying to maximize
this average rate underlies substantial work on temporal decision-making in monkeys and hu-
mans (Gold and Shadlen, 2007; Ratcliff and Smith, 2004), and there is evidence that a population
of anterior cingulate neurons in the macaque represents a form of online estimate of the quantity in
a complex reinforcement learning task (Seo and Lee, 2007). Further, average-case and discounted
RL are closely related for large values of the discount factor . Indeed the pair of rules 5 and 6 have
been shown to arise from a particular form of regular TD, in which an appropriate representation
of the context exactly substitutes for the effect of p (Tsitsiklis and Van Roy, 2002).

Of course, even with its alternative way of addressing the retrospectivity, our account retains
exactly La Camera and Richmond (2008)’s explanation for the essential maladaptivity of the high
error rates themselves. The execution of apparently instrumentally irrelevant actions also arose
in Niv et al. (2007)’s study of operant vigor. Animals do perform actions that are clearly incorrect
with respect to the experimenter’s definition of the task, such as checking food cups when they
have not heard the food drop, visiting a water spout when hungry rather than thirsty, or grooming.
Niv et al. (2007) suggested that this arises from a stochastic policy, including small values for these
choices. In fact, the sigmoid policy adopted by La Camera and Richmond (2008) is equivalent to
this, assuming that the Q-value of performing incorrectly is 0, and that of performing correctly is
v(s). The latter is unusual, since the Q-value should be more like the value of the next state (plus
any reward along the way); however, as La Camera and Richmond (2008) point out, this would
lead to a policy in the random cue case that does not match the subjects” behavior. Unfortunately,
our understanding of the details of Pavlovian influences over operant actions is not sufficiently
advanced to distinguish such instrumental and classical routes to error. Further, if anything, the
essential effect in Niv et al. (2007)’s operant model of the fact that p decreases over long schedules
would be to decrease, rather than increase, operant vigor, again reinforcing the Pavlovian/operant
difference.

The involvement of dopamine in both the reward schedule task (Liu et al., 2004; Ravel and Rich-
mond, 2006) and operant vigor (Niv et al., 2007; Satoh et al., 2003; Salamone and Correa, 2002; Sala-
mone et al., 2007; Lex and Hauber, 2008; Murschall and Hauber, 2006) is suggestive. However, Niv
et al. (2007)’s account involves tonic rather than phasic dopamine, and this would presumably not
distinguish different trials in a schedule. However, although there is clearly some separation be-
tween tonic and phasic dopamine signals (Goto and Grace, 2005), the latter may contribute to the
former, perhaps underlying the correlation between phasic activity and response vigor noted by
Satoh et al. (2003). Unfortunately, the whole collection of threads associated with tonic and pha-



sic dopamine, Pavlovian influences over instrumental behavior such as Pavlovian-instrumental
transfer, and the nucleus accumbens has yet to be satisfactorily tied.

One tonic effect that might play a relevant role arises from the design of presenting blocks of
valid and invalid cues. The overall reward rate is substantially higher in the latter blocks than the
former because of the excess errors induced by the valid cues. This could account for a remaining
issue for the average case TD rule concerning the absolute error rate for the invalid cues. With
invalid cues, there is effectively just one single value for all the states in the schedules, since the
randomization renders them effectively indistinguishable. The average TD rule thus correctly
leads to almost equal error rates for all states in the schedules (since the retrospective effect of the
changing estimates of the average reward rate, p;, depends mostly on learning). However, in the
error free case, one can show that the differential value of the apparently single invalid state is
approximately the average reward rate p. By comparison, the differential values of the last states
of each schedule are approximately 1 — 2p. These will only be equal (thus leading to equal error
rates, as very approximately observed in the data) for p = 1/3, which is an overestimate. However,
if the increased overall reward rate in the invalid blocks leads to a greater overall engagement with
the task, via tonic dopamine signalling, then this might lead the error rates to match. To put the
effect another way, the valid cue blocks may induce a form of learned helplessness (Seligman and
Maier, 1967; Maier et al., 2006), with the subjects being unable to eliminate the delay to the reward
arising from the intervening tasks.

There are at least two experimental approaches which could readily be used to compare retrospective-
TD with the suggestions here. First, it would be important to test the role of performance versus
learning. One way to do this would be to "break’ the schedules very occasionally and at random,
changing which state comes before which one. This should induce ongoing prediction errors with-
out substantially affecting the values. If the error rate at a state depends on the precise previous
transition leading there, then this would vote in favor of performance considerations over learn-
ing. The current data actually includes trials of this sort (one could compare the first entry to a
state versus the repeat, following an error); however, this is a rather special transition involving
the same state twice, and furthermore has been observed an overwhelming number of times. Thus

its results might not be conclusive. Successive trials in the invalid blocks could also be revealing.

Second, it would be interesting to try tasks of the sort suggested in figure 3. If the monkey’s
behavior at state ‘b’ indeed reveals a preference for state ‘e’ over state ‘d’, because of the prior
reward in state 'c’, then this would be a strong vote for retrospective-TD, particularly because of
its non-normativity. Of course, this particular example involves relatively extreme differences in
the immediate rewards at different states (a requirement imposed by the relatively small value of
o). It would be important to create a range of tasks with similar properties.

Conclusions

We have studied the apparently anomalous, retrospectively sensitive, performance of monkeys in
a task involving substantial, signalled, delays to rewards. We considered how information about
the past infects standard temporal difference learning methods of reinforcement learning. One of
the effects of this is to manipulate the future-oriented predictions in a manner that obviates the
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requirement for a heuristic, non-normative, learning rule. Finally, we suggested some directions
for experimental test of these hypotheses.
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Figure legends

Figure 1: The reward schedule task. A) The left figure shows the sequence of events in the basic
vigilance task, in which a monkey is prepared by a red spot to react to a green spot in order to get
reward (the drop). Any error implies the task has to be repeated. The right figure shows a schedule
of length two, in which the vigilance task has to be completed twice to get the reward. Any error
in the first task (called 1/ 2) requires it to be repeated. The display includes a bar which, in this
case, is black for the trial next to the reward, and gray for 1/ 2. In the Random condition, the same
schedules apply, but the colors of the bars are meaningless, and variable on a trial-by-trial basis.
B) Error rate of one monkey (called monkey B in La Camera and Richmond (2008)) in the four
schedules (valid cues: black dots; random cues: asterisks). Each schedule is shown in order, so
the sequence along the x-axisis 1/ 1, 1/2, 2/2, 1/3, 2/ 3, ....Thecontextdependenceis
that trials that are equal numbers of tasks from the reward (such as 1/ 2 and 2/ 3) have different
error rates. The asterisks show that this depends on the monkey having information as to where in
the schedule it is. C) Data from 12 monkeys who performed schedules of length 3 with significant
context dependence showing the substantial variability. Figure segments taken from La Camera
and Richmond (2008)

Figure 2: TD and retrospective-TD. A) The value of all the states in the schedules assuming dis-
counted TD with v = 0.4 (here, the values could accumulate across trials; note the y-axis is
flipped). Equivalent states in the schedules are joined by dashed lines, and have the same val-
ues. B) The same quantities for average case TD, setting v*(-/ - ) = 0 and using the analytical
value of p. C) The values under retrospective-TD with ¢ = 0.3 (for consistency with the sim-
plest definition in La Camera and Richmond (2008), the reward is actually 1/, and there is no
accumulation across the reward state 0/ 0). Here, the context-dependence is apparent in that
the dashed lines are decreasing. D) The retrospective-TD values are turned into choices using
Plerror;s| = 1/(1 4 exp(Buv(s)) with g = 3.2.

Figure 3: Retrospective-TD and choice. The figure shows a simple Markov decision problem with
a single choice (at node 'b’). Nodes are labelled by their states; reward values are shown on their
exteriors. The table shows the values for retrospective-TD (using v = 0.4; 0 = 0.3, setting o = 0 at
‘a’) and standard discounted TD (with v = 0.4). The optimal choice at ‘b’ is to go to ‘d’, but this
appears to reverse under retrospective-TD, since the large reward at "¢’ skews the value of e’. The
values assume that the choice at ‘b’ depends deterministically on the sign of v('d") — v(’e’).

Figure 4: The retrospective effects of p. A) Using the learning rule of equation 5, the value of p
decreases as the number of steps from the reward increases. B) The effect of this is to increase the
values of the later trials in each schedule, breaking their prospective equivalence.(A) and (B) are
both in a case without errors, and 7” = 0.1. C) If the values actually determine errors through
a truncated sigmoid (with the maximum error rate of 40%), then (including the effect of the er-
rors on v*(s), with the learning rate for the values also being 0.1), the self-consistent error rates
qualitatively resemble the data from figure 1B (replotted as squares). Here 3 = 5.

16



A B C

1-trial schedule 2-trial schedule

[

=
Y
(=)

-

o
[ ]
=3

error rate [%)]
(3]
(=]

error rate [%]

-
o

x
@x®x 8% x

Ll TR

:
i i

o

1711 212 3/3 4/4 11 1/22/21/13 2/3 3/3
schedule state schedule state

Figure 1:

17



A) discounted TD
0

0.4

1/1 2/2  3/3 4/4
schedule state

C) retroTD

1/1 2/2  3/3 4/4
schedule state

©

o)

Figure 2:

18

error rate

B) average TD

-0.2
0
0.2
04
0.6
1/1 2/2  3/3 4/4
schedule state
D) errorrate
04
0.2 - _
o X -
0
1/1 2/2  3/3 4/4

schedule state



0
%hoice

o«

0.5/ ]

e

()

—-0.5

+5

Figure 3:

19

state | retro | discount
a 1.3 1.0
b 0.80 0.16
C 5.8 5.0
d 0.77 0.41
e 1.0 —0.09




0.24
0.22
o 0.2
0.18
0.16

A) no errors

1/12/2  3/3
schedule state

4/4

B) no errors

1/12/2 3/3
schedule state

Figure 4:

20

4/4

© 0.3

C) with errors

]
A\
1/12/2 3/3 4/4
schedule state




