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The simple neural observation that the receptive fields of visual neurons are spatially extended lies at the
heart of accounts of psychophysical phenomena to do with a sometimes unrequited need for spatial
selection. In this paper, we consider its role in three anomalies associated with selective attention: the
apparently undue influence of distractor stimuli when decisions in the Eriksen flanker task have to be
made under time pressure; the phenomenon associated with attentional load that distractors distal to
a target exert more effect when the demands on selective attention are smaller rather than larger; and
the observation that crowding, a breakdown in peripheral discriminability in the presence of flankers,
can under some circumstances be asymmetrical with respect to the relative proximity to the fovea of tar-
get and flanker. We show how these seeming anomalies can arise from normative Bayesian inference in
the face of spatially confounded input.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

One of the ostensively less contentious forms of visual attention
concerns spatial selection, i.e., suppressing or eliminating some
parts of the input, whilst possibly boosting other parts (Desimone
& Duncan, 1995; Driver, 2001; Pashler, 1998). A huge range of par-
adigms probes aspects of spatial selection, most of which quantify
the influence of relatively nearer or more distant distractor stimuli
on the discrimination of a target stimulus. In such tasks, distractors
must be excluded from consideration, a basic requirement for
selection.

Although there are many influential algorithmic models of bot-
tom-up and top-down attention (Boynton, 2009; Grossberg, 2001;
Itti & Koch, 2000; Koch & Ullman, 1985; Li, 2001, 2002; Lu & Dosher,
1998; Navalpakkam & Itti, 2005; Reynolds, Chelazzi, & Desimone,
1999; Rolls & Deco, 2002; Treisman & Gelade, 1980; Tsotsos, 1990;
Wolfe, Cave, & Franzel, 1989; Yen & Finkel, 1998; Zhaoping, 2006),
there is a comparative dearth (Dayan & Zemel, 1999; Yu, Dayan, &
Cohen, 2009; and for discussion and review Eckstein, Peterson,
Pham, & Droll, 2009; Whiteley, 2008) of the sort of accounts that
are of increasing importance in many other aspects of psychology
and cognitive science involving statistically normative Bayesian
ideal observation, possibly in the face of confounded or corrupted in-
put (Chater, Tenenbaum, & Yuille, 2006; Oaksford & Chater, 2007).
Indeed, from an optimising viewpoint, selection appears dangerous,
ll rights reserved.
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since once information is discarded over the course of processing, it
can never subsequently be recovered.

Here, we start from the evident fact that visual receptive fields
(RFs) are extended in space, and build an extremely simplified nor-
mative model of discrimination in which spatial selection emerges
as a bottom-up computational principle. The foundation of our
model is a treatment (Yu et al., 2009) of a perplexing finding in
the Eriksen flanker task (Eriksen & Eriksen, 1974). In a standard
version of this task (shown in Fig. 1A), subjects have to make a
speeded report as to whether a relatively foveal target (the central
letter) is an ‘S’ or an ‘H’, ignoring flanking letters that can either be
the same as (compatible) or opposite to (incompatible) the target.
For consistency with later sections, we call these flanking letters
distractors, since they can impact the report of the target. The
odd finding is that in the incompatible condition, subjects make
more than 50% errors for a range of reaction times (RTs; Gratton,
Coles, Sirevaag, Eriksen, & Donchin, 1988). In the spatial uncer-
tainty model of this (Yu et al., 2009), Bayesian inference is per-
formed about the target based on accumulating information from
inputs that integrate over regions of space. Spatial selection, which
is required to separate target from distractors, emerges directly
over the course of this inference process, in a computational rather
than an algorithmic form. For short RTs, it is optimal to include
confounded information about the distractors, leading to the large
error rates.

In this paper, we consider two major extensions to this model,
in each case coupled to an aspect of selective attention that has at-
tracted substantial separate, but not always normative, study,
namely attentional load and crowding. In Section 3, we consider
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Fig. 1. Tasks and model for target discrimination. (A) Eriksen flanker task; subjects have to make a speeded judgment of the identity of the central stimulus (‘S’; shown here in
red; in the actual task, all stimuli are the same color), ignoring the distractor stimuli (‘H’s, blue) that can be the same (or require the same response) or opposite. The black dot
is the fixation point (also in D and F). (B) Abstraction of the Eriksen stimuli with the input o = [�1,1,�1]T comprising a central target (here, the 1) whose sign has to be
discriminated, and distractors (here, the �1’s, with strength c = 1). The stimuli are coded by spatially extended receptive fields (RFs), R, shown by the three horizontal black
bars; their topographic arrangement cartooning their locations in input space. The RFs combine target and distractor stimuli linearly. (C) The generative model is completed
by specifying the source of late noise g, leading to evidence y. Recognition based on y is exact as in an ideal observer (or very nearly so). (D) An example attentional load task
(Lavie & de Fockert, 2003). Subjects have to indicate whether the central ring of letters contains an ‘X’ or an ‘N’, ignoring the large, salient distractor (the ‘N’) outside the ring.
This configuration is an example of a high load task. Under conditions of low load, the ring is empty apart from the target. The non-target characters in the ring are flankers,
and are relatively easily distinguished from the potential targets. In one condition, the target letter is not only smaller than the distractor, but it can also have lower contrast.
(E) In the model of this task, the flankers are balanced, so they do not favour either 1 or �1. There are now two classes of RF; small ones (the short bars), and large ones (the
longer bars). The thicknesses of the parts of the long bars indicate their relative preferences for parts of the visual field. The rest of the architecture is as in (C). (F) A crowding
display. If presented by themselves, ‘P’ or ‘D’ could be easily discriminated; together, though, they are confused. We consider the relative influence of proximal (to the fixation
point, ‘P’) and distal (‘D’) inputs on each other. (G) In the model of this, we consider RFs of increasing size (and decreasing density) progressing away from the fovea.
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the effects in the model of multiple scales of receptive fields
(Dayan, 2009). These turn out to offer an account of phenomena
associated with attentional load (Lavie, 2005; Lavie & Tsal, 1994;
Lavie, Hirst, de Fockert, & Viding, 2004). The key finding in these
paradigms is that when subjects are faced with an attentionally
challenging discrimination task (discriminating between a single
isolated ‘X’ or ‘N’ in a ring of readily discriminable flanking letters
(the ‘G, H, J, U, Y, S, P’) as in Fig. 1C), distractors (the large ‘N’ out-
side the ring) can easily be excluded. However, when the require-
ments on attention are more lax, when the target is not flanked by
any letter, the same distractors can exert a significantly more del-
eterious effect. One interpretation of this is that there is a manda-
tory bandwidth for attentional selection, and so distractors will be
‘let through’ if nothing else occupies it. We offer an alternative,
more normative, account of these findings.

Finally, spatially extended RFs also lie at the heart of some (rather
more qualitative) accounts of crowding (Levi, 2008; Pelli, Cavanagh,
Desimone, Tjan, & Treisman, 2007a), the phenomenon that parafov-
eally- and peripherally-presented letters that can be perfectly well
discriminated in isolation, are hard or impossible to discriminate
when presented simultaneously with distractors at appropriately
small spacings, even when their existence can be properly detected
(the effect of the ‘D’ on the ‘P’, or vice-versa, in Fig. 1E). Central to
crowding is the scaling of this critical spacing with eccentricity –
we therefore extend the original model to consider the effects of
eccentricity. In particular, we focus on the anomalous asymmetry
of crowding – that under some, but not all, circumstances, targets
are more affected by a distal distractor than by a foveal one. Along
with Motter and Simoni (2007) and van den Berg et al. (2010), we ar-
gue that this arises from the way that RF sizes increase with eccen-
tricity, i.e. the functional geometry of the cortical representation of
visual space (Cowey & Rolls, 1974; Daniel & Whitteridge, 1961;
Dow, Snyder, Vautin, & Bauer, 1981; Duncan & Boynton, 2003;
Gattass, Sousa, & Rosa, 1987; Johnston, 1989; Levi, Klein, &
Aitsebaomo, 1985; Paradiso, 1988; Rolls & Cowey, 1970; Schwartz,
1980; Virsu & Rovamo, 1979). Finally, in Section 5, we discuss the
shortcomings associated with various oversimplifications in the
model, and possible extensions.

2. The model

We first describe the model in the context of the Eriksen task,
since it is a very close relative of one of the two models in Yu
et al. (2009) (the ‘spatial uncertainty model’). In later sections we
show how the other tasks can be captured through modest changes
in the model. We adopt an ideal observer framework (Green &
Swets, 1966), specifying the generative model that leads from the
experimenter-determined stimulus to the net evidence (here
called y, which reflects the signal, any distractors, and all sources
of noise), and then the recognition model that performs inference
to discriminate the target.

Fig. 1A shows an example caricature of the Eriksen task. Here,
the dot is the fixation point, the target stimulus is the central mem-
ber of the array (the ‘S’), and the distractors are the two elements in
neighbouring locations (the ‘H’s). Subjects have to make a speeded
report of the identity of the target in the face of identical or (as
here) opposite distractors. As mentioned above, they show anom-
alous behaviour in the case of incongruency between the two.

The Eriksen task uses rather complex stimuli (such as letters) that
involve conjunctions of multiple features. To analyse the basic effect
of the distractors without having to model the complexities of con-
junctions, we simplify the stimuli in the generative model by consid-
ering them as spartan, binary, options (such as a left or right tilted
line), which we label with the numbers �1 and 1 (reserving 0 for
the absence of a stimulus at a location, and allowing our units to have
both positive and negative activities). Fig. 1B shows the representa-
tion of this input stimulus in the form of the (column) vector
o = [�1,1,�1]T, with the central 1 being the target. This vector de-
scribes the content of the input stimulus. In addition, we scale the
components associated with the distractors by a factor c to allow
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them to have arbitary strengths. For example, to model the effects of
high-contrast distractors on a low-contrast target, we can set c > 1;
to model performance in the absence of distractors, we set c = 0.
These capture changes in effective contrast, since as we will see,
the input signal has ultimately to compete with late noise.

These inputs are processed by RFs (shown in Fig. 1B) to provide
the net evidence on which inference about the target is based. The
most critical aspect of the RFs is their spatial location and extent
(cartooned by the horizontal lines). That they can cover more than
one input location implies that they are potentially influenced by
both target and distractors. In this paper, we show how the sepa-
rate tasks reveal three successively more complex aspects of the
receptive fields.

Finally, the outputs of the RFs are subjected to late noise g (we
discuss the issue of early noise later) to provide the net evidence y.
From this evidence, the recognition model has to infer the sign of
the target, i.e., whether it was ±1.

We formalise the stimulus to allow simple linear algebra. First,
we write the target as ac = ±1 and the identity of the distractors as
ad = ±1. Allowing for the scaling factor c for the distractors, we can
therefore write the overall input as

o ¼ acoc þ adcod: ð1Þ

where oc = [0,1,0]T is a vector capturing the support of (i.e., the in-
put locations covered by) the target, and od = [1,0,1]T is a vector
capturing the support of the distractors. That is to say that the sec-
ond element o2 of input vector o is the target; the first and third,
{o1,o3} are the distractors.

Receptive fields sample the input array – just three are shown
in Fig. 1B and C. Here, we assume instantaneous sampling with late
noise, where the neural output associated with RF Ri at timepoint s
is given by

yiðsÞ ¼
X

j

RijojðsÞ þ giðsÞ ð2Þ

where the rows of R quantify the spatial structure of the RFs (the black
lines in Fig. 1B), andgi(s) is late additive noise (which is assumed to be
independent between different RFs and timepoints). We assume that
increases in the density or number of different sorts of RFs translate
into effective reductions in the strength of the added noise gi (since,
except in the case of extreme correlations, the more neurons that re-
port noisily on an underlying quantity, the more accurately that
quantity can be determined). This simple, additive, scheme in Eqs.
(1) and (2) suffices for our purposes. Most types of non-linear interac-
tion (Fukushima, 1980; Lampl, Ferster, Poggio, & Riesenhuber, 2004;
Miller, Gochin, & Gross, 1993; Reynolds et al., 1999; Rolls & Tovee,
1995; Riesenhuber & Poggio, 1999; Zoccolan, Cox, & DiCarlo, 2005)
can be summarised by changing the statistics of the noise gi(s); in-
deed, we will see later that one main effect of the presence of nearby
stimuli is increasing this late noise.

All of the putatively attentional effects we model involve
changes in either the nearby distractors or, for the model of atten-
tional load, a more remote distractor. The RFs never change.

As mentioned, the task always involves discriminating whether
ac (which is just the second element o2 of o) is positive or negative.
Even if one RF were perfectly matched to the target, other RFs
could still contain useful information about the target’s identity,
and it would be optimal to integrate all such sources.

Eq. (2) specifies the momentary output from the RFs. This infor-
mation accumulates over time, being automatically weighted via
Bayesian inference to provide a current log posterior odds ratio
that ac > 0.1 In the Eriksen task, subjects are often asked to provide
1 It has been shown that the exact Bayesian computations can be approximated by
a form of absorbing drift-diffusion process, which is itself related to the sequential
probability ratio test (Liu, Yu, & Holmes, 2009).
speeded responses. We translated this into an evidence-indepen-
dent, noisy, timing process that could force early responses even
for weak log likelihood ratios, overlaid on integration-to-bound
inference (Smith & Ratcliff, 2004) that reported a choice when the
log odds reached a threshold.

More concretely, y(s) given o is drawn from a multivariate
Gaussian distribution, with mean R � o (using � to denote matrix–
vector multiplication) which only depends on the input stimulus
o mapped through the RFs R, and covariance matrix H, which spec-
ifies the late or output noise g(s). We write the density as:

pðyðsÞjoÞ � N R � o;H½ � / e�
1
2ðyðsÞ�R�oÞ�H�1 �ðyðsÞ�R�oÞ ð3Þ

We also assume a flat prior probability distribution over the tar-
get, with p(ac = 1) = p(ac = �1) = 0.5.

In the special case that the distractors are known to be the same
(or indeed absent) on every trial, and the covariance matrix H does
not depend on the input, the recognition model takes a sequence of
samples YðTÞ ¼ fyð1Þ � � � yðTÞg with mean

�yðTÞ ¼ 1
T

XT

s¼1

yðsÞ ð4Þ

and evaluates the net evidence in favour of ac = ±1. The net evidence
can be summarised by the log posterior odds ratio associated with
the two options,

lþðTÞ ¼ log
Pðac ¼ þ1jYðTÞÞ
Pðac ¼ �1jYðTÞÞ

which, for simple Gaussian input stimuli, as in Eq. (3), is additive in
the samples, and so depends only on their mean (see Appendix B.1):

lþðTÞ ¼ 2Tð�yðTÞ � adcR � odÞ � H�1 � R � oc ð5Þ

As expected, if the subjects can predict the nature of the distrac-
tors, then the latter do not affect inference (by virtue of having
their mean values subtracted from y(s)). Consider, therefore, the
case that c = 0. Then the distribution of �yðTÞ is Gaussian, with mean
acRoc and covariance H/T. Thus, �yðTÞ � H�1 � R � oc , which, by direct
calculation, has distribution

N acoc � R � H�1 � R � oc;oc � R � H�1 � R � oc=T
� �

is a sufficient statistic for (i.e., contains all the relevant information
in the input about) the sign of ac, with signal-to-noise ratioffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Toc � R � H�1 � R � oc
p

. This signal-to-noise ratio determines the over-
all quality of inference, and H�1�R�oc the weightings of the various
RF contributions. This depends on both their relative noise (cap-
tured by H) and their signal (captured by oc). The weighting shows
the potentially rather subtle operation of selective attention.

For the normal version of the Eriksen task, there are two possible
values of the distractors ad = ±1. Since the likelihood depends on
which of these is true, assessing the inferential contribution of
YðTÞ requires summing over both possibilities, weighted by their
prior probabilities, which are here equal P(ad = 1) = P(ad = �1) = 0.5.
This is called marginalizing out the effect ofad. The log posterior odds
then become (see Appendix B.2):

lþðTÞ ¼ 2T�yðsÞ � H�1 � R � oc

þ log
cosh cTð�yðTÞ � R � ocÞ � H�1 � R � od

� �
cosh cTð�yðTÞ þ R � ocÞ � H�1 � R � od

� � ð6Þ

For small T, the effect reported by Gratton et al. (1988) arises,
with early responses in the incompatible condition (ac = �ad) being
biased to favour ac = ad slightly. This is because the spatial merging
inherent in Eq. (2) would only be incompletely resolved after a
short time; and the dominance of ad from the multiple distractors
would cause the error. More formally, the first, linear term on the
right hand side of Eq. (6) favours ac = ad (because of the expected
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value of �yðTÞ). This is incompletely balanced by the second, non-
linear, term (involving the logcosh expressions) for small values
of T. The apparent paradox is that it would seem to be better for
the subjects to shut their eyes and guess ±1 at random. This is of
course not true – in fact, on trials on which the distractors are com-
patible with the target (ac = ad), the performance is better than 50%
by more than it is worse than 50% on the incompatible trials.

Fig. 2 shows these effects in a didactic example in which the RFs
substantially mix the target and the distractors (here the distrac-
tors are of intermediate strength, c = 1; other parameters are pro-
vided in Appendix A.1). Fig. 2A shows the average value of l+(T)
when the true value was ac = 1 across multiple samples, as a func-
tion of T for compatible (ac = ad; solid) and incompatible (ac = �ad;
dashed) cases. The curves overlay the results of a large number of
samples and a closed-form approximation (based on substituting
logcosh(n) ’ jnj � log2 + /exp(�wjnj) for suitable values of a and
b; the fit is so close that the curves are indistinguishable). The fact
that the dashed curve drops below 0 for small numbers of steps
underlies the Gratton et al. (1988) effect, since it shows that
incompatible distractors can bias choices the wrong way. The inset
plot shows the standard deviation of the log odds.

Fig. 2B depicts the sensitivity of inference to the distractors in a
richer way. This shows the derivative of the average log odds at
each time step with respect to the factor c that scales od, again
for compatible (solid) and incompatible (dashed) cases. For small
T, this is positive for the compatible case, implying that making
the distractors stronger would aid inference; but asymptotes at
0, since the subjects will ultimately infer the identity of the distrac-
tor stimuli and ignore them. However for the incompatible case, for
A

C

Fig. 2. Inference in the Eriksen task. (A and C) Average log odds (standard deviations
incompatible (ad = �ac; dashed) distractor stimuli. Approximate and sampled curves for
causing errors in inference. Here c = 1. In (C), the distractors are c = 3 times stronger than
in a bottom-up manner. (B and D) derivative of the log odds with respect to c at c = 1
distractors get stronger (or, of course, get set to 0). This non-monotonicity comes from t
small T, boosting the strength of the distractors would have an
even more devastating effect on inference; but for large T, boosting
the distractors would actually help inference, since it would make
them easier to to explain away. In this case, in incompatible trials,
the influence of the distractors does not vanish asymptotically.
Rather, they continually weigh on the assessment of the target.

Fig. 2C shows the effect of substantially boosting the distractors,
setting c = 3. In this case, the distractors, because their signature in
y is so different from that of target, are easier to eliminate, and so
only have a very fleeting negative impact on incompatible trials.
Fig. 2D shows the sensitivities to scaling up the strength of the dis-
tractors. Now, since it is straightforward to infer the true value of
the distractors, inference about the target is asymptotically the
same for compatible and incompatible trials. Nevertheless, the dis-
tractors still exert an effect in early timesteps because of the sub-
stantial amount of noise.

We can understand the effect at large T by noting that
logcosh(aT) ’ jajT and �yðTÞ ’ R � ðadcod þ acocÞ. Thus, depending
on the signs of c(2oc + adcod)�R�H�1�R�od and c(�2oc + adcod)�
R�H�1�R�od (which are the asymptotic forms of the factors inside
the cosh terms), Eqs. (5) and (6) may or may not have the same
asymptotic behaviour. They do for the case of Fig. 2C and D, but
do not for Fig. 2A and B.

Fig. 3 shows the joint effect of the factor c scaling od and the num-
ber of samples T on the log odds in a different way. For the compatible
case (Fig. 3A), the contours are nearly vertical, i.e., inference is almost
independent of the strength of the distractors. The only difference is
that for values of c near 1 for small T and near 0 for larger T, the com-
patible distractors speeds up inference about ac.
B

D

in the insets) in favour of the true target ac for compatible (ad = ac; solid) and
the means completely overlap. When the log odds drop below 0, the distractors are
in (A; parameters in Appendix A.1); this makes the distractors easy to explain away
(B) and c = 3 (D). Here, inference in the incompatible case is improved when the

he possibility of explaining away.
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2 In fact, Eriksen and Eriksen (1974) used a case a bit like this in their original
resentation of their flanker task, showing that it produced an intermediate

pairment compared with complete incongruence.
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For the incompatible case (Fig. 3B), the effects of the distractors
are more complex. Most obvious is the ridge of negative impact of
the distractors that for small T is maximal for values of c near 1
(the case shown in Fig. 2A), and as T increases, tends towards the
value of c = 0.73 for which the first, linear, contribution to Eq. (6)
is 0. Comparing Fig. 3A and B, the devastating impact of the distrac-
tors is apparent. By contrast weaker distractors (c ? 0) or stronger
distractors (larger values of c) exert much less malign an effect for
moderate numbers of samples T. The negative impact of the dis-
tractors for small T is somewhat obscured by the contours.

In sum, this model (Yu et al., 2009) shows that human perfor-
mance is consistent with a Bayesian consideration of all the avail-
able evidence for target identity. Attention need not attenuate
input from the distractors. In the next two sections, we consider
two extensions of the model – to RFs at multiple scales and to
RFs whose sizes scale with their radial eccentricity – and study
their effects in popular attentional paradigms.

3. Multiple scales and attentional load

A key limitation of the model of the Eriksen flanker task is that
all the RFs had the same scale. The problem of attentional selection
becomes even more stark in the case that there are multiple scales,
one so fine that it includes just a single input; and one or more that
are coarser, and so include extra information.

We follow Dayan’s (2009) model of Lavie and de Fockert’s
(2003) task which assesses attentional load effects on selection
(Lavie, 2005; Lavie & Tsal, 1994). Fig. 1D shows an example display
from this task. There is a ring of possible locations for a target,
which can be either an ‘X’ or an ‘N’. The other positions in the ring
associated with the target can either be filled with flankers (letters
other than ‘X’ or ‘N’ that can readily be distinguished from the tar-
gets), or are left blank. For consistency with the other tasks, the
black circle is a fixation point – in the original experiment, each
possible location in the ring had a positional marker before the on-
set of the letters, and so fixating in the centre would be a logical
strategy, without knowing the ring position at which the target
would appear. Outside the ring there can be a distractor stimulus,
that can be the same as, or different from, the target.

A characteristic experiment assessing attentional load com-
pares the effect of the distant distractor on the target across two
conditions: with and without the flankers. The striking and para-
doxical finding is that in the seemingly easier case, with no flank-
ers, the distractor exerts a greater effect on the target than in the
seemingly harder case in which the flankers are present. We will
show that our model simulates this experimental behaviour.
Fig. 1E shows the basic structure of the abstraction, for compar-
ison with that in Fig. 1B. One key difference in the input is that the
stimuli flanking the target, if present, are balanced (one is 1; the
other is �1). This implies that they do not bias decision-making,
but only add noise, if present.2 The other is that there is now a distal
distractor (shown as �1 in the figure). In terms of the generative
model, there are now more RFs; four have the finest scale, one each
per input location; the other four cover all the inputs, but favouring
one more than the others (shown by the thicknesses of the horizon-
tal bars). That the distractor is relatively farther from the array of
target and flanker stimuli is reflected in the structure of the RFs.
The same structure as in Fig. 1C is replicated to realise the evidence.

Fig. 4A shows this case in more detail. Here, the target is shown
as c; the distractor as d and the unbiased flankers as n. Hinton dia-
grams are shown for the eight RFs. The finer scale RFs distinguish
each input location from all the others; the broader scale inputs in-
clude all the locations, but with weights reflecting their proximi-
ties (shown in greyscale). Given the (noisy) evidence associated
with these RFs, the process of inference is just as in the previous
section.

Fig. 4B shows the means �y and inverse standard deviations (the
reciprocal of the square roots of the diagonal entries of H) of the
simulated inputs for the cases of low load, without flankers, and
so low noise, and high load, with flankers, and so high noise; de-
tails are provided in Appendix A.2. The critical points for the model
are: (a) the larger-scale RFs that include the distractor do contain
some valid information about the target; but (b) in the presence
of flankers, the noise associated with these RFs becomes very large.
Thus, in the easier case, without flankers, the large-scale RFs will
exert some influence over the log odds, and thereby allow the dis-
tractor to influence the decision. Conversely, in the harder case, the
excess noise associated with the large-scale RFs will force their rel-
ative exclusion from the inference about the target, and therefore
eliminate an effect of the distractor.

The solid lines in Fig. 5 show these effects. Fig. 5A shows the
accumulation of the average log odds as a function of timestep
within a trials in the easy, no-distractor, case for compatible
(downwards triangles) and incompatible (upwards triangles) dis-
tractors. Information about the target accumulates quickly (i.e.,
the slopes are high), but with a big difference between compatible
and incompatible cases. This implies that the distractor exerts a
large effect on the processing of the target. The solid line in
p
im
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Fig. 5. Attentional load effects. (A) Average log odds as a function of timestep T within a trial in favour of the target for the case that there are no flankers. Solid lines, strong
target; dashed lines, weak target; downwards triangles, compatible case (distractor and target are the same); upwards triangles, incompatible case (distractor and target are
opposite). The differences between the two solid and two dashed lines show the effects being exerted by the distractor. (B) Difference in the times at which the average log
odds reaches a given terminal value between incompatible and compatible cases for strong (solid) and weak (dashed) targets. Inference is slowed for the incompatible case
(showing the effect of the distractor), by more for weak than strong targets. (C and D) The same as (A and B) but for the case with flankers that increase the noise associated
with the large-scale RFs. Although inference is slowed, there is now barely any influence of the distractor.
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weighted sum of flankers, target and distractor. Standard deviations have been adjusted to produce the curves in Fig. 5. Note that ‘‘attentional load” affects only the standard
deviation of output from large RFs.
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Fig. 5B shows this result in a different way, reporting how much
extra time it takes for the average log odds to reach a given termi-
nal value for incompatible versus compatible distractors. The lar-
ger this is, the greater the effect of the distractors.

The solid lines in Fig. 5C and D show the same information, but
now for the case that there are flankers, greatly increasing the
noise associated with the large-scale RFs. In this case, inference
as a whole is substantially slower (note the change in the scale
of the axis reporting the average log odds in Fig. 5C); however that
the curves for compatible and incompatible distractors lie directly
on top of one another indicates the lack of effect of the distractor.
Fig. 5D shows the same fact, indicating that inference would take
about the same time independent of the distractor.

One concern about the effects of attentional load is that the
elimination of the distractor in the harder case might simply arise
from the extra demands on, and thus slowing down of, inference,
irrespective of the stimuli. Lavie and de Fockert (2003) tested this
directly by making the task more difficult by weakening the
strength of the signal. They showed that, even though this slows
inference down, the distractor actually exerts a stronger rather
than a weaker influence. The dashed lines in Fig. 5 show this effect.
They come from a case in which the strength of the target is
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halved. The slopes of the accumulation of evidence are all de-
creased (Fig. 5A and C) but, in the low load case, Fig. 5B, inference
is actually harmed (i.e., slowed) more by an incompatible distrac-
tor, than for the case with the stronger target.

4. Asymmetries and crowding

The final effect we sought to consider in this modelling frame-
work is associated with positional asymmetries in crowding (Levi,
2008). Crowding (Bouma, 1970, 1973; Korte, 1923) is the phenom-
enon that discriminating stimuli such as letters can be very much
harder when they are flanked by nearby stimuli (which we again
call distractors, for consistency) than when they are presented in
isolation. Fig. 1F shows an example; fixating at the black dot, it is
very hard to identify the two letters in the right visual field.

Crowding is important, for instance playing a key role in deter-
mining the maximum legible density of letters in print and reading
rate (Pelli & Tillman, 2008; Pelli et al., 2007b). It is also extremely
complex and contentious, with a large range of theoretical and
experimental disputes about such things as its relationship with
various forms of surround suppression and masking (Levi, Hariha-
ran, & Klein, 2002a; Parkes, Lund, Angelucci, Solomon, & Morgan,
2001; Pelli, Palomares, & Majaj, 2004; Petrov, Popple, & McKee,
2007) and whether or not crowding in the fovea is the same as
crowding in the parafovea and periphery (Danilova & Bondarko,
2007; Hess, Dakin, & Kapoor, 2000; Levi, Klein, & Hariharan,
2002b; Strasburger, Harvey, & Rentschler, 1991). There are two
key empirical results associated with crowding. One is that there
is a critical spacing between the stimuli at which crowding is effec-
tive, which grows linearly with eccentricity, at least outside the fo-
vea. The other, which was present already in some of the earliest
reports of the phenomenon (Bouma, 1970, 1973; Shaw, 1969),
and is further confirmed by more directed studies (such as
Chastain, 1982, 1988; Krumhansl & Thomas, 1977; Toet & Levi,
1992), is that more peripheral distractors exert a greater impact
on more foveal targets than vice-versa. Whether this is only true
for complex stimuli such as letters or also simpler ones such as Ga-
bor patches (Petrov & Popple, 2007) is open to question (see the
supplement to van den Berg, Roerdink, & Cornelissen, 2007). The
asymmetry may be somewhat unexpected, since the more foveal
targets are themselves more readily detected and discriminated
in the absence of a distractor. It is therefore our focus.

The models in Sections 2 and 3 already exhibit forms of crowd-
ing, that is, they exhibit interference between stimuli that are
neighbouring in space. This interference in our model arises from
the spatial uncertainty inherent in larger RFs. Just as suggested
by van den Berg, Roerdink, and Cornelissen (2010), Motter and
Simoni (2007), for instance, we might then expect that the way
that the RFs scale with eccentricity should be responsible for both
the empirical relationships mentioned above. Motter and Simoni
(2007) explain the asymmetry by nothing that the geometry of
the retino-cortical map is warped such that given a target in one
location, a distractor nearer the fovea than the target is effectively
a greater distance away in cortical space than a flank that is further
away from the fovea than the target. This is certainly true; how-
ever results such as those by Chastain (1988), that the magnitude
of the effect on the same two visual objects depending on which is
the target and which is not, are not directly explained by this fact
itself. Indeed, Petrov and Popple (2007) discuss a number of theo-
ries of an empirical asymmetry related to this (albeit one that is
controversial; van den Berg et al., 2007), and put forward an addi-
tional one of their own. Classical models (Krumhansl, 1977;
Wolford, 1975) suggested that features associated with the objects
could be mislocalised nearer the fovea (possibly being duplicated
along the way), and then be pooled with features actually present
at those locations. This would obviously be highly non-normative.
Petrov and Popple (2007) suggested that it is only differences or
contrast in features that would affect inference, but again in a man-
ner whose inferential approximations and even basic anisotropy
lack explanations.

We therefore considered whether there are circumstances un-
der which anisotropy might arise through normative inference
with overlapping spatial RFs of the form arising as in Motter and
Simoni (2007). The obvious basis for anisotropy is that receptive
fields in general get larger (cartooned by the RFs in Fig. 1G), the
further are their centers from the fovea. What is more tricky is
understanding circumstances under which this leads to the combi-
nation of decreasing signal-to-noise ratio for unperturbed targets as
a function of eccentricity, and yet the greater effect of the more
peripheral distractors on the more foveal target than vice-versa
when one might expect the latter to enjoy smaller, and hence less
confounded RFs.

Fig. 6A shows a very simple analysis of this. There are two pos-
sible target locations: ‘inner’, at eccentricity ein, which is closer to
the fovea, and ‘outer’, at eccentricity eout = ein + @e, which is farther
away. Given spatially distributed RFs, there are three classes of RFs
which we represent by three units: yin, which is influenced by the
inner and not the outer target location, yout, influenced by the outer
and not the inner target location, and yboth, influenced by both. In
turn, the coding of the two locations is controlled by the three fac-
tors in the model – (i) the strength of the connection (the entries in
R), which decrease with eccentricity:

R ¼
Rin 0

Rin
both Rout

both

0 Rout

0
B@

1
CA ð7Þ

(ii) the density of the RFs, which we consider to be modelled by the
added noise gi, whose variance increases with eccentricity

Hno flank ¼ diag Hin;Hboth;Houtð Þ ð8Þ

and finally (iii) the effect of having a distractor in one of the loca-
tions and the target in the other

Hflank ¼ diag Hin;Hboth þ Hflank;Houtð Þ; ð9Þ

which is the same in both cases.
Fig. 6A shows a cartoon of the first two factors (the lower plot

shows R; the upper H). Crudely, the phenomenology of the effect
suggests that the representation of the inner location depends
more on yboth than does that of the outer location (one requirement
for which is that Rin

both > Rout
both). Then, if the simultaneous presence

of target and flank makes the noise Hboth + Hflank sufficiently large
to render this information significantly less useful, then the inner
location can ultimately suffer more from an outer distractor than
vice-versa. In the limit that yboth is useless in the presence of a dis-
tractor, the key constraint concerns the swapped signal-to-noise
ratio for the remaining inner and outer targets. This is satisfied if

Rout

Rin
>

ffiffiffiffiffiffiffiffiffi
Hout

Hin

s
:

This places a constraint on the shape of the RFs, such that their
outward tails are subject to less overlap than their inward tails rel-
ative to their densities.

Quantifying this effect precisely is difficult, since it depends on
how the sizes and shapes of RFs depend on eccentricity (which it-
self depends on the distribution of their spatial scales), and on the
cortical magnification factor. One crude way to proceed is to start
from the function q(e), reporting the half-width of RFs centered on
eccentricity e, and quantify how many would be represented by
each of the three categories yin, yout and yboth. Fig. 6B shows how
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Fig. 6. Asymmetry in crowding. (A) Exaggerated three-unit cartoon of the basis of asymmetry in crowding. Inner and outer targets are covered by successive RFs. Some RFs
(leading to yin) are exclusive to the inner target, and so are unaffected by an outer distractor. Some (leading to yout) are exclusive to the outer target, and so are unaffected by
an inner distractor. The remainder are covered by both (leading to yboth). Two factors control the effects of the RFs – the weights R, which we consider come from coverage of
RFs, determined by their sizes q(e), and the noise H, controlled by the cortical magnification factor M(e). (B) Illustration of how a linear form of q(e) leads to the excess size of
dEout compared with dEin. The long horizontal lines show ein and eout; the vertical lines show sample RFs centered on increasing eccentricities with widths growing according
to q(e). The dotted RFs are not influenced by inner or outer targets; the dashed RFs are associated with yboth (delineated by the dashed arrow on top of the RFs); the solid RFs
with yin (the solid arrow labelled as dEin) and yout (the solid arrow labelled as dEout). If function q(e) grows fast enough, then the outer tails will be significantly larger than the
inner tails.
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to do this – for instance RFs centered at eccentricity e will fall un-
der yin if

e� qðeÞ 6 ein 6 eþ qðeÞ and eþ qðeÞ < eout ð10Þ

and under yout if

ein < e� qðeÞ and e� qðeÞ 6 eout 6 eþ qðeÞ ð11Þ

There are data on q(e) in various species of monkeys from V1
from a number of authors, including Dow et al. (1981), Gattass
et al. (1987), Van Essen, Newsome, and Maunsell (1984), and in
V4 from Motter, 2009. Although the fovea is clearly special (a fact
that we would associate also with the complexities of foveal
crowding; Danilova & Bondarko, 2007; Hess et al., 2000; Levi
et al., 2002b; Strasburger et al., 1991), outside it, q(e) follows the
roughly linear form

qðeÞ ¼ aþ be;

with a = 0.42; b = 0.03 in capuchin V1 (Gattass et al., 1987) and
a = 0.70; b = 0.36 in macaque V4 (Motter, 2009). The geometry of
the overlap implies that the range of eccentricities in yin and yout

are respectively

Ein ¼ ein � a
1þ b

;min
eout � a

1þ b
;
ein þ a
1� b

� �� �
ð12Þ

and

Eout ¼ max
ein þ a
1� b

;
eout � a

1þ b

� �
;
eout þ a

1� b

� �
: ð13Þ

Assuming that @e is sufficiently small that the RFs centered at ein

and eout cover both inner and outer targets, we have that the sizes of
these ranges are dEin = @e/(1 + b) and dEout = @e/(1 � b). Since b > 0
(as RFs grow with eccentricity), the outer tail is indeed longer than
the inner tail; however, whereas for the value of b associated with
V1, this is only by 6%, for V4, this is by around 200%.

Completing this account requires three more specifications: (i)
how the scales of dEin and dEout translate to Rin and Rout; (ii) the
effective noise terms Hin and Hout corrupting these signals associ-
ated with the density of appropriate RFs; and (iii) the values asso-
ciated with ‘both’. One critical fact is that psychophysical acuity
appears to be controlled by the size of the image on cortex of the
representation of the input, which in turn has been argued to be
the product of the cortical magnification factor M(e), which deter-
mines how the centre of the cortical representation scales with
eccentricity, and q(e) (see Cowey & Rolls, 1974; Daniel & Whitte-
ridge, 1961; Dow et al., 1981; Duncan & Boynton, 2003; Levi
et al., 1985; Gattass et al., 1987; Paradiso, 1988; Rolls & Cowey,
1970; Virsu & Rovamo, 1979). M(e) is roughly inversely propor-
tional to e in V1 (estimated as 7.8e�0.94 for the capuchin monkey
by Gattass et al., 1987 and 18.5/(1 + 1.2e) for humans in Duncan
& Boynton, 2003), and it has been argued by Motter (2009) that
V4 simply inherits this scaling from V1. Indeed the general form
of the relationship with eccentricity is preserved for letter discrim-
ination in humans too (Anderson & Thibos, 1999a, 1999b).

In total, we therefore make the three crude assumptions that:

ð1Þ Rin / dEin; Hin /
1

ðMðeinÞÞ2
ð14Þ

coming from the regions devoted to each location individually, with
noise associated with the inverse of the density of RFs;

ð2Þ Hboth ¼
1

Mðein þ @e=2Þð Þ2
ð15Þ

approximating the density associated with yboth from half way be-
tween ein and eout; and

ð3Þ Rinð Þ2

Hin
þ

Rin
both

	 
2

Hboth
/ qðeinÞð Þ2

Hin
;

Routð Þ2

Hout
þ

Rout
both

	 
2

Hboth

/ qðeoutÞð Þ2

Hout
ð16Þ

coming from the overall acuity associated with targets at inner and
outer locations in the absence of distractors.

The dotted line in Fig. 7A shows the ratio qðeoutÞ=
ffiffiffiffiffiffiffiffiffi
Hout
p	 


=

qðeinÞ=
ffiffiffiffiffiffiffi
Hin
p	 


between the signal-to-noise ratio for the unflanked
inner and outer targets (via assumption 3, and using the parame-
ters associated with V4). The inner target has a slightly higher sig-
nal-to-noise ratio because of the cortical magnification factor,
making the ratio slightly less than 1. The solid and dashed lines
in the figure show the ratios Rout=

ffiffiffiffiffiffiffiffiffi
Hout
p	 


= Rin=
ffiffiffiffiffiffiffi
Hin
p	 


between
the signal-to-noise ratio for flanked targets (for the parameters
for V4 and V1 respectively), taking advantage of the first
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assumption above. The key asymmetry, that the outer target is left
much better off than the inner one, is clear for the parameters asso-
ciated with V4.

Fig. 7B uses the third assumption above to show the growth of
Rin

both and Rout
both with eccentricity. The tiny difference between the

two supports the small excess signal-to-noise ratio for the un-
flanked inner target. By comparison the asymptotic values as the
eccentricity grows are Rin = 0.74, and Rout = 1.56.

In sum, according to this model, the asymmetry between inner
and outer locations arises from the way that the sizes of receptive
fields grow with eccentricity. The growth implies that the outer
tails, whose RFs are not influenced by a confusing inner distractor,
are larger than the inner tails, whose RFs are not influenced by a
confusing outer distractor. By making a key assumption about
the mapping from the RFs to the signal-to-noise ratio associated
with cortical processing, we derive the basic asymmetry. However,
the magnitude of the asymmetry depends on the rate of growth,
which in turn depends on the cortical area concerned. For V1,
and so putatively simple patterns such as oriented Gabors, the ef-
fect is minimal. For V4 and beyond, associated with more complex
inputs such as letters, the effect is much greater.

Note that as @e gets larger, fewer RFs will be affected by both
inner and outer locations, and so the interference will reduce.
The size of the region of interference also scales linearly with
eccentricity, consistent, as in Motter and Simoni (2007), with the
common finding that the zone of crowding (independent of the
asymmetry) scales in this manner (Levi, 2008).

5. Discussion

We have built an extremely simple model of spatially extended
receptive fields, and showed quantitative cartoons of the way it ad-
dresses three characteristic phenomena associated with spatial
attention: the Eriksen flanker task, attentional load, and aniso-
tropic interference in crowding. The model involves only Gaussian
stimuli and noise and Bayes-optimal marginalization and
inference.

For clarity, we further simplified the presentation of the (al-
ready spartan) model. In particular, unlike the original accounts
in Dayan (2009), Yu et al. (2009), we did not model the speeded
integration-to-bound accumulation process (Smith & Ratcliff,
2004) leading to the decision, and only reported average log pos-
terior odds in favour of particular targets. This is of special conse-
quence for Fig. 5C and D, because of the non-linearity associated
with tuning log odds into a decision; however, the basic point
about the influence exerted by distractors remains. We also only
modelled late noise (gi(s)) and explicit flankers and distractors. It
would be formally straightforward to consider early or equivalent
noise (corrupting o), which would lead to correlations in the noise
in y coming from the extended RFs. However, we would need to
consider the effect on this of normalising interactions (Carandini
& Heeger, 1994; Carandini, Heeger, & Movshon, 1997; Zoccolan
et al., 2005).

There are at least three further important directions for adding
richness and complexity to the model. The first (a) is to use distinct
visual features (e.g., oriented bars, junctions or letters) rather than
positive or negative numerical values. This would allow us to con-
sider the general effects of statistical similarity and grouping
among the distractors and between targets and distractors and
the complexities of competition between more or less similar sub-
parts of letters when they are targets and distractors (Felisberti,
Solomon, & Morgan, 2005; Gheri, Morgan, & Solomon, 2007; Kooi,
Toet, Tripathy, & Levi, 1994; Livne & Sagi, 2007; Louie, Bressler, &
Whitney, 2007). It would also allow us to investigate more fully is-
sues such as the apparent absence of crowding for feature detec-
tion rather than discrimination (Andriessen & Bouma, 1976; Levi
et al., 2002b; Pelli et al., 2004). Indeed, Chastain (1988) tested
asymmetry not by comparing inner and outer targets with inner
and outer distractors (as we did in Section 4), but rather distracting
with by more and less confusable stimuli. One basic phenomenon
is the same – that the inner target is more affected by a less con-
fusable outer distractor than is the outer target by the same inner
distractor. However, we would need to model confusability itself to
capture the other phenomenon, that increasing the confusability of
the distractor has a much greater effect on the outer than the inner
target.

A second direction (b) would be to allow hierarchies of these
features (as, for instance, in Fukushima (1980) & Riesenhuber &
Poggio (1999)), with RFs in one layer feeding into RFs in the next,
and with Bayesian integration happening simultaneously in all lay-
ers. A feature-based model of this sort would also allow a more
straightforward notion of spatial pooling – one of the anomalies
of the current model of attentional load is that strong distractors
are more distinguishable from targets by virtue of being too strong;
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if the subparts of RFs reported in a more all-or-nothing manner on
the presence of relevant features, then this would not occur. It
would also (c) be interesting to consider other forms of contextual
interactions such as the divisive normalisation that we have previ-
ously (Schwartz, Sejnowski, & Dayan, 2006) argued arises from a
Gaussian scale mixture model for natural scenes (Wainwright,
Simoncelli, & Willsky, 2001), and used to account for effects such
as the tilt illusion (Schwartz, Sejnowski, & Dayan, 2009). Indeed,
masking interactions like surround suppression can also arise in
statistically normative models of contextual interactions (Schwartz
& Simoncelli, 2001, 2006; Schwartz et al., 2009). On the other hand,
the fact that crowding scales with eccentricity rather than target
size argues against these sorts of contextual interactions as an
explanation for crowding, since their scale is determined by natu-
ral scene statistics rather than the way these statistics are sampled
by a variable resolution visual system, and so would be dependent
on target size rather than eccentricity (for a discussion of this, see
Levi (2008)).

In considering the hierarchical extension of the model, we
should return to a central issue for the model that it is not possible
to change how the input o is processed by manipulating the RFs R;
rather, attention operates at or beyond the RF integration that pro-
duced y. If attention could directly affect R, then there would be no
spatial pooling or uncertainty, since it could all be removed at the
first instance; that so many phenomena argue for spatial uncer-
tainty argues that the ability to manipulate R is at best very lim-
ited. Of course, it would be statistically optimal to be able to
exclude od from the outset; however, doing so would either require
the simultaneous bottom-up construction of all possible RFs or the
fine top-down control of the microstructure of low-level RFs. Either
of these solutions imposes large wiring and processing costs. In the
context of a processing hierarchy, however, the output y of one
layer is the input o to the next, and so attention can have these
more complex effects.

In terms of the model of attentional load – the original hypoth-
esis (Lavie, 2005) suggested that when little attention is required
to solve the set task, inputs associated with distractor stimuli leak
through with little attenuation, and so cause disruption; when the
task is difficult, attention is totally occupied with the set task, leav-
ing nothing left over. By contrast, we have suggested that an infer-
ential model taking advantage of all the information in the input
will show exactly the same characteristic, with the key issue being
whether the units with large RFs, which include the distractor, are
rendered useless by the flankers that make for the high load in the
first place. The advantage of this version of an attenuation theory
(Treisman, 1960, 1969) of attention is that it obviates the require-
ment to appeal to an inexplicable inefficiency, over and above the
existence of units with large RFs, and indeed relates this set of
selective attentional tasks to the wide range of other accounts of
probabilistically-correct sensory inference.

In terms of crowding – we adopted Motter and Simoni (2007)’s
conclusion that the essential feature and the anisotropy of interfer-
ence is a straightforward consequence of spatial pooling (see also
van den Berg et al., 2010); however, the details of the anisotropy
are less mandatory for models in this class. It arose for us because
of the structure of noise induced by the sharing of RFs, sharing that
differs between V1 and V4 because of the differing cortical magni-
fication and RF size scaling. It would be particularly interesting in
this case to consider the effect of correlations induced by early
noise, and also to simulate the additional effect captured by van
den Berg et al. (2010) that the strength of the anisotropy depends
non-monotonically on the exact spacing.

One other important characteristic of crowding that we have
not so far modelled is the apparent fact that when a target is com-
petently crowded, no increase in observation time would improve
the ability to localise and bind together the spatial features associ-
ated with the target. One obvious possibility for modelling this is to
allow for large spatial uncertainty and leaky information accumu-
lation, so that there is a (possibly low) asymptotic certainty about
the target. However, it would be interesting to seek a more direct
experimental test of this.

Perhaps the model’s most important characteristic, along with
those in (Dayan, 2009; Yu et al., 2009) is that it lacks an explicit
attentional mechanism in inference which has the capacity to
downplay some input units over others. The model does know
the location of the targets, and automatically, through inference,
focuses all its resources on it. However, it lacks any way of boosting
or suppressing some receptive fields compared with others. In
other words, the form of selection it considers is an output from
inference rather than an input into it.
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Appendix A. Parameters

A.1. Eriksen task

For the model of the Eriksen task (Fig. 2), we consider a slight
adaptation of the parameters from Yu et al. (2009). Here, there
are three input units j = �1,0,1, with oc = [0,1,0]T and
cod = c[1,0,1]T, with c = 1 for Fig. 2A and B and c = 3 for Fig. 2C
and D. The other key parameters are

R ¼
1:1 0:9 0:0
0:9 1:1 0:9
0:0 0:9 1:1

0
B@

1
CA H ¼

r2
1 þ r2

2 0 0
0 r2

1 þ 2r2
2 0

0 0 r2
1 þ r2

2

0
B@

1
CA

where r1 = 6, r2 = 3.5, loosely reflecting the requirement that great-
er signals are associated with greater noise.

A.2. Attentional load

For the model of the attentional load task (Figs. 4 and 5), we use
a slight adaptation of the parameters from Dayan (2009). Here,
there are four input units, with j = �1,0,1,5, with oc = c[0,1,0,0]T,
with c = 1 for the solid lines in Fig. 5 and c = 0.5 for the dashed
lines, od = [0,0,0,1]T, and with flankers that are modelled as just
increasing the late noise. The other key parameters are

R ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1:0 0:9 0:7 0:5
0:9 1:0 0:9 0:5
0:7 0:9 1:0 0:5
0:5 0:5 0:5 1:0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

H ¼ diag r2
f ; r

2
f ; r

2
f ; r

2
f ; r

2
l ; r

2
l ; r

2
l ; r

2
l

h i
where rf = 10 (for the fine-scale RFs) and rl = 8.5 for the large-scale
RFs when there are no flankers (Fig. 5A and B) and rl = 80 when
there are.
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Appendix B. Formulæ

B.1. Eq. (5)

We derive Eq. (5) from Eq. (3). From the latter equation and the
knowledge of the distractors (and up to a constant which is
�logdet(H) � nlog(2p) when the dimensionality of y is n):

2logpðyðsÞjac ¼þ1Þ¼ �ðyðsÞ�R �oc�adcR �odÞ �H�1 � ðyðsÞ
�R �oc�adcR �odÞ

¼ �ðyðsÞ�adcR �odÞ �H�1 � ðyðsÞ�adcR �odÞ
�oc �R �H�1 �R �ocþ2ðyðsÞ
�adcR �odÞ �H�1 �R �oc ð17Þ

2logpðyðsÞjac¼�1Þ¼�ðyðsÞþR�oc�adcR�odÞ�H�1�ðyðsÞ
þR�oc�adcR�odÞ
¼�ðyðsÞ�adcR�odÞ�H�1�ðyðsÞ�adcR�odÞ
�oc�R�H�1�R�oc

�2ðyðsÞ�adcR�odÞ�H�1�R�oc ð18Þ

and so

log
pðyðsÞjac ¼ þ1Þ
pðyðsÞjac ¼ �1Þ ¼ log pðyðsÞjac ¼ þ1Þ

� log pðyðsÞjac ¼ �1Þ ð19Þ
¼ 2ðyðsÞ � adcR � odÞ � H�1 � R � oc: ð20Þ

Since each time point is independent,
PT

s¼1yðsÞ ¼ T�yðTÞ, and Eq.
(20) is linear in y(s),

log
pðYðTÞjac ¼ þ1Þ
pðYðTÞjac ¼ �1Þ ¼ 2Tð�yðTÞ � adcR � odÞ � H�1 � R � oc: ð21Þ

Now, by Bayes rule

log
Pðac ¼þ1jYðTÞÞ
Pðac ¼�1jYðTÞÞ¼ log

pðYðTÞjac ¼þ1Þ
pðYðTÞjac ¼�1Þþ log

Pðac ¼þ1Þ
Pðac ¼�1Þ ; ð22Þ

which, since P(ac = ± 1) = 0.5,

¼ 2Tð�yðTÞ � adcRodÞ � H�1 � R � oc; ð23Þ

which is just Eq. (5).

B.2. Eq. (6)

Eq. (6) is more complicated than Eq. (5) because of the need to
marginalize out the unknown value of ad. Formally:

pðyðsÞjac ¼ þ1Þ ¼ pðyðsÞ;ad ¼ þ1jac ¼ þ1Þ
þ pðyðsÞ;ad ¼ �1jac ¼ þ1Þ ð24Þ
¼ 0:5ðpðyðsÞjac ¼ þ1;ad ¼ þ1Þ
þ pðyðsÞjac ¼ þ1;ad ¼ �1ÞÞ ð25Þ

since P(ad = ±1jac = 1) = 0.5. Now, writing a = R�oc; b = cR�od

pðyðsÞjac ¼ þ1Þ

/ e�ðyðsÞ�a�bÞ�H�1 �ðyðsÞ�a�bÞ=2 þ e�ðyðsÞ�aþbÞ�H�1 �ðyðsÞ�aþbÞ=2 ð26Þ

and, similarly,

pðyðsÞjac ¼ �1Þ

/ e�ðyðsÞþa�bÞ�H�1 �ðyðsÞþa�bÞ=2 þ e�ðyðsÞþaþbÞ�H�1 �ðyðsÞþaþbÞ=2 ð27Þ

collecting and cancelling terms, this implies that
log
pðyðsÞjac¼þ1Þ
pðyðsÞjac¼�1Þ¼2yðsÞ�H�1 �aþlog

eðyðsÞ�aÞ�H�1 �bþe�ðyðsÞ�aÞ�H�1 �b

eðyðsÞþaÞ�H�1 �bþe�ðyðsÞþaÞ�H�1 �b
ð28Þ

¼2yðsÞ�H�1 �aþlog
cosh ðyðsÞ�aÞ�H�1 �b

� �
cosh ðyðsÞþaÞ�H�1 �b

� � ð29Þ

since, again, the samples are independent

log
pðYðTÞjac ¼ þ1Þ
pðYðTÞjac ¼ �1Þ ¼ 2T�y � H�1 � a

þ log
cosh Tð�yðTÞ � aÞ � H�1 � b

� �
cosh Tð�yðTÞ þ aÞ � H�1 � b

� � ð30Þ

and, again by Bayes rule, and filling in the values of a and b, we get

log
Pðac ¼ þ1jYðTÞÞ
Pðac ¼ �1jYðTÞÞ ¼ 2T�yðsÞ � H�1 � R � oc

þ log
cosh cTð�yðTÞ � R � ocÞ � H�1 � R � od

� �
cosh cTð�yðTÞ þ R � ocÞ � H�1 � R � od

� �
ð31Þ

which is Eq. (6).
For the approximate analytical calculations, we made the

empirical approximation based on averaging over a large number
of moderate-sized values of n:

log coshðnÞ ’ jnj � logð2Þ þ 0:7175e�1:7134jnj

This is within 0.025 of the true value.
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