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Abstract

Anatomical and pharmacological evidence suggests that the dorsal raphe serotonin system and the ventral tegmental and substantia nigra

dopamine system may act as mutual opponents. In the light of the temporal difference model of the involvement of the dopamine system in

reward learning, we consider three aspects of motivational opponency involving dopamine and serotonin. We suggest that a tonic

serotonergic signal reports the long-run average reward rate as part of an average-case reinforcement learning model; that a tonic

dopaminergic signal reports the long-run average punishment rate in a similar context; and finally speculate that a phasic serotonin signal

might report an ongoing prediction error for future punishment. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

From a computational perspective, serotonin (5HT) is the

most mysterious of the main vertebrate neuromodulators.

Pharmacological investigations reveal that it plays a role in

a wide variety of phenomena, including impulsivity,

obsessionality, aggression, psychomotor inhibition, latent

inhibition, analgesia, hallucinations, eating disorders, atten-

tion and mood (Aghajanian & Marek, 1999; Buhot, 1997;

De Vry & Schreiber, 2000; Edwards & Kravitz, 1997;

Fields, Heinricher, & Mason, 1991; Harrison, Everitt, &

Robbins, 1997, 1999; Hollander, 1998; Lesch & Merschdorf,

2000; Masand & Gupta, 1999; Solomon, Nichols, Kiernan,

Kamer, & Kaplan, 1980; Soubrié, 1986; Stahl, 2000;

Stanford, 1999; Westenberg, den Boer, & Murphy, 1996).

However, there are many complexities in these effects. For

instance, drugs that take immediate and selective effect on

inhibiting serotonin reuptake, and so boost its neural

longevity, take two weeks to have an effect on mood.

Also, electrophysiological data (Gao, Chen, Genzen, &

Mason, 1998; Gao, Kim, & Mason, 1997; Jacobs & Fornal,

1997, 1999) show that serotonin cells do not obviously alter

their firing rates in response to the sort of significant stimuli

that might be expected to control some of the behaviors

described earlier. Thus, the experimental data on the

involvement of serotonin are confusing, and this has inevitably

impeded the development of computational theory.

In this paper, we focus on one important (though

emphatically not exclusive) aspect of serotonin suggested

by anatomical and pharmacological data, namely an

apparent opponent partnership with dopamine (DA, Azmitia,

1978; Azmitia & Segal, 1978; Deakin, 1983, 1996; Fletcher,

1991, 1995; Fletcher & Korth, 1999; Fletcher, Korth, &

Chambers, 1999; Kapur & Remington, 1996; Vertes, 1991).

Substantial evidence supports the theory that phasic activity

of dopamine cells in the ventral tegmental area and

substantia nigra pars compacta reports a prediction error

for summed future reward (Montague, Dayan, & Sejnowski,

1996; Schultz, 1998; Schultz, Dayan, & Montague, 1997) in

the context of a temporal difference (TD) model (Sutton,

1988; Sutton & Barto, 1990) of reinforcement learning

(Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998). To the

extent that serotonin acts as an opponent to dopamine, we

can use our understanding of the role of dopamine to help

constrain aspects of the role of serotonin. Equally, the TD

model of dopamine is based on experiments that only probe

a small part of the overall scope of reinforcement learning.

Extending the model to cope with theoretical issues such as

long-run average rewards (Daw & Touretzky, 2000, 2002)

actually leads to the requirement for a signal that acts like an

opponent to dopamine. Here, we explore this candidate role

for serotonin.
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Opponency has a venerable history in psychology and

neuroscience. In an implementational form (e.g. Grossberg,

1988), it starts from the simple idea of using two systems to

code for events (such as affective events), with one system

reporting positive excursions from a baseline (appetitive

events), the other system reporting negative excursions

(aversive events), and mutual inhibition between the

systems and/or opposing effects on common outputs.

From a physiological perspective, this neatly circumvents

the absence of negative firing rates. However, opponency

turns out to have some less obvious mathematical and

computational properties, which have been given diverse

interpretations in everything from affective systems to

circadian timing mechanisms (Grossberg, 1984, 2000).

In this paper, we focus on motivational opponency

between appetitive and aversive systems. In modeling

conditioning, reinforcement learning has largely focused

on formalizing a notion of the affective value of stimuli, in

terms of the future rewards and punishments their presence

implies. Psychologically, this notion of affective value is

best thought of as a form of motivational value, and

motivational opponency has itself been the focus of

substantial experimental study. For instance, following

Konorski (1967), Dickinson and Dearing (1979) and

Dickinson and Balleine (2002) review evidence (such as

transreinforcer blocking, Ganesan & Pearce, 1988)

suggesting it is psychologically reasonable to consider just

one appetitive and one aversive motivational system, and

not either multiple appetitive and multiple aversive systems

or just one single combined system. These two systems are

motivational opponents; they also have opposing prepara-

tory behavioral effects, with the appetitive system inducing

Pavlovian approach, and the aversive system withdrawal.

The reinforcement learning model of dopaminergic activity

identifies it as the crucial substrate of the appetitive

motivational system; here, following, amongst others,

Deakin and Graeff (1991), we model serotonergic activity

as a crucial substrate of the aversive motivational system.

Psychological and implementational aspects of oppo-

nency have been much, and sometimes confusingly,

debated. Psychologically, two main forms of opponency

have been considered, one associated with the punctate

presentation of conditioned and unconditioned stimuli, the

other associated with their long-term delivery. For the

former, rewarding unconditioned stimuli are assumed able

to excite the appetitive system, as are conditioned stimuli

associated with reward. Punishing unconditioned stimuli are

assumed to excite the aversive system, as are conditioned

stimuli associated with punishment. The inhibitory inter-

action between the two systems can have various con-

sequences. For instance, extinguishing an appetitive

conditioned stimulus could equally result from reducing

its ability to drive the appetitive motivational system

(passive extinction), or increasing its ability to drive the

aversive motivational system (active extinction), or both

(see, for example, Osgood, 1953). These possibilities have

different experimental implications. Another example is that

if a conditioned inhibitor for reward acts by exciting the

aversive system, then it should be able to block (Kamin,

1969) learning of a conditioned predictor of shock

(Dickinson & Dearing, 1979; Goodman & Fowler, 1983),

since it will predict away the activation of the aversive

motivational system.

Solomon and Corbit (1974) considered an apparently

different and dynamic aspect of opponency in the case that

one or both of the appetitive or aversive systems are excited

for a substantial time. Stopping the delivery of a long

sequence of unexpected rewards is aversive (perhaps

characterized by frustration); stopping the delivery of a

long sequence of unexpected punishments is appetitive

(perhaps characterized by relief).

We seek to model both short- and long-term aspects of

opponency. One way to proceed would be to build a

phenomenological model, such as Solomon and Corbit’s

(1974), or a mechanistic one, such as Grossberg’s (2000)

and Grossberg and Schmajuk’s (1987). Solomon and

Corbit’s model (1974) suggests that the long-term delivery

of appetitive unconditioned stimuli excites the aversive

opponent system at a slower timescale. When the uncondi-

tioned stimuli are removed, the opponent system is also

slower to lose excitation, and can thus be motivationally

dominant for a short while. Grossberg and his colleagues

(e.g. Grossberg, 1984, 1988, 2000; Grossberg & Schmajuk,

1987), have extensively discussed an alternative mechanism

for this (involving slow adaptation within the system that

reports the original unconditioned stimulus rather than the

slow build up of the opponent), and have shown how the

rich internal dynamics that opponent systems exhibit might

themselves be responsible for many otherwise puzzling

phenomena.

By contrast with, though not necessarily in contradiction

to, these proposals, we seek a computational account. We

start by considering long-term aspects, arguing that

opponency emerges naturally (Daw & Touretzky, 2000,

2002) from TD learning in the case of predicting long-run

average rewards rather than summed future rewards

(Mahadevan, 1996; Puterman, 1994; Schwartz, 1993;

Tadepalli & Ok, 1998). As will become apparent, this

form of TD learning embodies a natural opponency between

the existing phasic dopamine signal, and a newly suggested,

tonic, signal, which we identify with serotonin. We extend

the scope of the model to predictions of summed future

punishment, and thereby postulate mirror opponency,

between a tonic dopamine signal and a phasic serotonin

signal. Short-term aspects of opponency then arise through

consideration of the ways that the predictions of future

reward and punishment might be represented.

In Section 2, we discuss the various aspects of the data on

serotonin that have led us to consider it as being involved in

aversive processing in general, and as an opponent to

dopamine in particular. Section 3 covers the theoretical

background to the TD learning model and the resulting link
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to short- and long-term aspects of opponency; Section 4

discusses long-term aspects of opponency; and Section 5

considers the consequences if serotonin exactly mirrors

dopamine. The discussion ties together the various strands

of our argument.

2. Serotonin in conditioning

As suggested by the vast range of its effects listed earlier,

serotonin plays an extremely complicated set of roles in the

brain, roles that it is impossible at present to encompass

within a single theory. Compared with dopamine, it is

anatomically more widespread and behaviorally much more

diverse. Further, although the activity of serotonin cells has

not been systematically tested in the range of conditioning

tasks that has been used to probe dopamine cells (Jacobs &

Fornal, 1997, 1999; Schultz, 1998), in those studies that

have been performed, it has been hard to find clear

correlates for anything other than very general aspects of

motor arousal.

Nevertheless, based largely on pharmacological investi-

gations, there have been some valiant attempts to suggest

general theories for some aspects of serotonergic function-

ing. Two that have substantial currency are its involvement

with behavioral inhibition, which is discussed extensively

and refined by Sourbrié (1986), and its involvement in

aversion and punishment, an old idea that has been cogently

formulated by Deakin (1983) and Deakin and Graeff (1991).

These aspects of serotonin are not strongly in opposition to

each other—most of the studies involving behavioral

inhibition crucially involve either aversive events such as

shocks (e.g. for animals pressing a lever to receive a reward,

withholding responding during intervals in which a signal

indicates that pressing the lever will also lead to a shock,

Geller & Seifter, 1960) or differential reinforcement of low

rates of behavior. Importantly, both the aspects of serotonin

are in opposition to dopamine, which is involved in

approach responses (Everitt et al., 1999; Ikemoto &

Panksepp, 1999), has a psychomotor arousing influence

(Canales & Iversen, 2000; Waddington, 1989), and, as

discussed earlier, is associated with reward processing

(Schultz, 1998).

The forebrain serotonin system consists of two nuclei,

the dorsal and median raphe nuclei. These nuclei have

slightly different anatomical targets (Azmitia, 1978; Azmitia

& Segal, 1978; Vertes, 1991; Vertes, Fortin, & Crane,

1999), with the dorsal raphe making connections to those

areas also innervated by the dopamine system (such as the

amygdala and the striatum), and the median raphe making

connections to the hippocampus and septal nuclei, which are

not major dopaminergic targets. There are many different

types and sub-types of serotonin receptors (e.g. Martin,

Eglen, Hoyer, Hamblin, & Yocca, 1998), each with its own

particular geographical distribution. The compounds used to

probe the workings of the serotonin system (e.g. Stahl,

2000) are either antagonists or agonists of these receptors,

which will typically affect different receptors to different

degrees, or reuptake inhibitors, which exert a more global

influence. Many such pharmacological agents also affect

other neuromodulatory systems to some degree. The lack of

pharmacological precision is a major hurdle to analyzing the

various sub-parts of the serotonin system.

Deakin (1983) used the anatomical separation of dorsal

and median nuclei as part of the motivation for his

suggestion that the dorsal raphe is the system that opposes

dopamine. More broadly, his suggestion is that serotonin is a

critical part of the defensive system, which triggers fight/

flight responses, and is in general concerned with adaptive

responses to aversive events. Dopamine is assumed to

promote appetitive behaviors such as approach (Ikemoto &

Panksepp, 1999; Panksepp, 1998); the dorsal raphe

serotonin projections would oppose these actions and

mediate avoidance behavior elicited by aversive incentive

stimuli. Deakin (1983) and Deakin and Graeff (1991)

suggest that the balance between executing approach and

withdrawal or behavioral inhibition is determined by the

balance between dopamine and serotonin release in the

ventral striatum.

A good deal of the evidence for dopamine/serotonin

opponency is indirect, from pharmacological studies show-

ing that dopamine is involved in activating behaviors that

serotonin inhibits and vice-versa. Early studies reported a

striking similarity between serotonin depletion and amphet-

amine administration (Lucki & Harvey, 1979; Segal, 1976);

other studies have considered reciprocal interactions

between dopamine and serotonin (Pucilowski, 1987).

More recently, Fletcher and his colleagues have conducted

a series of studies into the effects of agonists and antagonists

of dopamine and serotonin on unconditioned behaviors such

as feeding and conditioned behaviors such as responding for

conditioned reward, self-stimulation and conditioned place

preferences (Fletcher & Korth, 1999; Fletcher, Ming, &

Higgins, 1993; Fletcher, Tampakeras, & Yeomans, 1995).

They broadly show that agonizing serotonin opposes

conditioned and unconditioned behaviors that are activated

by dopamine; agonizing dopamine or antagonizing sero-

tonin has the opposite effect.

These studies are buttressed by some more direct

evidence for the opponent interaction of dopamine and

serotonin. A range of reports (reviewed, for instance, by

Kapur and Remington, 1996) confirms that serotonin

antagonizes dopamine function both at the level of the

VTA and the substantia nigra and at the terminal sites of

the dopamine neurons such as the nucleus accumbens and

the striatum. A study by Lorrain, Riolo, Matuszewich,

and Hull (1999) combined microdialysis and serotonin

administration to show that such an inhibitory action of

serotonin on nucleus accumbens dopamine promotes sexual

satiety, whereas sexual activity is correlated with an

increase in dopamine. Evidence for one mechanism of

serotonin’s inhibitory effect on dopamine comes from an
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electrophysiological study by Jones and Kauer (1999)

showing that the excitatory glutamatergic synaptic trans-

mission onto ventral tegmental area neurons is depressed

through the activation of serotonin receptors.

It should be noted that although there is substantial

suggestive evidence for opponency between dopamine and

serotonin, the precise pattern of interactions is far from

clear. First, there appears to be much less evidence of the

inhibitory action of dopamine on the serotonin system than

vice-versa. Second, although Deakin (1983) and Deakin and

Graeff (1991) identify the dorsal raphe nucleus as being

responsible for the serotonin system that opposes dopamine,

data from Fletcher (1995) suggest that median raphe nucleus

serotonin also plays an important role, and Imai, Steindler,

and Kitai (1986) argue that the distinction between dorsal

and median raphe nuclei might not be relevant in any case.

Further, it is unlikely that the existing experimental data

give a full picture of the interactions between all the

different dopamine and serotonin receptor types and sub-

types, and particularly the short-, medium-, and long-term

dynamics of these interactions.

3. Dopamine and temporal difference learning

Electrophysiological data on the activity of dopamine

neurons suggest that they report a TD prediction error for

predictions of long-run rewards (Montague et al., 1996;

Schultz et al., 1997). The TD learning algorithm (Bertsekas

& Tsitsiklis, 1996; Sutton, 1988; Sutton & Barto, 1998) uses

samples of received rewards to learn a value function, which

maps information about the current state of the world (i.e.

the current stimuli) to a prediction of the rewards expected

in the future. Value functions underlie models of psycho-

logical phenomena such as secondary conditioning, and are

also useful in instrumental contexts in which actions must

be selected to optimize long-run rewards.

In the standard version of TD learning, training is divided

into a series of trials, and the value function is defined as the

sum of rewards rðtÞ expected during the remainder of the

current trial:

VðtÞ ¼ E
Xtrial

t$t

rðtÞ

" #
ð1Þ

VðtÞ ¼ E½rðtÞ� þ Vðt þ 1Þ ð2Þ

Here the expectation E[·] is over randomness in the choice

of actions and delivery of rewards. Eq. (2) follows by a

simple recursion.

The TD algorithm is a method for learning an

approximation V̂ðtÞ to VðtÞ: TD uses a prediction error

signal to improve the estimate in an incremental manner.

The TD prediction error dðtÞ is the difference between the

two sides of Eq. (2) using the approximated value V̂ðt þ 1Þ

as an estimate of Vðt þ 1Þ ¼ E½
Ptrial

t$tþ1 rðtÞ: Equivalently,

dðtÞ is a measure of the inconsistency between V̂ðtÞ and

V̂ðt þ 1Þ in light of the observed reward rðtÞ:

dpðtÞ ¼ rðtÞ þ V̂ðt þ 1Þ2 V̂ðtÞ ð3Þ

We refer to this signal as dp, the phasic component of the

error signal, to distinguish it from tonic components we

introduce in Section 4. The phasic responses of primate

dopamine neurons appear to report dp(t ), as the compu-

tational signal reproduces several types of burst and pause

responses to unexpected events recorded during appetitive

conditioning (Schultz, 1998; Schultz et al., 1997; Waelti,

Dickinson, & Schultz, 2001). Examples of such modeled

phasic characteristics can be seen in the dopamine sections

of Figs. 1 and 2. The models assume the neuronal firing rate

reflects the TD error plus some constant background firing

rate, so that negative error produces a pause in neuronal

firing. This device, in itself, does not provide a practical

solution to the problem of communicating negative values

with a firing rate, since the baseline is extremely weak, and

there is no evidence that downstream areas can detect or act

on such pauses.

Modulo the constant baseline, which we will omit from

all equations, these models strictly identify the rate of

dopamine firing with the TD error signal:

dDAðtÞ ¼ dpðtÞ ð4Þ

Here we discuss additional components to the TD error

signal that are required to handle long-term predictions and

aversive stimuli. We propose that several of these largely

negative additions are reported by serotonin, so that the full,

augmented error signal dðtÞ is shared between opposing

dopaminergic and serotonergic components:

dðtÞ ¼ dDAðtÞ2 d5HTðtÞ ð5Þ

The two channels may very well be scaled differently, as

well as offset by their own baselines.

4. Long-term opponency

The assumption made in the standard TD model that

events are episodic, coming in separated trials, is clearly

unrealistic, since most events, even in the context of

behavioral experiments, are really ongoing. Treating them

as such requires using a different notion of value; in

particular, Eq. (1) must be replaced with a return that is not

truncated at the end of each trial. Theoretical treatments of

this case avoid the possibility of divergence by considering

either discounted values, in which a reward is worth less the

further in the future it is expected, or, to avoid various

unsatisfactory aspects of discounting (Mahadevan, 1996),

differential values, the summed differences between

observed rewards and some expected baseline reward �r :

VðtÞ ¼ E
X1
t$t

ðrðtÞ2 �rÞ

" #
ð6Þ
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VðtÞ ¼ E½rðtÞ�2 �r þ Vðt þ 1Þ ð7Þ

This sum converges if the baseline �r is taken as the long-

term average reward per timestep:

lim
n!1

1

n
E

Xn

t¼1

rðtÞ

" #
ð8Þ

Under some simplifying assumptions about the structure of

the environment (Puterman, 1994), this average has the

same value no matter in what state of the world the sum is

started.

Reinforcement learning algorithms using this value

function are known as average reward RL algorithms,

since actions chosen to optimize it will also optimize the

long-term average reward �r received per timestep, instead of

the cumulative reward received over a finite time window. A

TD algorithm for learning this value function (Mahadevan,

1996; Schwartz, 1993; Tadepalli & Ok, 1998; Tsitsiklis &

Van Roy, 1999) uses the error signal

dðtÞ ¼ rðtÞ2 �rðtÞ þ V̂ðt þ 1Þ2 V̂ðtÞ ð9Þ

dðtÞ ¼ dpðtÞ2 �rðtÞ ð10Þ

Fig. 1. Unsignaled rewards. (Left) Modeled opposing phasic dopamine (upper) and tonic serotonin (lower) responses during the presence (acquisition: first 500

timesteps) and subsequent absence (extinction: last 500 timesteps) of randomly delivered, unsignaled, rewards. (Right) The dopamine signal shown using an

expanded time-scale. In this and subsequent plots, the right hand axis indicates the nature of salient events in the experiment (here, the delivery of reward)

whose times of occurrence are shown by the vertical bars.

Fig. 2. Signaled rewards. (Left) Modeled opposing phasic dopamine (upper) and tonic serotonin (lower) responses during acquisition and extinction of the

delivery of signaled rewards. (Right) The phasic dopamine signals at various points during the experiment. (Top; Middle) The conventional (Montague et al.,

1996) movement backwards within each trial of the phasic dopamine signal to the earliest reliable predictor. (Bottom) The conventional below-baseline

activity at the time the reward is expected but not delivered during early extinction.
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and requires that the average reward �r be estimated

separately. One way to do this is with an exponentially

windowed running average

�rðtÞ ¼ vrðtÞ þ ð1 2 vÞ�rðt 2 1Þ; ð11Þ

where the parameter v, which is a form of learning rate,

determines the timescale over which the running average is

computed.

In this algorithm, immediate phasic reward information

rðtÞ is weighed against a long-term average reward

prediction �rðtÞ in computing the error signal. The slow-

timescale prediction acts as an opponent to the rest of the

signal. Here we propose that slow, essentially tonic,

fluctuations in dorsal raphe nucleus serotonin activity

could be responsible for reporting the average reward

prediction:

d5HT ¼ �rðtÞ ð12Þ

while dDA, reporting the phasic components of the error

signal, is as before (Eq. (4)).

Fig. 1 shows the behavior expected of the serotonin and

dopamine systems under this model during the acquisition

and extinction of unsignaled, randomly delivered rewards.

The 5HT signal increases slowly during acquisition and

decreases slowly during extinction. As in other TD models

(and as in electrophysiological recordings), the DA signal

displays phasic responses to the rewards.

Fig. 2 shows what happens if the rewards are signaled by

a preceding conditioned stimulus. In this case, the modeled

5HT behavior is unchanged. The phasic DA responses,

however, transfer from the time of the reward to the time of

the stimulus, as in the standard TD model, given a tapped

delay line representation of the time since the presentation

of the conditioned stimulus (Schultz et al., 1997). Moreover,

since the stimuli are still presented during the extinction

phase, the modeled dopamine signal also displays decaying

phasic bursts (to the signal) and pauses (at the time of

missing rewards) during extinction.

The average reward formulation of TD learning provides

a computational account of some of the psychological

phenomena identified by Solomon and Corbit (SC, 1974) in

their seminal study of opponency. Fig. 3 shows SC’s model

of affective dynamics, which they applied to a wealth of

appetitive and aversive cases.

Consider an example (Fig. 3(A)) in which subjects are

made hungry, are then delivered grains of the cereal coco-

pops in a manner governed by a constant-rate Poisson

process, and are finally extinguished. We will assume that

they are never given enough food to become sated. This is

exactly analogous to the example of Fig. 1. Fig. 3(B) shows

SC’s description of the affective dynamics in this case. Note

that SC do not focus on the pulsatile nature of the delivery of

the coco-pops; rather they imagine that the affective

reaction is continuous. The figure shows that the initial

Fig. 3. Schematic of Solomon and Corbit’s (1974) opponent process model of motivation. (A) A series of punctate rewards is delivered, and treated (dashed

line) as a continuous envelope. (B) The affective response habituates, rebounds, and re-habituates. SC modeled this response as the difference between a fast

primary (C) and a slow opponent (D) reaction to the reward.
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appetitive affective reaction rises to a peak following

initiation of the delivery of the coco-pops. This reward is

described by subjects as being highly pleasurable. Whilst

the provision of reward is maintained, the affective reaction

slowly declines to a lower steady level, as subjects report

less pleasure. After the termination of the stimulus, a

rebound to a negative affective reaction follows, as subjects

report being upset. This displeasure quickly peaks and

slowly decays to the original affective state. If fewer rewards

were given, then the habituation to the reward would be less

and the subsequent displeasure upon termination would not

be so severe.

Fig. 3(C) and (D) show SC’s opponent-process model of

these dynamics. A fast primary process for the appetitive

affective state is engaged by the reward and maintains its

activity as long as the reward persists. In addition, an

opponent process having an affective sign opposite to that of

the primary process is engaged. This aversive opponent is

sluggish in the sense that it slowly climbs to asymptote as

long as the stimulus is maintained, and slowly decays back

to baseline after the termination of the stimulus. The

difference between the outputs of these two processes gives

rise to the affective signal observed in Fig. 3(B). Grossberg

(1988) suggested a dynamical opponent mechanism to

account for the same phenomena.

Fig. 1, from the average-case model, is closely related to

Fig. 3(C) and (D). In our model, the serotonin system is the

aversive opponent to dopamine, and reports �r: We make the

crude assumption that the net affective reaction is dðtÞ ¼

dDAðtÞ2 d5HTðtÞ: When the rewards are first delivered, the

prediction of �r is zero, and so the overall signal dðtÞ is

greatest. The increase in �r to match the average reward rate

in the environment while the rewards are still provided

captures the habituation of the motivational system in the

light of the expectation of reward. dðtÞ is less in this phase,

as d5HT(t ) grows. Finally, during extinction, the only signal

is d5HT(t ), which returns to 0 as the expectation of reward �r

returns to 0. Our model better captures the pulsatile nature

of the delivery of rewards, which is presumably reflected in

motivational state.

SC suggested that their model applies to a very wide

variety of different cases of affective opponency, all the way

from the short-term effects of shocks to the long-term effects

of drugs of addiction. This raises two issues for our model.

One, which is the subject of the next section, is the degree of

symmetry of the involvement of dopamine and serotonin in

affective processing. The other, which we save for the

discussion, is the range of timescales involved.

5. Aversive conditioning and mirrored opponency

The key lacuna in the computational model that we have

specified is the lack of an account of how the prediction

error is reported for aversive events. From a theoretical

standpoint, the learning of actions to obtain reward is no

different from the learning of actions to avoid punishments.

However, as stated earlier, there is both physiological (cells

only have positive firing rates) and psychological (data

suggest separate appetitive and aversive systems) evidence

to support a distinction between the appetitive and aversive

learning. Moreover, microdialysis studies reveal evidence

of elevated dopamine levels in response to aversive stimuli

such as footshocks (reviewed by Horvitz, 2000; Salamone,

Cousins, & Snyder, 1997), which seems opposite what is

expected under a reward prediction model of dopamine. We

now suggest how to reconcile our computational model with

these data.

We make two rather more speculative hypotheses about

the opponency between dopamine and serotonin. First, we

suggest that the phasic release of serotonin might mirror the

phasic release of dopamine, and report a prediction error for

future punishment. Second, we suggest that the release of

dopamine in aversive conditioning comes from a tonic

increase in the activity of dopaminergic cells as a report of

the long-term rate of the delivery of punishment. On the first

suggestion, we are well aware that there is no evidence of a

phasic serotonergic signal from microdialysis, and only

a few hints in the spiking rates of serotonergic cells.

Microdialysis would not be expected to provide a positive

report, since it is not sensitive to the sort of transient

fluctuations that we would expect from a phasic signal. This

is true even for dopamine. More pertinently, Mason (1997)

and collaborators (Gao et al., 1997, 1998) stress that 5HT-

containing neurons in the spinal cord-directed serotonin

system are relatively unresponsive to noxious stimuli,

compared to the dramatic and long-lasting firing rate

changes seen in non-serotonergic ON and OFF cells found

in the same area. However, the weaker and more transient

excitation the authors report for 25–50% of the serotonergic

neurons actually somewhat more closely resembles the sort

of phasic responses seen in dopamine neurons. Moreover,

evidence from the same studies about the mechanism of

morphine-based analgesia suggests one reason why more

evidence for our proposal has not been forthcoming: the

release of serotonin could be decoupled from the activity of

serotonergic cells through the action of non-serotonergic

cells.

The simplest way to incorporate aversive events aðtÞ into

the TD framework is to treat them as negative rewards. The

augmented value function then takes the form:

VðtÞ ¼ E
X1
t$t

ðrðtÞ2 �r 2 aðtÞ þ �aÞ

" #
ð13Þ

with the error signal

dðtÞ ¼ rðtÞ2 �rðtÞ2 aðtÞ þ �aðtÞ þ V̂ðt þ 1Þ2 V̂ðtÞ ð14Þ

The phasic component of the prediction error signal

includes the additional component aðtÞ: Thus we can

N.D. Daw et al. / Neural Networks 15 (2002) 603–616 609



redefine

dpðtÞ ¼ rðtÞ2 aðtÞ þ V̂ðt þ 1Þ2 V̂ðtÞ ð15Þ

and rewrite the complete error signal as:

dðtÞ ¼ dpðtÞ2 �rðtÞ þ �aðtÞ ð16Þ

There are various ways that the full prediction error signal

dðtÞ could be apportioned between the modeled dopamin-

ergic and serotonergic opponents. Following the model

from Section 4, we attribute the tonic reward signal �r to

5HT. For symmetry, we assign the new tonic punishment

signal �a to DA. This apportionment is also designed to

account for the microdialysis evidence on dopamine

activation by aversive stimuli (Horvitz, 2000; Salamone

et al., 1997). Such events would increase the average

punishment signal �aðtÞ; in turn increasing dðtÞ and its

positive opponent channel dDAðtÞ: We would expect a slow

ramp-up in tonic dopamine activity exactly analogous to

that shown for serotonin in Fig. 1. Though this explanation

is consistent with microdialysis data, it is difficult to

evaluate it with respect to existing electrophysiological

experiments on dopamine in aversive situations (Guaracci

& Kapp, 1999; Mirenowicz & Schultz, 1996; Schultz &

Romo, 1987), which are in mutual disagreement as to the

predominant direction and timescale of dopamine

responses, and were not designed as tests of this idea. The

general suggestion of our model is that, at short timescales,

if they exist at all, dopamine responses should be depressed

by aversive stimuli, whereas at longer timescales, they

should be excited.

In the absence of relevant recording, or perhaps

voltammetric (Garris, Christensen, Rebec, & Wightman,

1997), data, it is particularly difficult to know how to

apportion the phasic component to the serotonergic channel.

The only computational requirement of the model is that the

difference between the signals from the two channels

(appropriately scaled) be the error signal dðtÞ: In this section

we investigate one of the simplest models for which this

holds true—a perfectly symmetric relationship between DA

and 5HT—and we return in the discussion to other options

and their implications.

In particular, we split up positive ½dpðtÞ�þ and negative

½dpðtÞ�2 components of the phasic signal, allocating the

former mostly to the dopamine system, and the latter mostly

to the serotonin system. Formally, we consider

dDAðtÞ ¼ a½dpðtÞ�þ 2 ð1 2 aÞ½dpðtÞ�2 þ �a ð17Þ

d5HTðtÞ ¼ a½dpðtÞ�2 2 ð1 2 aÞ½dpðtÞ�þ þ �r; ð18Þ

where the parameter a controls the degree to which both

negatively and positively rectified information are blended

in each signal. When a ¼ 1; DA reports exclusively the

positive part of the error signal, and 5HT the negative part;

with the parameter slightly smaller, each channel has a

portion of the oppositely rectified error subtracted from it.

The need for a , 1 stems from the evidence about the

activity of dopamine cells in extinction—they show a phasic

depression at the time an expected reward is not delivered

(i.e. when the value of ½dpðtÞ�2 is large).

The point about blending is illustrated in Fig. 4, which

shows the expected activity in the model when an expected

reward or punishment is omitted, as in extinction. First,

consider the case of reward, for which dopamine is the

primary process and serotonin the opponent. The primary

process is activated when the reward is signaled, and the

opponent is activated when it fails to arrive. The left and

right columns show the behavior expected when a ¼ 1

and a ¼ 0:8; respectively. With the smaller value of a,

Fig. 4. Responses to probe trial presentations of a conditioned stimulus when the unconditioned stimulus is omitted. Modeled primary are opponent responses

are shown when a ¼ 1 (left column) and a ¼ 0:8 (right column). For appetitive conditioning, the channel labeled ‘primary’ represents DA and the ‘opponent’

channel is 5HT. For aversive conditioning, the same results are predicted, but with the roles reversed.
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phasic pauses are seen in the primary channel at the time

the unconditioned stimulus was expected, as is seen

experimentally for DA in extinction of appetitive associ-

ations (Schultz, 1998). Since this version of the model is

completely symmetric, the roles of the primary and

opponent processes are simply interchanged when con-

ditioning is aversive rather than appetitive. That is,

serotonin would be the primary process and dopamine the

opponent. Thus, in aversive acquisition, which would

precede the traces shown in Fig. 4, the model would suggest

that a putative phasic 5HT response to a primary aversive

stimulus would transfer, with learning, to a conditioned

stimulus that predicts it.

Another conditioning paradigm that may involve both

aversive and appetitive opponent channels is conditioned

inhibition (Rescorla, 1969). Fig. 5 shows the modeled

behavior of the phasic TD error signal dpðtÞ and the two

opponent channels dDAðtÞ and d5HTðtÞ in response to two

stimuli A and B that have been used in a conditioned

inhibition experiment. Training consisted of alternating

trials with A ! r and A, B ! ·; the figure shows the result

of probe trials presenting A and B in extinction. The left part

of the figure shows that the full phasic TD prediction error

signals for the two stimuli are exact opposites—this is

because the value prediction occasioned by the conditioned

inhibitor B must exactly cancel the value prediction of the

conditioned excitor A.

The right part of the figure shows one possible

decomposition of each signal into two opponent channels.

Many decompositions are consistent with our formal model.

In particular, though the temporal locations of phasic error

are constrained by the TD model, under a different

decomposition, the predicted positive error could appear

as either DA excitation or 5HT inhibition (or some

combination of both), and vice versa for negative error.

Thus, we have decomposed the signal to reflect an

additional constraint coming from recordings from dopa-

mine neurons in a conditioned inhibition paradigm (Tobler,

Dickinson, & Schultz, 2001). The key aspect of these

experiments lies in the response dðtÞ to B2 , when the

conditioned inhibitor is presented alone. The lower left plot

of Fig. 5 shows that dðtÞ is actually positive at this time,

because of the violation of the expectation that a reward will

be omitted at that point. However, Tobler et al. (2001)

shows no evidence of increased dopaminergic activity at

this point. Thus, we assume that this error is instead fully

conveyed by inhibition in the 5HT channel. This absence of

DA activity at the time of the unexpected reward omission

may help explain why the power of a stimulus as a

conditioned inhibitor does not extinguish when it is

repeatedly presented alone (see Detke, 1991; Zimmer-Hart

& Rescorla, 1974). Apart from the assignment of this

positive error to the 5HT channel, the graphs in the right part

of this figure have been generated assuming a decompo-

sition according to the simple scheme above with a ¼ 0:8:
Another interesting feature of the decomposition pre-

sented here is the activation of the opponent serotonergic

channel in response to the presentation of the conditioned

inhibitor B. The symmetry of the model implies that a

conditioned inhibitor for shock would equivalently activate

DA. This may help explain why animals will work to bring

about the presentation of such a stimulus (Lolordo, 1969).

6. Discussion

We have suggested various ways in which serotonin,

perhaps that released by the dorsal raphe nucleus serotonin

system, could act as a motivational opponent system to

dopamine in conditioning tasks. We considered how

serotonin might report the long-run average reward rate as

a tonic opponent to a phasic dopamine signal in the

theoretical framework of average-case reinforcement learn-

ing. We also considered how dopamine might report the

long-run average punishment rate as a tonic opponent to a

phasic aversive signal. This suggestion was motivated by

Fig. 5. Responses to probe trial presentations of a conditioned excitor A and a simultaneously trained conditioned inhibitor B, in both cases in extinction. The

left graphs show the full phasic TD error signal dp(t ); the right graphs show a decomposition of this into dopamine and serotonin opponent channels using Eqs.

(17) and (18) with a ¼ 0:8 and modified for consistency with experimental results (Tobler et al., 2001).
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microdialysis and limited electrophysiological data on the

involvement of dopamine in aversive circumstances.

Finally, we speculated that there might be a phasic com-

ponent of the release of serotonin, as a more direct mirror of

the phasic component of the release of dopamine.

These suggestions go some steps beyond the experi-

mental data. The most critical experiments from the

perspective of our model would be to record the phasic

and tonic activity of dopamine and serotonin cells and

(perhaps using fast voltammetry, Garris et al., 1997), the

phasic and tonic concentrations of dopamine and serotonin

at their targets, during excitatory and inhibitory, aversive

and appetitive, conditioning tasks. Tasks involving second-

ary associations are particularly interesting, since some

aspects of primary appetitive conditioning are unaffected by

dopaminergic manipulations (Berridge & Robinson, 1998).

It might also be interesting to record from non-serotonergic

cells in the raphe nuclei, given evidence (Gao et al., 1997,

1998) about non-serotonergic ON- and OFF-cells in the

spinal cord-directed raphe nuclei whose activities are

modulated by aversive events, and which might possibly

control the release of serotonin at target sites.

Results from Everitt and his colleagues (Wilkinson,

Humby, Robbins, & Everitt, 1995) suggest further

complexities in the involvement of serotonin in aversive

conditioning. In their task, 5HT depletion impairs aversive

conditioning to a context, but enhances it to an explicit

conditioned stimulus. It might be that learning of the slow

timescale average-reward and average-punishment signals

is more closely associated with contextual than explicit

stimuli—however, an extension to our simple model would

be required to suggest why 5HT depletions disrupt learning

of �a as well as �r: The implications for phasic responses are

unclear, particularly because the experiments did not

involve secondary contingencies.

Our suggestions are also somewhat incomplete. In

particular, we have discussed computational aspects of

opponency, ignoring the sort of implementational details

that have been studied in great theoretical detail in such

work as Grossberg (1984, 2000). In practice, it seems that

serotonin can affect dopamine at multiple levels, including

influencing the activities of dopamine neurons in the

midbrain and influencing the effect of dopamine at target

structures such as the nucleus accumbens (Kapur &

Remington, 1996). There seem to be insufficient data to

understand the extent to which these interactions could be

inimical to the computational theory; at the very least they

will influence issues like the timescale of the sort of

dynamical opponency seen in the account of Solomon and

Corbit’s (1974) suggestion. Also, by no means all

experiments support a simple opponent view. For instance,

there is evidence (e.g. Parsons & Justice, 1993; Zangen,

Nakash, Overstreet, & Yadid, 2001) that increasing the

concentration of serotonin in the accumbens increases the

concentration of dopamine. Further, we have concentrated

on a narrow set of motivational aspects of serotonin. A key

direction is to expand the current theory to encompass more

of the very wide range of effects of this neuromodulator,

partially listed in the introduction.

The theoretical model is also incomplete in three key

ways. First, the computational model contains a pair of

oversimplifications: it assumes average reward rates are

stationary and it does not treat the issues of multiple

timescales involved in executing realistic courses of action.

Second, we need to consider other ways that the phasic

prediction error signal dp(t ) might be shared between the

opponent systems. Finally, we have not modeled how the

predictions associated with the tonic and phasic neuro-

modulatory signals might themselves be represented.

As described, the model of average-case reinforcement

learning assumes that there is a single, fixed, underlying

Markov chain, which has a single underlying average

reward (or punishment) rate. This simplified model has two

key problems—one relating to the problem that contin-

gencies in the world could change and the other, more

subtly, relating to how to plan courses of actions at different

timescales.

The first oversimplification with the model is that it is

rather unrealistic to assume a static model, since the average

reward rates are in fact changed during the course of the

experiments (as in the examples establishing the relation-

ship to Solomon and Corbit’s (1974) theory of opponency).

There is a relatively straightforward answer to this concern.

As is conventional in engineering models (Anderson &

Moore, 1979) and has also been suggested for conditioning

models (Dayan, Kakade, & Montague, 2000; Kakade &

Dayan, 2000, 2002), the choice of learning rate in a single

part of an environment should be tied to how fast the actual

reward rate in the world could change. For instance, in our

model of Solomon and Corbit (1974) opponency, the

timescale at which the opponent decays back to zero after

rewards are no longer sustained reflects the timescale at

which the average reward decays back to zero. This in turn

reflects the expectation of how fast the world could be

changing.

The second simplification is that, even within a fixed

overall environment, the model only considers two

particular timescales at opposite extremes, the shortest

possible, associated with immediate changes, giving rise to

phasic neuromodulatory signals, and the longest possible,

associated with average reward or punishment rates, giving

rise to tonic neuromodulatory signals. In reality, multiple

timescales are likely to be simultaneously relevant, as

animals execute hierarchically structured courses of action

with consequences for reward and punishment that play out

over different characteristic periods. Despite suggestions in

both artificial reinforcement learning (Sutton, Precup, &

Singh, 1999) and ethology (Gibbon, 1977), it is not clear

how learning can proceed simultaneously at multiple

timescales in an integrated manner leading to hierarchically

optimal behavior. The neuromodulatory basis underlying

the multiple timescales is also not clear—although one can
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certainly imagine families of reception mechanisms for

neuromodulatory signals, each with different time constants,

understanding how the resulting pieces of information

might be combined together poses a greater challenge. Note

that Doya (2000, 2002) actually makes the issue of setting

the timescale of courses of action the defining role for

serotonin activity.

After the simplifications of the computational model, the

second theoretical issue is the opponent construction of the

phasic signal dp(t ). Eqs. (17) and (18) formalize the simplest

possible symmetric scheme in which serotonin and

dopamine are exact, mirrored, opponents, each reporting

mostly one motivational channel (aversive or appetitive,

respectively) but with a small component (controlled by the

value of 1 2 a ) of the other channel. However, there are

obviously many other ways to decompose dp(t ) into

opposing signals, and experimental evidence such as the

recordings of dopamine neurons in conditioned inhibition

experiments (Tobler et al., 2001) is hard to reconcile with

our simple scheme. In Fig. 5, we used an ad hoc

decomposition to capture the tricky aspect of the results of

this experiment, namely that dopaminergic excitation is not

seen at the time reward is normally omitted after pre-

sentation of a conditioned inhibitor. However, a compelling

justification for this decomposition is presently lacking.

As another example of the problem with the symmetric

model, pauses in dopaminergic activity are seen to negative

TD error produced by the non-occurrence of expected

reward, but the few available experiments disagree as to

whether pauses are commonly seen to other, aversive

sources of negative TD error: receipt of primary punishment

(Schultz & Romo, 1987; Mirenowicz & Schultz, 1996) or

decreases in V̂ðtÞ caused by the onset of a stimulus

predicting punishment (Guaracci & Kapp, 1999). These

experiments show some combination of excitatory and

inhibitory responses, but all differ as to their relative

proportions. In the symmetric model, if a ¼ 1; pausing

would be seen to neither omitted rewards nor unexpected

punishments, but with a , 1, would be expected to both.

Thus, the correct implementation probably does not involve

the purely symmetric rectification of a single error signal,

but, as in Fig. 5, rather arranges for the various individual

components of the full error signal to appear differentially in

one channel or the other. The implementational details of

this could be significantly clarified by more experimental

evidence.

The fact that increases and decreases in V̂ðtÞ seem to

affect DA differentially depending on their origin points to

the third aspect of our model that we have ignored thus far,

namely how the predictions V̂ðtÞ are represented. The

standard way to represent value function estimates in TD is

to use a single function approximator whose single set of

parameters is trained by dðtÞ: The opponent architecture we

envision here suggests an obvious alternative: there may be

both positive and negative parts to the value function

prediction, whose difference is the full value function:

V̂ðtÞ ¼ V̂þðtÞ2 V̂2ðtÞ: In this case, each partial prediction

can be associated (more or less exclusively) with one of the

opponent channels and trained by its partial error signal.

This sort of dual representation, used for instance in the

opponent conditioning model of Grossberg (1984), can

model a number of behavioral phenomena that are difficult

to account for using a more unitary representation of a

prediction. It allows for active extinction, in which the

extinction of a stimulus-reward association causes the

stimulus’ contribution to V̂2 to become elevated rather

than its contribution to V̂þ to decay. This has the same effect

of diminishing the net prediction, but it preserves the

predictive association in the positive channel, providing an

explanation for phenomena such as the spontaneous

recovery of extinguished conditioned responses. In another

example, having both positive and negative sets of pre-

diction weights allows the model to explain evidence that

conditioned inhibitors can seem simultaneously to carry

both positive and negative predictions: that, for instance,

attempts to extinguish conditioned inhibitors by presenting

them alone can actually enhance their inhibitory properties,

presumably by extinguishing their positive associations

(Williams & Overmier, 1988). In terms of the DA response

data considered here, maintaining two separate partial

predictions allows predictions originating from appetitive

and aversive events, or from conditioned inhibition and

excitation to be separated, so that the modeled DA signal

has the ability to react differently to changes in either.

One important spur for this work, which we have

nevertheless not directly modeled, is an apparent opponency

between DA’s involvement in eliciting appetitive approach

and psychomotor excitation, and serotonin’s involvement in

fight and flight behaviors. These automatic (i.e. non-plastic)

effects of the neuromodulators on action selection can

produce computationally undesirable, but experimentally

observable, outcomes such as the inability of animals to

learn to get a reward delivered by retreating from a

particular stimulus with which the reward is associated.

We do not yet have an account of these effects. However,

recent work on incentive motivation (Dickinson & Balleine,

2002) is leading to a slightly different picture of how

Pavlovian and instrumental conditioning interact, and in this

new picture, these effects may be more readily accommo-

dated. An important task is to add opponency to the new

model of neurobiological reinforcement learning (Dayan,

2002) that is emerging from this new motivational picture.

Such a new model might also be used to capture serotonin’s

apparent role in withholding inappropriate behaviors.

Extending models such as the actor–critic (Barto, Sutton,

& Anderson, 1983; Houk, Adams, & Barto, 1995) of DA’s

involvement in increasing the probability of better-than-

expected actions, our model could accommodate a role for

5HT in learning to avoid actions whose outcomes were

worse than expected, due either to directly aversive events

or to frustrative non-reward. However, the behavioral

inhibition associated with 5HT can be seen as also having
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a more automatic component, and this would naturally fall

under the scope of the motivational model.

Given the vast range of phenomena in which it is

involved, it is unlikely that there is a simple computational

account that can address all aspects of serotonin. We have

attempted to use our relatively more comprehensive under-

standing of the role of dopamine in appetitive conditioning

to provide a theoretical window onto a restricted aspect of

serotonergic function. The resulting theory makes testable

contact with a number of different studies on serotonin, and

offers many directions for future investigation.
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