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Attention is a complex neural and psychological phenomenon,
coming in many different forms and involving many different
brain structures and mechanisms. Oft-quoted examples include
arousal, vigilance and selection. Most empirical studies of atten-
tion concentrate on the nature, control and consequences of
selection. From the outset1,2, models of selective attention have
largely focused on the idea that there might be limited compu-
tational resources available to process inputs and choose and exe-
cute courses of action. Selective attention is usually conceived as
a response to these constraints, in which all but the most impor-
tant or relevant stimuli for a task are filtered out3. This might
occur in conjunction with a serial processing strategy in which
different stimuli are selectively attended in turn, and the results of
processing each are stored in working memory.

Computational models might be expected to link together
the rich set of psychological and neural findings on selective
attention, while providing an overall rationale for what is
observed. However, the focus on the single issue of resource con-
straints leaves open at least two concerns. First, although ani-
mals must have a computational strategy to deal with their
limited resources, is this the only rationale for selective atten-
tion? One reason to doubt this is that attentional effects are evi-
dent in tasks without abundant complex stimuli, in which input
filtering would seem unnecessary. Second, few constraints on
how selection should work come merely because it is necessary
to overcome resource limitations. Altogether, we need a com-
putationally richer conception of selection that does not depend
only on resource constraints, and which helps formalize what it
means to be an important and relevant stimulus.

Here we show some work in this direction, by considering
cases in which selective attention is computationally sensible
by itself, and is not a response to any resource constraint4.
Although the general approach has also been applied to visual
attentional tasks5, we illustrate it here through examples of
attention in classical conditioning6. Classical conditioning is
convenient because only a few stimuli are usually present at
any one time, and their significance (and therefore how much
they might be selected) can be manipulated in a graded man-
ner. Further, the neural substrate underlying performance in
attentional tasks in conditioning has been probed using selec-
tive lesions. Computational models of attention in condition-
ing are primarily statistical models, concerned with identifying

and assessing the relevance of stimuli for predicting outcomes,
and the relevance of failure to predict outcomes correctly for
adjusting the predictions.

Classical conditioning
Classical conditioning is the study of how animals learn predic-
tive relationships7–9. In their natural environments, animals face
a multitude of stimuli, very few of which are likely to be useful as
predictors. In keeping with ideas of resource constraints, vari-
ous theories of classical conditioning have appealed to a limited-
capacity learning processor. These theories specify rules
governing which stimuli are deemed predictively useful and thus
gain access to this processor by being selectively attended10,11.
Instead, we consider quantitatively how statistical models of
learning demand selection as a result of optimal processing.
Thus we can abandon the notion of capacity limitations, as they
are redundant4. We consider and provide simple statistical mod-
els for two different sorts of attentional selection that emerge in
conditioning12–14. One concerns how learning should be com-
petitively allocated among stimuli10,11; the other concerns how
responsibility for making predictions should be competitively
allocated9.

Behavioral studies show that animals do indeed pay differ-
ent amounts of attention to different stimuli. In rats, experi-
mental evidence implicates neuromodulatory systems in such
selective attention15–17. In appetitive conditioning, cholinergic
projections from the basal forebrain to the parietal cortex and
hippocampal formation are important in what we identify as
selection for learning, in which certain stimuli change their pre-
dictions faster than other stimuli. We suggest that the nucleus
accumbens is similarly important in the selection of which stim-
uli to use in prediction.

In a standard protocol for appetitive classical conditioning
(Fig. 1), a hungry animal is faced with numerous stimuli. Some
stimuli are directly controlled by the experimenter (blue, red
and green lights), and one stimulus (yellow) is uncontrolled,
for instance representing noise sources from the room, ran-
dom fluctuations in lighting and so on. As best the animal
knows when the experiment begins, all these ‘conditioned stim-
uli’ might bear some relationship to the delivery of food pellets,
the ‘unconditioned stimulus’. A common way7 of interpreting
classical conditioning is that animals learn predictive rela-
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tionships in their environments, that is, they learn what the
conditioned stimuli predict about the unconditioned stimu-
lus. Prediction of important outcomes, such as food or aver-
sive unconditioned stimuli (for example, electric shocks), is a
very important task likely to underlie the animals’ capacity to
choose behaviors appropriate to their environments. Their pre-
dictions can be probed in various ways, including monitoring
their behavior for orienting responses to conditioned stimuli
that predict food, approach movements toward the places
where they are fed, or, when the conditioned stimuli predict
shocks, suppression of a specific active behavior (such as lever
pressing for food) while an aversive conditioned stimulus is
presented.

Such experiments, and also more naturalistic prediction tasks,
have several important features in common. First, only some
conditioned stimuli predict the outcome consistently or reliably
throughout the experiment (Fig. 1, blue and red lights). Second,
the experimenter changes the contingencies during the experi-
ment, and so the predictions must change too. To deal with this,
animals need to use the two types of selective attention men-
tioned above. Note in Fig. 1 that the amount of reward that fol-
lows the blue light changes twice. The first change is not
contingent on the presentation of any new stimulus (at time t*),
and the second change coincides with the onset of a novel red
light (at time tS).

Any system, natural or artificial, that estimates the current
predictive relationship between conditioned stimuli and reward
based on past observations can be described as
making statistical inferences. The rectitude of
such inferences depends on the system’s (pos-
sibly implicit) underlying statistical model of
the world. In common with other rational
analyses, we make the critical assumption that
the animals make correct, or at least approxi-
mately correct, inferences. Then, we can use a
two-pronged approach to understand the
results of conditioning experiments, regarding
performance in conditioning experiments as
probing the actual statistical models underly-
ing animal inferences, and considering statis-
tical models that take sensible note of
unreliable and changing predictive relation-
ships. This approach leads to the two models
of selective attention we discuss below.

Uncertainty
Box 1 describes a simple statistical model of the animal’s task in
classical conditioning, in terms of a contrivance called a ‘Kalman
filter’18,19. This model formalizes the predictive relationship
between conditioned stimuli and reward, together with how this
predictive relationship is expected to change over time. The
model thereby also formalizes how the animal should make
inferences about the present predictive relationship from past
observations. Importantly, attached to the prediction made for
each stimulus is the degree of uncertainty in the prediction. The
uncertainty is large if the stimulus has not been shown in the
recent past. The uncertainty is small if the animal has recently
seen substantial evidence about the relationship between that
stimulus and the outcome.

In the Kalman filter, predictions of a stimulus are changed
when the outcome is predicted incorrectly, based on a compro-
mise between prior information and recent observations. For
instance, more prior observations of the relationship between
a stimulus and reward generally mean that this relationship is
more certain. Therefore, the animal should be slower to change
its estimate of this relationship based on a prediction error. How-
ever, if the error in prediction coincides with a novel stimulus,
whose relationship with the reward is uncertain, then this rela-
tionship should change quickly.

For example, at time t* (Fig. 1), the animal might expect
one pellet of food, based on its recent experience with the blue
light. However, it actually receives half a pellet. The resulting
prediction error drives learning. Under the Kalman filter model
(Fig. 2), up to time tF in Fig. 1, the blue light increases its 
prediction to about one pellet up to time t*, then decreases its
prediction because of the prediction error (Fig. 2a). The speed
at which the prediction of the blue light adapts to half a pellet
depends on the uncertainty of the blue light’s predictions
(Fig. 2c).

Responsibility for the prediction error is competitively allo-
cated between the stimuli present in inverse proportion to the
uncertainties associated with each of their predictions (Box 1).
This competitive allocation governs how much the predictions
of each stimulus are changed. For instance, at time tS in Fig.
1, the animal might expect half a pellet of food, based on its
recent experience with the blue light and lack of prior experi-
ence with the red light. However, in response to the predictive
failure at this time, the prediction associated with the red light
will change substantially more than the prediction associated
with the blue light. This happens because the animal is much
less certain about the association between the red light and

review

Fig. 1. Uncertainty and unreliability. Top, rewards of various magnitudes
(size or number of food pellets) are given. Bottom, lights of different col-
ors represented by binary xi(t) potentially predict reward. Time t*, the
first time the reward associated with the blue stimulus changes; time tS,
when the red light is introduced; time tF, the end of the plots in Fig. 2;
time ‘?’, when the prediction associated with the combination of red and
green lights is assessed.
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Fig. 2. Prediction with the Kalman filter up to time tF. (a) Mean value of predictions associ-
ated with the blue and red lights. (b) The net prediction (brown) of the actual reward (black)
that would be made according to the sum of predictions of the stimuli. Note how the predic-
tion adapts to the change in the actual rewards. (c) Uncertainties associated with the blue and
red lights. Larger uncertainties (as at the start of learning for each stimulus) allow larger
changes in the predictions. Note that there is asymptotic uncertainty, that is, the estimates do
not become arbitrarily accurate (because of the continual possibility of change in the world).
Predictions and uncertainties for the green and yellow lights are not shown.
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reward (about which nothing has previously been observed)
than that between the blue light and reward. At time tS, the
prediction associated with the red light changes more than that
associated with the blue light (Fig. 2a). The net prediction
made on the basis of both stimuli (Fig. 2b) approaches two
pellets (the net prediction being, in this case, the sum of the
predictions of the individual stimuli). The uncertainties in the
two predictions (Fig. 2c), which decrease with more observa-
tions, determine this difference. The asymptotic level of this
uncertainty governs the rate at which the predictions can
change once fully established, which in turn is determined by
the stability of the environment, that is, how fast the actual
reward contingencies should be expected to change.

The competitive allocation of learning between the two
lights is exactly a form of selective attention for learning. It
arises not from a resource limitation, but rather from a nor-
mative treatment of the statistical contingencies involved in
prediction, in which the predictions are optimally inferred in a
changing world as specified by the Kalman filter. This form of
attention is closely related to the Pearce-Hall attentional the-
ory of conditioning11, from which the Kalman filter model bor-
rows the idea that learning should depend on predictive
uncertainty, so that more uncertain predictions change more
quickly. Under the Pearce-Hall theory, for which there is sub-
stantial empirical evidence20–23, the degree of uncertainty about
each stimulus is determined by its past failures in prediction
(for instance, at time t* for the blue stimulus) rather than just
past observations, as also emerges in more sophisticated ver-
sions of the Kalman filter model18.
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Unreliability
Under the model above, the predictions made for all stimuli at a
particular time are simply added. There is evidence that such an
integration mechanism is incomplete and in some instances
incorrect24. For example, consider the time marked by ‘?’ in 
Fig. 1. In the recent past, the red light has been associated with
delivery of one pellet of food, and the green light with two pel-
lets of food. Further, the two stimuli have not recently been pre-
sented together. If these two lights are now both presented, what

Box 1. Conditioning and the Kalman filter
We first consider a simple statistical model for conditioning18.
The presence and absence of the conditioned stimuli (the lights)
is represented by a vector x(t), with one component for each
stimulus. Here, xi(t) = 1 if stimulus i is present at time or trial t,
and is 0 otherwise. Similarly, the delivery of the unconditioned
stimulus (the food pellets) is represented by the scalar r(t). In
the statistical model, there is a true relationship in the world
between the lights and the food represented by a set of para-
meters w(t). These correspond to the way that the experimenter
has programmed the apparatus. These parameters can change
over time, for instance in the transitions between the different
regimes apparent in Fig. 1. In the simplest case, we might write

r(t) = x(t) · w(t) + ε(t)

where x(t) · w(t) = Σi xi(t)wi(t) indicates that the weights asso-
ciated with the stimuli are combined additively (a point to
which we return when we consider reliability competition). The
term ε(t) represents noise, either in the actual delivery of the
reward or in the animal’s processing of its magnitude.

The most straightforward model of how w(t) might change
over time is

w(t + 1) = w(t) + η(t)

where η(t) is a drift term, the details of which are unknown to
the animal. The inference task for the animal is to take the
paired sequences of observations {x(t),r(t)} and infer w(t). That
is (Fig. 3), given sequences such as those shown in Fig. 1, pro-
vide a running estimate, ŵ (t), of the relationship between 

stimuli x(t) and reward r(t), and thus a running estimate or
prediction of the reward r̂(t) = x(t) · ŵ(t). If just one stimulus is
presented (say, the blue light), then the prediction formed by
the animal will reveal the association learned between the blue
light and reward. In the simplest case, the running estimate of
the mean prediction associated with stimulus i, wiˆ (t), is accom-
panied by a running estimate of the uncertainty in that predic-
tion, σi

2(t). This reflects a balance between the information
acquired from the observations, and the drift term of Eq. 2,
which permits predictive relationships to change over time.

Making simplifying assumptions, it can be shown18 that
adaptation of ŵ(t) should be based on the formulæ

where E is the variance of the noise ε(t) corrupting r(t). Here,
the term δ(t) reports the error in the current predictions49 and
is exactly the same error term that appears in many supervised
learning rules, from the Rescorla-Wagner50 rule for condi-
tioning, to the backpropagation learning rule for neural net-
works, and, in slightly modified form, the temporal difference
error51 associated with the activity of midbrain dopamine
cells52. The associability term αi(t), which governs the learn-
ing rate, contains the critical feature of a competitive alloca-
tion of learning between the stimuli according to their
uncertainties—it is as if the prediction error is divided out
among all the stimuli that are present according to their indi-
vidual relative uncertainties. The Kalman filter model also spec-
ifies how σi

2(t) changes over time.

wi(t+1) = wi(t) + αi(t)δ(t)           δ(t) = r(t)-x(t)·w(t) 

σi
2(t)xi(t)

Σjσj
2(t)xj(t)+E

 αi(t) =

ˆ ˆ ˆ

Fig. 3. Architecture for predic-
tion. The stimuli x(t) are repre-
sented by the activity of the input
nodes and act through the
weights ŵ(t) (and, later, a com-
petitive combination rule) to
construct a prediction r̂(t) of the
reward r(t). Weight adaptation is
based on the prediction error
δ(t). We model the weights as
being in the basolateral nuclei of
the amygdala, competitive com-
bination in the nucleus accum-
bens, the report of prediction
error for appetitive uncondi-
tioned stimuli coming from the
dopamine system49, and control
over plasticity (not shown)
exerted indirectly by the central
nucleus of the amygdala and 
hippocampus.
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should the net prediction of reward be? Arguably, it should be
one, two or three pellets, or indeed something in between,
depending on how competitively or cooperatively the predic-
tions are combined.

Competitive combination9,24 arises when the final predic-
tion of the reward averages the predictions associated with the
conditioned stimuli that are present in such a way that the pre-
dictions of some stimuli contribute more than those of others. In
our example, an obvious basis for competition is that, for most
of the experiment, the green light has been explicitly unrelated to
reward. Therefore, the animal might consider it unreliable as a
predictor. Conversely, the red light has been a consistently good
predictor of reward. Given its unreliability, if only the green light
were presented, then, short of any other information, the best
prediction might be two pellets. However, if both the red and
green lights were presented, the best combined prediction is
more likely closer to one pellet, the value associated with the red
light alone.

In a statistical model of this (Box 2), stimuli compete to par-
ticipate in a combined prediction in proportion to their esti-
mated reliability as predictors. These reliabilities are expected14,25

to be adapted over a longer time scale than the predictions them-
selves. Competition between stimuli based on their reliabilities
is another form of selective attention. It is also not induced by
any resource constraint, but is a normative consequence of a
natural statistical model for prediction. It is possible (though
messy) to integrate the models of uncertainty and unreliability.
In particular, reliabilities (which lead to competition for mak-
ing the predictions) are different from uncertainties in predic-
tion (which lead to competition for learning the predictions).
Reliabilities are the statistical account of which stimuli the ani-
mal deems important in prediction, whereas uncertainties quan-
tify how well those predictions are known. One can have a
reliable predictor that is clearly important, like the red light, but
whose current prediction is uncertain because it is based on lit-
tle information.

DISCUSSION
By considering simple forms of attention in classical condi-
tioning, we have shown that selection can be an appropriate
solution to an inference problem, rather than just a way of
addressing a resource constraint. Selection is useful if the
demands of a task imply that some available information is
more relevant than other information (just as some available
stimuli are more reliable predictors than others). This sort of
selection is rarely absolute: only in special circumstances should
one pay no regard whatsoever to a stimulus; rather, some stim-
uli will be relatively downgraded with respect to others. We pre-
sented simple statistical models in which such selection is
normative; other, more complex statistical models would lead to
similar conclusions26.

We can compare this statistical conception of selective atten-
tion with two associated views. One, a computational idea
inspired by neurophysiological data on the effect of attention
on receptive fields, is that selection should eliminate all traces
of the unattended stimuli, leaving just the activity associated
with the attended stimulus as if it had been presented alone27.
Models show that this can indeed result from the forms of atten-
tion we have considered. Of course, input information about
the stimulus on which the neural activity is based may be dif-
ferent in the face of attention5,28 (for instance, based on only
the relevant part of a cell’s receptive field). In this case, one might
expect to find that the activity will also be different, for instance
stronger29,30.

The second associated view, which is more mechanistic, is
that neuromodulators might change the signal-to-noise ratio of
single cells31 by suppressing apparently spontaneous activity,
compared with stimulus-driven activity. This view seems often
misunderstood. If cells can operate at a high signal-to-noise
ratio, then it would seem strange that they do not always do so.
It would seem especially strange if the high signal-to-noise ratio
can be achieved by decreasing apparently spontaneous activity
without increasing the net firing rate. Under a statistical account
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Box 2. Unreliability
To formalize the notion that some stimuli are more reliable
than others, we need to postulate a model53–55 that allows a
variable relationship between the true value of the reward r(t)
and the prediction wi(t) associated with each stimulus i. In
one such model, each prediction is expected to vary accord-
ing to a Gaussian distribution with standard deviation τi(t)
about r(t). The prediction wi(t) should be closer to r(t) for a
stimulus with a small value of τi(t) than one with a big value,
and we therefore define ρi(t) = 1/ τi

2(t) as the reliability of
stimulus i. The probability distributions associated with the
predictions of red and green lights are shown in Fig. 4. The
red light is more reliable, as is evident from its sharper distri-
bution.

Again, under some simplifying assumptions, the net pre-
diction based on all the stimuli present is

where πi(t) is the combination weight:

which is a weighted average based on the reliabilities ρi(t).
The combination weight term represents a competitive allo-
cation of predictions among stimuli according to their relia-
bilities—stimuli that are more reliable have more say in the
prediction. Again, these reliability terms define a form of selec-
tive attention through this competitive combination. This
form of attention can also be combined with the uncertainty
attention discussed above14.

The brown line in Fig. 4 shows the net prediction at the
time marked ‘?’ in Fig. 1, after the predictions of all the stim-
uli have been considered. The net prediction is calculated as
the product of the two distributions, normalized so that the
probabilities sum to 1. Note that the center of the brown dis-
tribution is closer to that of the red light, as expected, and is
sharper than those of both the red and green lights, as both
contribute information.

πi(t) =
ρi(t)xi(t)

Σjρj(t)xj(t)

Σπi(t)wi(t)
i

Fig. 4. Competitive combina-
tion of predictions. Red and
green lines, example distribu-
tions of predictions of reward
from the red and green lights at
the time marked by ‘?’ in Fig. 1.
The prediction of the red light is
more reliable, as its distribution
is more sharply peaked. Brown
line, combined prediction after
information from both stimuli has been integrated. As the red light is
more reliable, the mean of the combined estimate is closer to w2.
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like the one we have developed here, the higher signal-to-noise
ratio really comes from a computational strategy of selecting
from the inputs just those that are appropriate for a particular
task (eliminating, for instance, the effects of uncontrolled stim-
uli like the yellow input in Fig. 1). Different tasks lead to differ-
ent assessments about which inputs are relevant.

Lesion studies on rats have probed the neural substrates
underlying increases and decreases in competitive allocation of
learning to stimuli that become newly predictive or unpredic-
tive15–17,32. The level of allocation is often called the associabil-
ity of the stimulus. The increase in associability associated with
failure in prediction that would emerge from a more complex
version of the Kalman filter model involves a pathway from the
central nucleus of the amygdala to cholinergic cells in the basal
forebrain that project to the parietal cortex, itself implicated in
spatial attention33–35. Decreases in associability that occur as a
stimulus is found to have either no consequence (‘latent inhibi-
tion’36) or a consistent consequence, are affected by manipula-
tions of the hippocampus and related structures16,37,38, and are
also suggested to involve neuromodulatory systems39. Of course,
stimulus uncertainties are likely to be subject to multiple influ-
ences. For instance, one factor underlying the uncertainties
should be novelty (which may actually be assessed by hip-
pocampal structures40); stimuli that are novel in a context should
automatically be able to attract learning because their predic-
tive relationships with the environment are clearly unknown.

There is less information about the neural substrate under-
lying the reliability-based selective attention that controls com-
petitive combination of predictions from multiple stimuli. One
attractive possibility is that the ventral striatum and its associ-
ated basal ganglia structures are involved in attentional compe-
tition in a way that parallels the putative involvement of the
dorsal striatum and its associated basal ganglia structures in
competition between actions41–44. Stimulus reliabilities would
then be stored in corticostriatal connections, whereas affective
values (predictions associated with stimuli) would be stored in
the basolateral nuclei of the amygdala and perhaps orbitofrontal
cortex45–47.

Classical conditioning is an attractive test-bed for theories
of attention because the requirement for selection (statistical
uncertainty or unreliability) itself implies what its effects should
be (better learning to predict error or better participation in
making predictions). In other circumstances, the same ideas
apply, even if the requirements and effects may be more distantly
related. For instance, we have suggested that it is helpful to think
about the informational constraint of selection, that is, to ask
when it is wise to throw away what might look like available
information. Under a computational characterization of the
visual system in which it is supposed to build a veridical repre-
sentation of all the visually signalled features of scenes, the
answer is essentially never. Selective attention would always seem
to be a regrettable necessity. However, under characterizations
like that of active or ‘animate’ vision48, in which the goal is to
get answers to particular questions posed about the visual world,
such selection of aspects of the input appropriate to the ques-
tion at hand is inescapable. This opens up our whole scheme of
inquiry.
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