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Abstract

Conditioning experiments probe the ways that animals make pre-
dictions about rewards and punishments and use those predic-
tions to control their behavior. One standard model of condition-
ing paradigms which involve many conditioned stimuli suggests
that individual predictions should be added together. Various key
results show that this model fails in some circumstances, and mo-
tivate an alternative model, in which there is attentional selection
between different available stimuli. The new model is a form of
mixture of experts, has a close relationship with some other exist-
ing psychological suggestions, and is statistically well-founded.

1 Introduction

Classical and instrumental conditioning experiments study the way that animals
learn about the causal texture of the world (Dickinson, 1980) and use this informa-
tion to their advantage. Although it reached a high level of behavioral sophistica-
tion, conditioning has long since gone out of fashion as a paradigm for studying
learning in animals, partly because of the philosophical stance of many practition-
ers, that the neurobiological implementation of learning is essentially irrelevant.
However, more recently it has become possible to study how conditioning phe-
nomena are affected by particular lesions or pharmacological treatments to the
brain (eg Gallagher & Holland, 1994), and how particular systems, during simple
learning tasks, report information that is consistent with models of conditioning
(Gluck & Thompson, 1987; Gabriel & Moore, 1989).

In particular, we have studied the involvement of the dopamine (DA) system in
the ventral tegmental area of vertebrates in reward based learning (Montague et
al, 1996; Schultz et al, 1997). The activity of these cells is consistent with a model
in which they report a temporal difference (TD) based prediction error for reward
(Sutton & Barto, 1981; 1989). This prediction error signal can be used to learn cor-
rect predictions and also to learn appropriate actions (Barto, Sutton & Anderson,
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1983). The DA system is important since it is crucially involved in normal reward
learning, and also in the effects of drugs of addiction, self stimulation, and various
neural diseases.

The TD model is consistent with a whole body of experiments, and has even cor-
rectly anticipated new experimental findings. However, like the Rescorla-Wagner
(RW; 1972) or delta rule, it embodies a particular additive model for the net pre-
diction made when there are multiple stimuli. Various sophisticated conditioning
experiments have challenged this model and found it wanting. The results sup-
port competitive rather than additive models. Although ad hoc suggestions have
been made to repair the model, none has a sound basis in appropriate prediction.
There is a well established statistical theory for competitive models, and it is this
that we adopt.

In this paper we review existing evidence and theories, show what constraints a
new theory must satisfy, and suggest and demonstrate a credible candidate. Al-
though it is based on behavioral data, it also has direct implications for our neural
theory.

2 Data and Existing Models

Table 1 describes some of the key paradigms in conditioning (Dickinson, 1980;
Mackintosh, 1983). Although the collection of experiments may seem rather arcane
(the standard notation is even more so), in fact it shows exactly the basis behind
the key capacity of animals in the world to predict events of consequence. We will
extract further biological constraints implied by these and other experiments in the
discussion.

In the table, l (light) and s (tone) are potential predictors (called conditioned stimuli
or CSs), of a consequence, r, such as the delivery of a reward (called an uncondi-
tioned stimulus or US). Even though we use TD rules in practice, we discuss some
of the abstract learning rules without much reference to the detailed time course
of trials. The same considerations apply to TD.

In Pavlovian conditioning, the light acquires a positive association with the reward
in a way that can be reasonably well modeled by:

�wl(t) = �l(t)(r(t) � wl(t))l(t); (1)

where l(t)2 f0; 1g represents the presence of the light in trial t (s(t) will similarly
represent the presence of a tone), wl(t) (we will often drop the index t) represents
the strength of the expectation about the delivery of reward r(t) in trial t if the
light is also delivered, and �l(t) is the learning rate. This is just the delta rule. It
also captures well the probabilistic contingent nature of conditioning – for binary
r(t)2f0; 1g, animals seem to assess �l = P[r(t)jl(t)=1] � P[r(t)jl(t)=0], and then
only expect reward following the light (in the model, have wl>0) if �l>0.

Pavlovian conditioning is easy to explain under a whole wealth of rules. The trou-
ble comes in extending equation 1 to the case of multiple predictors (in this paper
we consider just two). The other paradigms in table 1 probe different aspects of
this. The one that is most puzzling is (perversely) called downwards unblocking
(Holland, 1988). In a first set of trials, an association is established between the
light and two presentations of reward separated by a few (u) seconds. In a second
set, a tone is included with the light, but the second reward is dropped. The animal
amasses less reward in conjunction with the tone. However, when presented with
the tone alone, the animal expects the presence rather than the absence of reward.



Name Set 1 Set 2 Test
1 Pavlovian l ! r l # r

2 Overshadowing l+ s! r

�
l# r

1

2

s# r
1

2

�

3 Inhibitory
�

l ! r
l+ s! �

�
s# �r

4 Blocking l ! r l+ s! r s# �

5 Upwards unblocking l ! r l + s! r�ur s# r

6 Downwards unblocking l ! r�ur l+ s! r s# �r

Table 1: Paradigms. Sets 1 and 2 are separate sets of learning trials, which are continued
until convergence. Symbols l and s indicate presentation of lights and tones as potential
predictors. The# in the test set indicates that the associations of the predictors are tested,
producing the listed results. In overshadowing, association with the reward can be divided
between the light and the sound, indicated by r

1

2 . In some cases overshadowing favours
one stimulus at the complete expense of the other; and at the end of very prolonged training,
all effects of overshadowing can disappear. In blocking, the tone makes no prediction of r.
In set 2 of inhibitory conditioning, the two types of trials are interleaved and the outcome
is that the tone predicts the absence of reward. In upwards and downwards unblocking,
the �u indicates that the delivery of two rewards is separated by time u. For downwards
unblocking, if u is small, then s is associated with the absence of r; if u is large, then s is
associated with the presence of r.

On the face of it, this seems an insurmountable challenge to prediction-based the-
ories. First we describe the existing theories, then we formalise some potential
replacements.

One theory (called a US-processing theory) is due to Rescorla & Wagner (RW;
1972), and, as pointed out by Sutton & Barto (1981), is just the delta rule. For
RW, the animal constructs a net prediction:

V (t) = wl(t)l(t) + ws(t)s(t) (2)

for r(t), and then changes �wl(t) = �l(t)(r(t) � V (t))l(t) (and similarly for ws(t))
using the prediction error r(t) � V (t). Its foundation in the delta rule makes it
computationally appropriate (Marr, 1982) as a method of making predictions. TD
uses the same additive model in equation 2, but uses r(t) + V (t+ 1)� V (t) as the
prediction error.

RW explains overshadowing, inhibitory conditioning, blocking, and upwards un-
blocking, but not downwards unblocking. In overshadowing, the terminal asso-
ciation between l and r is weaker if l and s are simultaneously trained – this is
expected under RW since learning stops when V (t) = r(t), and wl and ws will
share the prediction. In inhibitory conditioning, the sound comes to predict the ab-
sence of r. The explanation of inhibitory conditioning is actually quite complicated
(Konorski, 1967; Mackintosh, 1983); however RW provides the simple account that
wl = r for the l ! r trials, forcing ws = �r for the l+s ! � trials. In blocking,
the prior association between l and r means that wl = r in the second set of trials,
leading to no learning for the tone (since V (t)� r(t) = 0). In upwards unblocking,
wl = r at the start of set 2. Therefore, r(t) � wl= r>0, allowing ws to share in the
prediction.

As described above, downwards unblocking is the key thorn in the side of RW.
Since the TD rule combines the predictions from different stimuli in a similar way,



it also fails to account properly for downwards unblocking. This is one reason why
it is incorrect as a model of reward learning.

The class of theories (called CS-processing theories) that is alternative to RW does
not construct a net prediction V (t), but instead uses equation 1 for all the stimuli,
only changing the learning rates �l(t) and �s(t) as a function of the conditioning
history of the stimuli (eg Mackintosh, 1975; Pearce & Hall, 1980; Grossberg, 1982).
A standard notion is that there is a competition between different stimuli for a
limited capacity learning processor (Broadbent, 1958; Mackintosh, 1975; Pearce &
Hall, 1980), translating into competition between the learning rates. In blocking,
nothing unexpected happens in the second set of trials and equally, the tone does
not predict anything novel. In either case �s is set to � 0 and so no learning hap-
pens. In these models, downwards unblocking now makes qualitative sense: the
surprising consequences in set 2 can be enough to set �s � 0, but then learning
according to equation 1 can make ws>0. Whereas Mackintosh’s (1975) and Pearce
and Hall’s (1980) models only consider competition between the stimuli for learn-
ing, Grossberg’s (1982) model incorporates competition during representation, so
the net prediction on a trial is affected by competitive interactions between the
stimuli. In essence, our model provides a statistical formalisation of this insight.

3 New Models

From the previous section, it would seem that we have to abandon the computa-
tional basis of the RW and TD models in terms of making collective predictions
about the reward. The CS-processing models do not construct a net prediction of
the reward, or say anything about how possibly conflicting information based on
different stimuli should be integrated. This is a key flaw – doing anything other
than well-founded prediction is likely to be maladaptive. Even quite successful
pre-synaptic models, such as Grossberg (1982), do not justify their predictions.

We now show that we can take a different, but still statistically-minded ap-
proach to combination in which we specify a parameterised probability distribu-
tion P[r(t)js(t); l(t)] and perform a form of maximum likelihood (ML) inference,
updating the parameters to maximise this probability over the samples. Consider
three natural models of P [r(t)js(t); l(t)]:

PG[r(t)js(t); l(t)] = N [wll(t) + wss(t); �
2] (3)

PM [r(t)js(t); l(t)] = �l(t)N [wl; �
2] + �s(t)N [ws; �

2] + ��(t)N [ �w; �2] (4)

PJ [r(t)js(t); l(t)] = N [wl�l(t)l(t) + ws�s(t)s(t); �
2] (5)

whereN [�; �2] is a normal distribution, with mean � and variance �2. In the latter
two cases, 0 � �l(t) + �s(t) � 1, implementing a form of competition between
the stimuli, and ��(t) = 0 if stimulus � is not presented. In equation 4, N [ �w; �2]
captures the background expectation if neither the light nor the tone wins, and
��(t) = 1� �l(t)� �s(t). We will show that the data argue against the first two and
support the third of these models.

Rescorla-Wagner: PG[r(t)js(t); l(t)]

The RW rule is derived as ML inference based on equation 3. The only difference
is the presence of the variance, �2. This is useful for capturing the partial rein-
forcement effect (see Mackintosh, 1983), in which if r(t) is corrupted by substantial
noise (ie �2

�0), then learning to r is demonstrably slower. As we discussed above,



downwards unblocking suggests that animals are not using PG[r(t)js(t); l(t)] as
the basis for their predictions.

Competitive mixture of experts: PM [r(t)js(t); l(t)]

PM [r(t)js(t); l(t)] is recognisable as the generative distribution in a mixture
of Gaussians model (Nowlan, 1991; Jacobs et al, 1991b). Key in this model
are the mixing proportions �l(t) and �s(t). Online variants of the E phase of
the EM algorithm (Dempster et al, 1977) compute posterior responsibilities as
ql(t) + qs(t) + �q(t)= 1, where ql(t) / �l(t)e

�(r(t)�wll(t))
2=2�2 (and similarly for the

others), and then perform a partial M phase as
�wl(t) / (r(t) � wl(t))ql(t) �ws(t) / (r(t) � ws(t))qs(t) (6)

which has just the same character as the presynaptic rules (depending on how �l(t)
is calculated). As in the mixture of experts model, each expert (each stimulus here)
that seeks to predict r(t) (ie each stimulus � for which q�(t) 6= 0) has to predict
the whole of r(t) by itself. This means that the model can capture downwards
unblocking in the following way. The absence of the second r in the second set of
trials forces �s(t) > 0, and, through equation 6, this in turn means that the tone will
come to predict the presence of the first r. The time u between the rewards can be
important because of temporal discounting. This means that there are sufficiently
large values of u for which the inhibitory effect of the absence of the second reward
will be dominated. Note also that the expected reward based on l(t) and s(t) is the
sum

�l(t)wll(t) + �s(t)wss(t) + ��(t) �w (7)

Although the net prediction given in equation 7 is indeed based on all the stimuli,
it does not directly affect the course of learning. This means that the model has
difficulty with inhibitory conditioning. The trouble with inhibitory conditioning is
that the model cannot use ws<0 to counterbalance wl>0 – it can at best set ws=0,
which is experimentally inaccurate. Note, however, this form of competition bears
some interesting similarities with comparator models of conditioning (see Miller &
Matzel, 1989). It also has some problems in explaining overshadowing, for similar
reasons.

Cooperative mixture of experts: P J [r(t)js(t); l(t)]

The final model PJ [r(t)js(t); l(t)] is just like the mixture model that Jacobs et al
(1991a) suggested (see also Bordley, 1982). One statistical formulation of this model
considers that, independently,

P [wl(t)jr] = N [r; ��1
l (t)] P [ws(t)jr] = N [r; ��1

s (t)]

where �l(t) and �s(t) are inverse variances. This makes

�2 = (�l(t) + �s(t))
�1 �l(t) = �l(t)�

2 �s(t) = �s(t)�
2:

Normative learning rules should emerge from a statistical model of uncertainty in
the world. Short of such a model, we used:

�wl = �w
�l(t)

�l(t)
Æ(t) ��l = ���l

�
1

Æ(t)2 + 0:1
�

1

�2

�

where Æ(t) = r(t) � �l(t)wl(t) � �s(t)ws(t) is the prediction error; the 1=�l(t) term
in changing wl makes learning slower if wl is more certainly related to r (ie if �l(t) is
greater); the 0:1 substitutes for background noise; if Æ2(t) is too large, then �l + �s
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Figure 1: Blocking and downwards unblocking with 5 steps to the first reward; and a
variable number to the second. Here, the discount factor  = 0:9, and �w = 0:5, �� = 0:02,
� = 0:75. For blocking, the second reward remains; for unblocking it is removed after 500
trials. a) The terminal weight for the sound after learning – for blocking it is always small
and positive; for downwards unblocking, it changes from negative at small �u to positive
at large �u. b,c) Predictive variances �l(t) and �s(t). In blocking, although there is a small
change when the sound is introduced because of additivity of the variances, learning to the
sound is substantially prevented. In downwards unblocking, the surprise omission of the
second reward makes the sound associable and unblocks learning to it.

is shared out in proportion of ��l to capture the insight that there can be dramatic
changes to variabilities; and the variabilities are bottom-limited.

Figure 1 shows the end point and course of learning in blocking and downwards
unblocking. Figure 1a confirms that the model captures downwards unblocking,
making the terminal value of ws negative for short separations between the re-
wards and positive for long separations. By comparison, in the blocking condi-
tion, for which both rewards are always presented, ws is always small and posi-
tive. Figures 1b,c show the basis behind this behaviour in terms of �l(t) and �s(t).
In particular, the heightened associability of the sound in unblocking following the
prediction error when the second reward is removed accounts for the behavior.

As for the mixture of experts model (and also for comparator models), the presence
of �l(t) and �s(t) makes the explanation of inhibitory conditioning and overshad-
owing a little complicated. For instance, if the sound is associable (�s(t)� 0), then
it can seem to act as a conditioned inhibitor even if ws = 0. Nevertheless, unlike
the mixture of experts model, the fact that learning is based on the joint prediction
makes true inhibitory conditioning possible.

4 Discussion

Downwards unblocking may seem like an extremely abstruse paradigm with
which to refute an otherwise successful and computationally sound model. How-
ever, it is just the tip of a conditioning iceberg that would otherwise sink TD. Even
in other reinforcement learning applications of TD, there is no a priori reason why
predictions should be made according to equation 2 – the other statistical models
in equations 4 and 5 could also be used. Indeed, it is easy to generate circumstances
in which these more competitive models will perform better. For the neurobiology,
experiments on the behavior of the DA system in these conditioning tasks will help
specify the models further.

The model is incomplete in various important ways. First, it makes no distinc-
tion between preparatory and consumatory conditioning (Konorski, 1967). There
is evidence that the predictions a CS makes about the affective value of USs fall in a
different class from the predictions it makes about the actual USs that appear. For



instance, an inhibitory stimulus reporting the absence of expected delivery of food
can block learning to the delivery of shock, implying that aversive events form a
single class. The affective value forms the preparatory aspect, is likely what is re-
ported by the DA cells, and perhaps controls orienting behavior, the characteristic
reaction of animals to the conditioned stimuli that may provide an experimental
handle on the attention they are paid. Second, the model does not use opponency
(Konorski, 1967; Solomon & Corbit, 1974; Grossberg, 1982) to handle inhibitory
conditioning. This is particularly important, since the dynamics of the interaction
between the opponent systems may well be responsible for the importance of the
delay u in downwards unblocking. Serotonin is an obvious candidate as an oppo-
nent system to DA (Montague et al 1996). We also have not specified a substrate for
the associabilities or the attentional competition – the DA system itself may well
be involved. Finally, we have not specified an overall model of how the animal
might expect the contingency of the world to change over time – which is key to
the statistical justification of appropriate learning rules.
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