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Abstract. Finding the Bayesian balance between exploration and exploitation in adaptive optimal control is in
general intractable. This paper shows how to compute suboptimal estimates based on a certainty equivalence
approximation (Cozzolino, Gonzalez-Zubieta & Miller, 1965) arising from a form of dual control. This system-
atizes and extends existing uses of exploration bonuses in reinforcement learning (Sutton, 1990). The approach
has two components: a statistical model of uncertainty in the world and a way of turning this into exploratory
behavior. This general approach is applied to two-dimensional mazes with moveable barriers and its performance
is compared with Sutton’s DYNA system.

Keywords: Reinforcement learning, dynamic programming, exploration bonuses, certainty equivalence

1. Introduction

Reinforcement learning techniques are often applied in problems whose challenge stems
from the ignorance of the solvers about the nature of their environments. For instance, an
agent running around a maze might not know where the goal is, where the boundaries are,
where the barriers are, or whether any of these have changed over time. The optimal control
for such problems has a ‘dual’ nature (Fe’ldbaum, 1965). The agent has to devote some
effort, but not too much, toexploring the world in order toexploit it proficiently. Arranging
for just the right amount and type of exploration in reinforcement learning systems is, in
general, intractable – dual control problems can be seen as partially observable Markov
decision processes (POMDPs), whose adverse computational characteristics are all too
well understood (Monahan, 1982; Lovejoy 1991). The balance between exploration and
exploitation is one of the major issues in learning control, and systematic methods for
addressing it are sorely required.

In reinforcement learning, various approaches to addressing the tradeoff between ex-
ploration and exploitation have been studied empirically (see Thrun, 1992, for a review).
One popular technique is to be optimistic in parts of the state-space that have never been
explored, or, if the environment can change over time, have not been explored recently
(Sutton, 1990; Moore & Atkeson, 1993; Christiansen, Mason & Mitchell, 1991). Sutton’s
DYNA system does this explicitly by adding to the immediate value of each state-action
pair a number that is a function of this how long it has been since the agent has tried that
action in that state. Sutton (1990) called this number an exploration bonus. The agent is
therefore encouraged to plan and try long-ignored actions. DYNA calculates the long term
values of state-action pairs using a temporal difference method for approximating solu-



6 P DAYAN AND TJ SEJNOWSKI

tions to dynamic programming (Barto, Sutton & Watkins, 1989; Watkins, 1989). Moore &
Atkeson (1993) achieve something similar to exploration bonuses with an agent that uses
a different model of the environment from the one actually experienced. In this altered
model, unfamiliar states have a possible transition to a fictitious and attractive absorbing
state. In fact, Moore and Atkeson (1993) do this to arrange initial exploration, but one
could equally well invent such transitions as a function of the time since the agent last
visited a state.

Although these methods perform well in certain circumstances, none of them is explic-
itly based on a model of how the agent is uncertain about its world. It is the form of this
uncertainty that should drive exploration. Optimal exploration is just optimal experimental
design (Fedorov, 1972) applied to sequential decision problems (Cohn, 1994). The agent’s
initial uncertainty about the transition or reward structure of the world should drive the
initial experimentation, and, if the world can change stochastically over time, then this
further source of uncertainty should drive continuing exploration. Unfortunately, it is com-
putationally intractable for the agent to determine the correct experiments even if it knows
what it does not know (eg even if it knows which transitions it is unsure about). The var-
ious exploration bonuses mentioned above can be seen as heuristic methods for changing
behavior to reflect ignorance. We sought a more systematic approach that decouples two
facets of the problem: the uncertainty about the environment, and a (sub-optimal) method
of turning this into exploratory actions.

As with POMDPs, we start from a probabilistic characterization of the uncertainty the
agent has about the world. The agent uses Bayes’ rule to update this probability distri-
bution as it gains experience. Consider, for example, a maze in which the agent has to
learn which actions are effective in each state (ie which actions do not attempt to take it
across barriers from that state), and in which these action efficacies are changing over time
in a stochastic manner. Consider an action that would allow a significant shortcut if it
were effective, but has recently been observed to be barred. To the degree that the agent
is uncertain about whether this action is now effective again, states leading to it acquire an
apparent exploration bonus. This encourages the agent to explore the transition. A method
is presented that uses a form of certainty equivalence approximation, since it is intractable
to determine the optimal solution. Certainty equivalence approximations involve using the
mean values of random variables in place of the random variables themselves in expres-
sions that determine the appropriate actions. For some linear quadratic control problems
with uncertainty about the state, it is exactly correct to perform planning using the mean
value of the state, ignoring its variance in choosing the actions. Certainty equivalence is
inexact in almost all non-linear problems.

The next section describes the new method in the context of finite state environments;
Section 3 illustrates how it works in three tasks.

2. Exploration in Finite State Worlds

The General Case Consider the case of optimal control in a nonstationary absorbing
finite state Markovian environment. The state set isX , the set of actions available to the
agent isA (we assume that all actions are admissible at every nonabsorbing state,ie there
is no state dependence as to which actions the agent can take), and the probability that the
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agent makes a transition to statey 2 X on taking actiona 2 A at statex 2 X is ptxy(a),
wheret is the trial number,ie the number of times the agent has moved from a starting
state to one of the absorbing states. The environment is nonstationary in the sense that
between trials, the transition probabilities can change in a Markovian manner, according
to a probability distributionU [pt+1xy (a)jptxy(a)]. The starting state may either be the same
for each trial or determined randomly from one trial to the next. The cost of taking action
a at statex is cx(a), and the task for the agent is to minimize the expected summed (and
possibly discounted) cost.

There are various options for the form of the ignorance the agent has about its environ-
ment. A convenient one that we adopt below is to assume that the agent knows a) its own
statext(n) 2 X at all timesn within trial t, b) the costscx(a) of taking the actions, c)
the states that are absorbing, and d) the distribution governing the way the transition prob-
abilities change. The agent does not knowp

t
xy(a) – it has to infer these on the basis of the

transitions that it experiences and its knowledge as to how they change. This ignorance
turns a Markov decision problem into a POMDP.

In this POMDP, the unknown transition probabilitiesp txy(a) are themselves treated as
random quantities, and the agent maintains a distribution over them which it updates in
the light of information collected from the environment. At timen during trial t, this
distribution is calledT t;n[pxy(a)], and assigns joint probabilities to the complete set of
transition probabilities. The agent uses Bayes’ rule to update this distribution both during
a single trial as it observes transitions, and at the end of a trial. The updates at the end
of each trial are based on the distributionU , which specifies random changes in all the
transition probabilities. A complete description of the state of knowledge of the agent at
time n in trial t consists of the distributionT t;n[pxy(a)] together with the current state
x
t(n). This is also known as theinformation state for the agent, and is what is used

in POMDPs to generate optimal controls through dynamic programming (Meier, 1965;
Rishel, 1970; Striebel, 1965; Bertsekas & Shreve, 1978; see Kumar, 1985 for a review).

An analogy may be helpful. Consider tossing a coin with an unknown probability� of
coming up tails. If an agent started with some prior distribution over�, then, on observing
a sequence of heads and tails, it can use Bayes’ rule to produce a posterior probability
distribution over� that describes its full state of knowledge about the propensity of the
coin to come up tails. This case is like the finite state case, where applying actiona1 can
take the agent fromx1 to eitherx2 or x3. � is like the probability that the action leads the
agent tox2 – and the agent’s initial ignorance about the transition structure of the world is
like its ignorance about�. In the coin tossing case,U is just a form of delta function – the
probability of getting tails does not change between coin flips.

In assessing the value of trying an action at one state as part of dynamic programming,
the agent has to calculate the collective probabilities of the transitions to succeeding states,
and also from those states on all potential paths. This involves probabilities over the power
set of the set of all possible transitions, and becomes intractable for large problems. Note
also that the distributionsT t;n[pxy(a)], ie the beliefs of the agent, involve real numbers.
This means that even though the actual state of the agent in the maze comes from a finite
set, dynamic programming has to be performed in acontinuous state space, in which the
transition from one set of beliefs to another after performing an action or completing a run
through the maze, is governed by Bayes rule.
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Performing dynamic programming to solve a POMDP is highly computationally expen-
sive (Monahan, 1982). We therefore make a form of certainty equivalence approximation,
in which the stochasticity in the world is simplified through the use of expectations. The
agent does not know the actual transition probabilitiespxy(a), but only the distribution
T t;n over the transition probabilities. Under the approximation, it calculates the mean val-
uesqt;nxy (a) = ET t;n [pxy(a)] for all the transition probabilities and uses those instead. In

the coin flipping analogy, this is like working out the mean�̂ of the posterior distribution
for �, the probability that the coin comes up tails, and using�̂ as if it were the true proba-
bility that the coin comes up tails. Note that althoughq

t;n
xy (a) and�̂ are both generated by

taking expectations, they themselves specifyprobabilities. This approximation was first
suggested by Cozzolino, Gonzalez-Zubieta & Miller (1965).

Using the mean transition probabilitiesq t;nxy (a) is a slightly unconventional certainty
equivalence approximation — the agent plans as if the environment behaves like its statis-
tical mean, although this mean is still a stochastic process. Note that in using this mean
process, the approximation fails to directly account for the fact that if a transition on the
way to the goal is blocked, then the agent will have to choose some other route to that goal.
Experiments with a less crude approximation that takes this into account are hampered by
their computational expense. Note also that in calculating the value of one state, the un-
certainties as to how the transition probabilities at successor states came to influence the
values of those successor states are ignored. Worse, for some models, it can be that the
mean valueqt;nxy (a) is not even a possible value for the transition probability. In a version
of the coin example, one might know that with probability0:5 the coin always comes up
tails and with probability0:5, the coin always comes up heads. Under the approximation,
the coin would be treated as if it was fair –50% of the throws should produce tails and50%
of the throws heads – even though this cannot be. Also, in practice, it is only possible to
calculate the means efficiently in environments for which there are simple sufficient statis-
tics for theT t;n[pxy(a)] such that the agent does not need to record the complete history
of all the transitions it has made (Striebel, 1965). However, this restriction does not render
the exploration problem computationally trivial.

Under the approximation, the agent performs synchronous value iteration in the assumed
‘mean’ process:

V̂
t;n

�+1(x) = mina2A

8<
:cx(a) + 


X
y2X

q
t;n
xy (a)V̂

t;n
� (y)

9=
; (1)

where0 � 
 � 1 is the discount factor and� is the number of the dynamic programming
iteration. On convergence, the agent picks one of the actions that minimizes the right hand
side of this equation, performs it, uses Bayes’ rule to compute the posterior distribution
over the transition probabilities based on the transition actually observed, and calculates
q
t;n+1
xy (a). The process then repeats. This amounts to doing dynamic programming exactly

in a different controlled Markov process — one in which the probabilities of the transitions
are equal to their subjective means. Thus, the value iteration update is guaranteed to con-
verge, provided that all statesx that appear to it to be absorbing (q

t;n
xx (a) = 18a) have at

least one action available whose cost is zero. There are environments for which arrang-
ing this could be problematical: for example, the agent may explore states from which it
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cannot escape. We assume benign worlds in which this does not occur. Note that the algo-
rithm itself has no free parameters, even though the model of change in the world may have
several. It is standard to allow the agent to perform synchronous dynamic programming
using its model of the world for indirect approaches to solving Markov decision problems
under conditions of incomplete knowledge of the transition probabilities (Satoet al, 1982;
Kumar, 1985).

Depending on the model of how the transition probabilities can change over time, this al-
gorithm automatically incorporates a form of exploration bonus or penalty (Sutton, 1990).
Consider the case in which some particular transition from statex to statey would be
highly advantageous in the sense of providing a cheap path. If the agent’s expected prob-
ability q

t;n
xy (a) for some actiona is high, then statex itself comes to have a low expected

value (cost), and so through the application of the synchronous dynamic programming
(equation 1), the agent will plan to visit statex and attempt actiona. The reduction in
the cost of statex is the equivalent of the exploration bonus, a connection that is explored
more extensively below.

The Maze Case We investigated exploratory behavior in a variety of two-dimensional
mazes involving barriers, with a simple model of environmental change. At statex 2 X ,
the agent can choose one of four geographical actionsa 2 fN,S,E,Wg. The agent is
required to minimize the number of actions (steps) taken until it reaches a goal, which is
the only absorbing state. It knows from the outset the coordinates of the goal, which also
does not move over time. All actions are admissible at all states, however, there are barriers
in the maze. If there is a barrier between two states, then those actions that would cross
the barrier are termedineffective, and if the agent attempts to take such an action, it costs
one step but leaves the agent in the state where it started. Barriers are always bidirectional.
The efficacies of the actions taking during trialt, e tx(a), are defined in the obvious way:

e
t
x(a) =

�
1 if actiona is effective at statex in trial t,
0 otherwise.

These efficacies are related to theptxy(a) in the general description above. There are no
rewards in the maze, and each action costs one step.

As in Moore and Atkeson (1994), the information the agent is given at the start consists
of the dimensions of the maze (ie the layout showing all the possible transitions, some of
which may, of course, be barred), the coordinates of the goal, and the fact that every action
costs one step and there are no other rewards or punishments. During a trial, it is also told
its exact location in the maze. It does not know thee

t
x(a), ie it does not know the locations

of the barriers in the maze. The agent finds the barriers by trying actions at states to test if
they cause state changes. The agent can use the same methods for manipulating uncertainty
if it is unsure about its own location as well as the transition structure of the maze, but
we do not treat that case here. Knowing where the goal is in the maze is a substantial
simplification for the agent – it does not need to have an efficient strategy for finding the
goal in the first place. We have not included uncertainty about the reward structure of the
environment, although this would be straightforward. Such uncertainty, like uncertainty
about the location of the goal, would lead to different patterns of exploration.
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Under our scheme, the agent requires a probabilistic model of the efficacy of the transi-
tions, and a model of how this changes over time. Specifically, letq

t;n
x (a) be the agent’s

estimate of the efficacy of actiona atx at timestepn during trialt. In this case,q t;nx (a) is
just the probability thatetx(a) = 1. This is a slight modification of the previous notation,
but the meaning is clear since there are only two possible transitions for each action. The
agent assumes that between each trial with some small probability�, eache tx(a) gets set to
a new value, independent of its previous value and the efficacies of all the other transitions.
The new value is drawn from a prior distribution, with probability� of being1.

After trial t� 1, the agent’s actual posterior distribution is updated toq
t;0
x (a) as follows:

q
t;0
x (a) =

8><
>:

��+ (1� �)qt�1;0x (a) if a was not tried atx during the trial,

1� �(1� �) if a was tried atx and was successful,

�� if a was tried atx and was unsuccessful.

(2)

During the course of a single trialq t;nx (a) is reset when the agent triesa atx to whatever
actually happened. For actions that were not attempted,q

t;n
x (a) relaxes towards� at a rate

governed by the update probability�. At the start of learning, the agent postulates that
every transition has probability� of being effective,ie q 1;0x (a) = � 8x; a.

This model of uncertainty was designed for simplicity. The full distributionT t;n[px(a)]
over the transition probabilities (discussed in the previous section) isfactorial, which
means that the efficacy of actiona at statex (which is a random variable) is indepen-
dent of the efficacies of all the other actions at statex and of all actions at all other states.
Furthermore, each efficacy has a binomial distribution, which is characterized just by its
mean. The update rule forq t;nx (a) therefore captures the entire distribution for the efficacy.
The approximation lies in the use of just the mean valuesq

t;n
x (a) in equation 1 rather than

taking correct account of the distribution. This is the same problem we encountered when
treating a coin as being fair between tails and heads when, in fact, with probability0:5 it
will always produce tails, and with probability0:5 it will always produce heads.

Figure 1 illustrates the technique in the absorbing case where there is no discount factor.
The agent is at statei and is trying to get to statek. The expensive route, goingS around
the obstacle, is certainly available, but barriers (a) betweeni andj and (b) betweenj andk
are each present with probability0:1 (dropping the time and trial indices, the probabilities
are:qi(E) = qj(W ) = qj(E) = qk(W ) = 0:9). The true expected return for trying action
E at statei (namely the cost of performing that action plus the cost of getting to the goal
optimally from the state this leads to) is:

Q(i; E) = 0:9� 0:9� 2 in case a and b are both absent

+ 0:9� 0:1� 9 in case a is absent and b is present
(the agent will try actionE at j)

+ 0:1� 7 if a is present

= 3:13
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Figure 1: The certainty equivalence approximation. The agent is at statei and has to get
to statek. Every action has a unit cost, and the solid thick lines are barriers that cannot
be crossed. The dotted thick lines are the potential barriers a and b whose probabilities of
being present are0:1. All barriers are bidirectional. The costs of different ways of getting
to k are given by:

State/Action Sequence Cost Existence of:
a b

i
E
! j

E
! k 2 absent absent

i
E
! j

E
! j

W
! i

S
! l

S
! : : :

N
! k 9 absent present

i
E
! i

S
! l

S
! : : :

N
! k 7 present *

i
S
! l

S
! : : :

N
! k 6 * *

where the ‘*’s indicate that the existences of the barriers at a or b are irrelevant since the
agent does not attempt the actions that would cross them.

Under our approximation, the agent models the value ofi as if the barriers a and b are
present with probability0:1 every time it tries to cross them. Performing value iteration as
in equation 1, this makes the estimated value ofj, V̂ (j) = 1:11 and the estimated value
of i using actionE, Q̂(i; E) = 2:22. This is quite close to the real value, although the
agreement gets worse as the cost of doing actionS at statei, or the probabilities that the
barriers are there, go up. As mentioned above, the resulting control could be disastrous if,
for instance, there were states that the agent could explore but could not escape. So if the
barriers were not bidirectional, and the agent could moveE from i to j but could not move
eitherE or W from j, then it could fail to get to the goal. These cases were ruled out in
the experiments – each point in the mazes always had some possible path to the goal.
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Sutton (1990) originally developed exploration bonuses in the context of mazes with
moveable barriers, and indeed the equivalent here has a particularly clear form. Consider
actiona at statex which, if effective, would take the agent to statey. If the agent believes
y to be much closer to the goal thanx on the basis of the other possible routes fromx,
ie V̂

t;n
� (x) � V̂

t;n
� (y), then the less sure the agent is thata is ineffective,ie the larger

q
t;n
x (a), the lower the cost of the right hand side of equation 1 for actiona. This potentially

lowers the cost of̂V t;n

�+1(x). Thus the system is encouraged to explore actions to the extent
that they are adaptive in its task of getting to the goal. The subjective probabilitiesq

t;n
x (a)

relax towards� as the time increases since the action was last tried. If� is large, this
becomes the equivalent of the exploration bonus in DYNA (Sutton, 1990), for which the
value of a function of the length of time since the action was last tried is explicitly added
to the value of a state-action pair. In figure 1, imagine that barrierb is absent and the
agent knows this. Then theQ-value of actionE at statei is (1 + q i(E))=qi(E) where
qi(E) is the probability that going East ati is effective. Under the relaxation scheme in
equation 2,qi(E) = �

�
1� (1� �)s+1

�
if it has beens trials since the barrier was last

detected and the action has not been tried since. ThusQ(i; E) decreases ass increases, just
as if it had been given an exploration bonus. Ifs > log(1� 1=(5�))= log(1� �)� 1, then
Q(i; E) < Q(i; S), and the agent will attempt to take actionE and will find out whether
the barrier has now disappeared.

Our strategy is actually a slightly more specialized and directed form of exploration
bonus than that in DYNA (Sutton, 1990). In DYNA, every state-action pair is made more
attractive according to the length of time since it was last tried. This includes states which,
as far as the system knows, are not on short paths from the start to the goal. Exploration
bonuses more like Sutton’s would be produced by a transition model in which every state
has some probability of getting to every other state, were the relevant transition effective.
However this obviously implies a different topology for the maze. Also the exploration
bonuses here are bounded, whereas in Sutton’s scheme they are potentially unbounded.

The parameter� can be used to tilt the balance between exploration and exploitation. If�

is 1, then the system will always eventually explore to find paths that might be shorter than
its current one. In a fixed maze, it will therefore find the shortest path available (although
it will continue to explore if there could be advantage in doing so). As� gets smaller, the
system becomes more pessimistic. This restricts the range of excursions it will try about
its currently optimal path –ie it will not make large detours to try possibly better paths.
The lower�, the more restricted the excursions. Using� 6= 1 can lead to the permanent
use of suboptimal paths – it can only be justified if the costs of the extra exploration for
better ones are prohibitive.

The other parameter� also has an effect on the relative amounts of exploration and
exploitation, but in a more indirect way. Whereas� determines the ultimate amount of ex-
ploration about the current best-known path,� controls how soon that exploration happens,
by controlling how long it takes for information from the past to decay.

If mazes were really generated by the process that the agent assumes and the agent had
the computational resources to work out the optimal adaptive control, then the best strategy
would be to use the actual values for� and�. Under our approximation, it may not be best
to use the correct values. The experiments below partially address this issue.
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3. Experiments on Mazes

This section illustrates how exploration bonuses arise in the new algorithm, and how the
amount of exploration depends on the parameters� and�. We tested the algorithm on
three sorts of mazes, two regular ones and one constructed using the random procedure
that the algorithm assumes.

The agent’s experience was divided into a number of trials. In each trial, the agent starts
at some point in the maze (which is fixed for the regular mazes and selected at random for
the random maze) and takes actions until it reaches the goal, at which point the trial ends.
In all cases complete synchronous value iteration was performed before each step in each
trial using equation 1 to convert the current model of the world into a suggested action.
The value function produced at the previous step was used to initialize value iteration, so
convergence took only a few iterations unless the agent found out in the previous step that
the world was substantially different from what it expected. The model was updated during
the course of a trial as the agent found that transitions were effective or ineffective. At the
end of a trial, all the expected efficaciesq t;nx (a) were updated to take account of the chance
(under the model) that each transition might have been changed. Barriers were bidirec-
tional, which helped prevent the agent from getting stuck. All moves in the maze cost1
step, and the discount factor was also1. The algorithm takes actions greedily according
to the value function, and if multiple actions share the same optimal value, the tie was re-
solved in the order W, N, E, and then S. The overall exploration algorithm is deterministic
in a fixed maze. The results in the first two mazes were averaged over2000 trials merely
to erase the effect of the agent’s initial uncertainty about the structure of the maze it is in
and to focus on measures of longer-term performance.

Moveable Barrier Maze

The first task, shown in figure 2(a), is patterned after one used by Sutton (1990) to illustrate
the workings of DYNA. The agent moves in a 16x16 grid, getting from a start point which
is asymmetrically located at one end, to a goal which is centrally located at the other end.
There is a single barrier near to the starting point which impedes the agent’s passage. In
Sutton’s task, the lowest section of the barrier was removed after some number of trials.
Since the agent was provided incentive to explore, the shorter path would eventually be
discovered and then mostly exploited.

Good performance on this task requires the agent to plan to visit the various segments of
the barrier that would permit it faster paths to the goal, if the transition East at those places
were to become effective. Figure 3 shows the performance of the algorithm for various
values of� and�. The abscissa shows position along the barrier starting at the South-most
point. Performance here is given by the average number of times per trial that the agent
attempted to make an Eastward transition across each segment of the barrier (note that the
reciprocal of this quantity is the number of trials between attempts). The lowest segment
wasnever opened, so that the maze remained as shown in figure 2(a).

One optimal path for the agent, given the state of the maze, is to go to point A on the
West side of the barrier, then move North until the top, and finally cross at the North-most
point (not shown on the graph). Therefore visiting points on the barrier south of A requires
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Figure 2. Two deterministic mazes. (a) The movable barrier maze. The lowest segment of the barrier (shown
with a thick line) could be removed after some number of trials opening up a shorter path for the agent from the
start to the goal. Points A and B are shown in the graphs in figure 3. (b) The zig-zag maze. We tested how often
the agent attempted to go South at A, on the blocked shorter path to the goal, at B on one of the two better longer
paths, and at C on one of the two worse longer paths.
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Figure 3. Performance in the moveable barrier task. a) the average number of eastwards attempts for all elements
of the barrier for various values of� and� = 0:01. b) the same for various values of� and� = 1:0 (flatter
lines) and� = 0:5 (small peaked lines around B). Point A has the same y coordinate as start point and point B
the same y coordinate as the goal. Positions are counted from the bottom, from South (S) to North (N).
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the agent to go substantially out of its way. Further, for points along the barrier North of
B, the paths to the goal look suboptimal from the perspective of the maze without barriers.

For very low values of�, the agent was so pessimistic about the steps it had yet to try on
either the West or the East side of the barrier, that it barely explored at all, and certainly
not anywhere off its path. However unless� = 0, it would find a path to the goal in the
first place if one existed. For� = 0:5 it explored only North of point B because it never
attempted getting to the barrier at points South of B. It was hindered for Southerly points
by the uncertainty of the untested steps on the East side of the barrier. For larger values of
�, the agent attempted to cross the barrier where shorter paths were most likely.

One might think that all the points on the barrier between A and B would appear the
same to the agent, since they are all on a shortest possible route to the goal. However the
agent explored more at the ones nearer B, at least for moderate values of�, because these
were closer to the long path to the goal which was known to be open. The points nearer B
were less affected by the uncertainty about the transitions to the East of the barrier on the
way to the goal.

The two sets of lines in figure 3(b) show the effect of changing�. It is hard to understand
the precise shapes of the curves for different�. It is clear, however, that increasing�
increased the amount of exploration – but it could not tempt the agent to explore paths that
were too far from the one it currently preferred. Thus� acts to modulate the effect of�.

The Zig-Zag Maze

We next tested the algorithm on the zig-zag maze shown in figure 2(b). Here there are a
number of long paths to the goal which go via the zig-zags, but there is also the possibility
of a shorter path which is prevented by the single barrier under point A. One would expect
exploration to be directed preferentially at this shorter path since it could save21 of the42
steps that it takes to get to the goal along either of the two long routes.

Figure 4 shows the number of times per trial that the agent attempted to go South at
points A, B and C in the maze as a function of� (� = 0:01). If the transitions at B and
C were open, this would save8 steps along their respective paths. One would expect the
transition at B to be tested more frequently than that at C for two reasons. First, B is on
an optimal path, and therefore testing it does not take the agent out of its way. Second,
the transition at B is more valuable than the transition at C since it would overall make
for a shorter path. The more interesting question is how often the transition at A is tried
compared to B and C. The graph shows that A was indeed tried substantially more often
than either B or C, even though it was not on a currently optimal path to the goal. It would
not be straightforward to predict how changing� changes the amount of exploration. Even
though� affectsqt;nx (a) in a highly non-linear way, figure 4 shows that the number of
attempts to cross varies almost linearly with�.

Random Mazes

Finally, we tested the algorithm on16 � 16 mazes that were produced according to the
generative scheme embodied in the model. The goal was always at(15; 13). On each
trial the agent started at a random position in the maze, and transition probabilities were
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Figure 4. The average number of attempts per trial to move South at A, B and C in the zig-zag maze as a function
of �.

changed independently between each trial, with probability�. If a transition probability
was changed, then the probability that the associated action was set to be effective was�

(barriers were always bidirectional). Transitions around the edges of the maze were never
blocked (a fact not known to the agent), since this tended to make a high proportion of such
random mazes unsolvable (in the sense that there would be some states for which there is
no path to the goal). Exact dynamic programming with full knowledge of the barriers was
also performed, to find out the minimal length of the path from the start to the goal, and this
allowed us to discover mazes that were indeed unsolvable. If this happened, a new trial
was started, so that the barriers in the maze changed randomly according to the process
described above.

Figure 5(a) shows the average number of extra steps over the optimal (where the optimal
number is calculated assuming knowledge of the transitions that are effective) that the
agent took for various values of the real� against the assumed value of� actually used
when executing its dynamic programming (� was fixed at0:015 and was known to the
agent). The actual average length of the shortest paths also decreased (from15:33 steps
at the real value of� = 0:55 to 11:93 steps at the real value of� = 0:95). None of
the differences within a single line was significant, although there was a slight trend that
suggests that the agent does better when it uses the real value of�. Although this would
clearly be true of the optimal algorithm, one might reasonably have expected that this
suboptimal algorithm would tend to under-explore, and therefore overestimating� would
be good. It is apparently safe to use� = 1 at least for these random mazes. The overall
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Figure 5. The average number of excess steps over the optimal for random mazes. All points are averages over
10; 000 trials, and standard error bars are shown (these only estimate the true variance since there are long range
correlations in the numbers of excess steps arising from the slow change in the mazes and the agent’s knowledge
about them). (a) Unnecessary steps for various real and assumed values of� (the agent uses the true value of
� = 0:015). (b) Unnecessary steps for various real and assumed values of� (the agent uses the true value of
� = 0:85).

performance was substantially degraded for a real value of� = 0:55. Unfortunately it
is too computationally intensive to work out how well the optimal adaptive exploration
system would have performed in this task.

Figure 5(b) shows average number of extra steps over the optimal for various assumed
and actual values of� and for fixed, known� = 0:85. There is a weak preference for using
something close to the actual value of�. However, the two main points from the graph
are: i) that using very small values of� (which reduces exploration) leads to substantially
more unnecessary steps, and ii), there is only a weak dependence on� for values larger
than this. These results are encouraging, since they suggest that the algorithm is somewhat
robust against the choice of both of its parameters.

We also tested a version of DYNA in the random mazes to assess whether our exploration
strategy was beneficial. We adapted DYNA to make it fit into our synchronous dynamic
programming framework (if anything, this should improve the performance of DYNA over
its original formulation, at a somewhat greater computational expense). Rather than have
the agent model the efficacy of transitions, we had it directly add to the immediate cost for
a move an exploration bonus of�

p
nx(a) for trying actiona at statex, if that action had

not been tried fornx(a) trials. The parameter� > 0 controls the amount of exploration.
Expected efficacies were set to1 if the transition was last observed to be effective, and0:01
if it was last seen to be ineffective. The expected efficacies cannot be set to0, otherwise the
agent can come to believe that it is trapped when it is not. The net immediate cost for any
action was forced to be greater than0:01 – if this could become negative, then the agent
might believe it to be better to stay at a particular state rather than head for the goal and the
value iteration in equation 1 would not converge.
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Figure 6. Average number of excess steps over the optimal for random mazes for modified DYNA. The three
lines show results for three given values of � as a function of �. Averages are over 5000 trials. The straight lines
are taken from figure 5a and show the worst performance of our algorithm across all assumed values of �. See
the text for details of the algorithm.

Figure 6 shows how the DYNA version compared with our approach (the straight lines
are taken from figure 5a and are the worst performances of our system). The ranges of �
for the different values of � were chosen to capture the best performance of the system (as
seen by the ‘U’ shaped performance curves). It is apparent that the DYNA version was
significantly worse for all values of �, and was also much more sensitive to the choice of �
than our algorithm was to the choice of �. This is not surprising since for � high, DYNA
is encouraged to attempt all transitions, irrespective of their utility in getting to the goal.
For � low, DYNA is too cautious.

4. Discussion

This paper has systematized exploration bonuses and has presented results for agents
traversing simple mazes showing that bonuses emerge naturally if the agent has a model
of its uncertainty about the transition structure of the world. The ultimate algorithm has
to make a form of certainty equivalence approximation to avoid the exponential computa-
tional cost of determining the optimal trade-off between exploration and exploitation. If the
agent’s model suggests that transitions that have been blocked can become available, then
the agent has an incentive to explore those that might permit shorter paths to the goal. In
our approximation, although the barriers are really either present or absent, the agent uses
dynamic programming to compute policies that would be correct in a stochastic maze in
which the barriers are probabilistically present or absent on each attempt at traversal, with
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the probability set by the agent’s expectations. There is a clear distinction between the
agent’s model of the world, which reflects its assumptions about how things change, and
the sup-optimal way in which it uses this model, which is based on a certainty equivalence
approximation.

This certainty-equivalence approximation to performing DP in the full information state
of the agent was first suggested by Cozzolino et al (1965). They developed it in the context
of initial uncertainty about the transition matrices in a decision problem, and showed em-
pirically that it performed quite well in a class of problems. Their system had to explore
to find a good policy that it could then exploit for long periods. They pointed out that the
algorithm is asymmetric in the sense that actions that seem poor, given the model of the
environment (eg if � is low) are never even tested, and so cannot be discovered to be good;
whereas actions that seem excellent will tend to be tested and so can be proved bad.

Our experiments demonstrated that the combination of algorithm and model generate
appropriate exploration in a variety of mazes. The agent strays off the path it currently
uses to get to the goal in order to test transitions that would allow it to get to the goal faster.
States only gain value if the agent has some expectation that they are on short paths to the
goal. The algorithm for generating the exploration bonuses has no free parameters, but the
model of how the world changes has several parameters and performance depends on how
they are set. The model assumes that independently between each trial in the maze and
with some small probability �, each transition is reset from its previous efficacy to be open
(with probability �) or closed (with probability 1��). Qualitatively, � governs the overall
balance between exploration and exploitation, in the sense that it determines how far out
of its way the agent will go to test a potential path of a given quality. �, by determining
how long it takes for knowledge about previous trials to decay, determines how often the
agent will retry transitions that it has found blocked. The results appear reasonably robust
against incorrect choices of � and �, at least in the problems we tried.

In most conventional approximations to dual control methods in standard control theory,
agents are uncertain about their exact state (equivalent to their position in the maze) rather
than the transitions. This is only a practical rather than a theoretical difference. The current
algorithm was inspired by a technique called open loop feedback (or receding horizon)
control (Dreyfus, 1965; Barto, Bradtke & Singh, 1995), which uses current uncertainty to
determine current control. Completely open loop or feedforward control in this context
would calculate optimally all the moves the agent would make from its current position
to the goal, allowing for the uncertainty about the efficacies. This would clearly not work
here, since the agent could try to cross a barrier of which it is unaware. It would then
not update its control in the light of this failure. Open loop feedback control recalculates
the optimal control at every step in the light of the information it has received in each
of the preceding steps. This allows the agent to reach the goal, at least if there is some
path from every state to the goal. Optimal open loop feedback control is intractable in the
present context, since the agent would again have to consider the power set of all effective
transitions, and our method is therefore an approximation to this. Note that the choice of
open loop feedback control does not take account of the fact that the agent can find out more
about the world in succeeding steps, as the overall optimal controller would. Open-loop
feedback control and the present algorithm also share the unfortunate characteristic that
the agent does not take account of the possibility of future use of the knowledge acquired.



20 P DAYAN AND TJ SEJNOWSKI

This possibility, which is at the heart of the tradeoff between exploration and exploitation,
is incorporated into a more sophisticated and complicated method called wide-sense dual
adaptive control (Tse, Bar-Shalom & Meier, 1973; Tse & Bar-Shalom, 1973) which also
has a counterpart in the sort of problems we are considering here. We are currently testing
an algorithm in which the agent knows that it is will perform repeated trials in the same
maze, and knows that if it finds a transition to be open on one trial then it has the expectation
that it will be able to use the transition in succeeding trials, which gives the agent an
incentive to learn.

Although all these approaches have used complete DP (we used value iteration for the
simulations), it could equally well have been implemented using some form of model based
Q-learning, as in DYNA (Sutton, 1990). Furthermore, as in Moore and Atkeson’s Priori-
tized Sweeping (1993) and Peng and Williams’ DYNA-Q-queue (1992) variants, a compu-
tationally more efficient form of DP could have been used. Also a less specific exploration
bonus, more like the one in DYNA, would have emerged had there been some possibility of
a path from every state to the goal which might or might not be blocked. Further, the agent
could be unsure about the rewards available from the environment instead of, or indeed as
well as, the transitions. This would also lead to DYNA-like exploration, if the model of
how rewards might appear had them being uniformly distributed across the states.

The theory developed here is entirely for indirect methods of control, in which the agent
uses models of the world to perform its control. The extension to direct methods, which
avoid the use of a model, is not at all obvious. One possibility is that the agent could have
a model of how certainty changes over time and space, which is nevertheless too coarse to
be useful for indirect control. The agent could use these uncertainties in an analogue of
the systems of Schmidhuber (1991) or Thrun & Möller (1992). The latter make the agent
learn the areas of the state space in which it makes errors in its predictions (of the value
or transition functions of the environment); however, they again lack a statistical model of
the agent’s uncertainty, or a systematic way of turning this into exploratory behavior.

We have described our theory for finite state environments, and tested it exclusively in
the context of mazes. However, two parts of our technique — using uncertainty about the
environment to govern exploration, and employing certainty equivalence or other approx-
imations in order to take tractable advantage of this information — are also applicable in
other contexts, although different simplifying approximations may be appropriate in other
environments.

For example, consider the quadratic regulator problem of Tse, Bar-Shalom and Meier
(1973) which has imperfect state information and a nonlinear transition function. Their
system used a second order model that maintained only the mean and variance, which
were updated using an extended Kalman filter in the light of information from the world.
This is the equivalent of maintaining the model of the maze using Bayes rule. Some ap-
proximation must then be made to take this uncertainty and generate from it controls that
balance exploration and exploitation. Exploration entails taking actions that are expected
to reduce the variance in the knowledge of the state; exploitation entails forcing the system
towards its regulation point. If the regulator were linear, then straightforward certainty
equivalence would hold and the controls could be correctly determined just on the basis of
the mean value of the state, ignoring the variance. This is not true in the nonlinear case.
Tse, Bar-Shalom and Meier’s method involves choosing a nominal set of controls in the
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future, linearizing about them and using a second-order perturbation method to work out
an approximate and sub-optimal cost of there being a particular mean and variance in the
system’s model of its state after one more time step. The system can then optimally choose
a control in the current time step. As in the maze example, the stochasticity of the sys-
tem was simplified to make control tractable; in this case, by treating only the mean and
variance in the knowledge of the state.

There is a dual problem to this quadratic regulator problem that is even closer to the
case we treated. Imagine that the system sees imperfect state information about the world,
as before, but the transition function is also subject to random drift (Tse & Bar-Shalom,
1973; see Dersin, Athans & Kendrick, 1981 for adverse analysis of a special case). Again,
the agent can use an extended Kalman filter to model the uncertainty about the transitions,
and can make second-order approximations to determine controls that balance exploration
(actions designed to be revealing about the transitions) and exploitation (actions that force
the system towards its regulation point). Unlike the maze task, there are no exploration
bonuses as such; instead, uncertainty always costs. However, this is just a function of the
simplicity of the model of how the transitions change over time, and bonuses can occur in
other models of environmental change.

Exploration was treated here as a potential benefit, but it can also be dangerous — an
agent can easily fritter away valuable time in the fruitless investigation of its surroundings
without helping itself find the goal faster. This makes it important for the agent to have a
model of how the world changes and for it to be clear how this model is used to determine
a (suboptimal) balance between exploration and exploitation. Even a poor model, such as
the random independent update studied here may be better than none.
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