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Abstract. Various proposals have recently been made which cast cor-

tical processing in terms of hierarchical statistical generative models

(Mumford, 1994; Kawato, 1993; Hinton & Zemel, 1994; Zemel, 1994;

Hinton et al , 1995; Dayan et al , 1995; Olshausen & Field, 1996; Rao

& Ballard, 1995). In the case of vision, these claim that top-down con-

nections in the cortical hierarchy capture essential aspects of how the

activities of neurons in primary sensory areas are generated by the con-

tents of visually observed scenes. The counterpart to a generative model

is its statistical inverse, called a recognition model (Hinton & Zemel,

1994). This takes low-level activities and produces probability distribu-

tions over the entities in the world that could have led to them, expressed

as activities of neurons in higher visual areas that model the image gen-

eration process. Even if a generative model is computationally tractable,

its associated recognition model may not be. In this paper, we study vari-

ous di�erent types of exact, sampling-based and approximate recognition

models in the light of computational and cortical constraints.

I Introduction

There are two popular notions as to the major on-line (as opposed to learning)

mode of cortical processing. One concentrates on discrimination or classi�cation

of input from the sensory epithelium. For instance, if images contain a single

handwritten digit, then the task for cortex in recognising or interpreting an image

is to produce a probability distribution reporting which digit might be present.

Invariances of various sorts are key { successive layers are taken as ignoring ever

more information present in the image but irrelevant to the digit class, such as the

style of the digit (eg italic or roman), the thickness of the strokes, the position on

the page, etc. Purely bottom-up processing in the cortical hierarchy is typically

thought of as implementing classi�cation, justi�ed by results such as Perrett et

al's (1982) on the speed of face recognition, whose calculations imply that there

little, if any, time for lateral or top-down in
uences. There is also substantial

statistical theory underlying discrimination. However, its cortical instantiation is

somewhat problematical. First, it is not clear how the sort of supervised training

that underlies most classi�cation systems could be arranged. Second, it is not

clear how relevant prior information (such as that the particular writer for an

image tends to favour particular curly strokes) can be properly incorporated into

the recognition process.



The contending notion suggests that cortex builds a model (usually a proba-

bility density model) of the input it receives (Grenander, 1976; Mumford, 1994).

The model captures the statistical structure of the observed input, according

probabilities to particular inputs commensurate with their frequency in the

world. In ideal circumstances, the model will re
ect accurately the actual pro-

cess by which images are created { eg for the images of handwritten digits, the

model will include explicit choices for the identity of the digit, the style, the

thickness of the strokes, etc. In cortex, these choices should be instantiated in

the activities of particular amongst groups or populations of neurons. Recent

statistical models for cortex have taken note of its layered structure (Felleman

& Van Essen, 1991), and suggested that top-down and/or lateral connections

contain the generative model. The model represents a (possibly complicated)

probabilistic prior over observable scenes.

Given such a model, the most general task in interpreting a particular image

is to blend information from the senses with this prior information (consistent

with Bayes theorem) to report a posterior distribution over the various generative

choices { ie analysis by synthesis. Alternatively, given some loss function, single

values might be produced that summarise the posterior probability distribution.

If one of the generative choices is the identity of the handwritten digit, then

interpreting an image entails reporting the distribution over the digits it might

contain. This is a characteristic inverse problem (Marroquin, 1985) { regulari-

sation theory is an alternative way of describing the same operations (Poggio &

Torre, 1984) { and is also the conventional way that maximum likelihood models

(strictly maximum a posteriori models) are used for classi�cation or discrimina-

tion. The generative mode for cortex therefore requires the discrimination mode

too. This paper studies the discriminative phase, called recognition (Hinton &

Zemel, 1994), that emerges as the Bayesian inverse to top-down generation.

If top-down and/or lateral weights in cortex are involved in the generative

model, it is natural to conclude that the bottom-up weights are concerned with

recognition. Of course, the other weights could also be involved { there are

many cases for which top-down in
uences over perception are strong, and others

such as binocular rivalry (Leopold & Logothetis, 1996; Logothetis et al , 1996)

for which there appears to be an on-going interaction between bottom-up and

top-down processing (Dayan, 1996). This paper studies di�erent ways that recog-

nition, or approximations to recognition, can be implemented for various sorts

of generative model.

In some cases the recognition phase is computationally straightforward. Two

important examples are when it is linear, which is the case of factor analysis (FA)

discussed in detail in the next section, and when it involves a one-of-n operation,

as in a mixture model such as the popular mixture of Gaussians (Nowlan, 1991)

and mixture of experts (Jacobs et al , 1991) architectures. Even if exact recog-

nition is tractable, we will see that there are di�erent ways of implementing it,

mixing combinations of bottom-up, top-down and lateral processing.

For many other generative models, even ones that are simple to specify,

recognition is computationally challenging. Two examples are the unsupervised



version of the Boltzmann machine (BM; Hinton & Sejnowski, 1986) and causal

belief networks (eg Pearl, 1988). For the BM, both the generative and the recog-

nition distributions are computationally intractable to calculate. For directed

belief networks, their structure makes it easy to calculate the prior probability

over a set of generative choices. However, calculating the posterior probability

distribution given an observation is again di�cult.

If exact recognition is intractable, one has two options. Markov chain Monte-

Carlo methods can be used to collect samples that (at least asymptotically)

re
ect the exact recognition inverse (Neal, 1992;1993).1 In cases like the BM or

belief nets, Gibbs sampling speci�es a Markov chain whose stationary distribu-

tion is the true posterior. Typically, one needs to run the chain for a while until

transients are sure to have decayed, and then take samples of the states of the

chain as being samples from the true recognition distribution. The disadvantage

of using stochastic simulation is the time it takes for transients to decay, and

also the number of independent runs necessary if there are large energy barri-

ers between states (or, equivalently, the high variance in the samples). Various

methods for overcoming these problems have been suggested, in particular forms

of annealing.

If Monte-Carlo sampling based on the true generative model is not to be

used, then some form of approximation to the true recognition inverse is needed.

Various di�erent such schemes have been suggested, each with its own charac-

teristics. The Helmholtz machine (HM; Hinton et al , 1995; Dayan et al , 1995)

has a top-down belief-net generative model leading to a lowest layer, which rep-

resents the direct sensory report of images. The HM uses a bottom-up belief

net to instantiate an approximation to the recognition inverse. In one version,

the recognition distribution is described through samples that are generated

stochastically (which is computationally easy) { and parameters of this bottom-

up net are learnt during a training phase to make its samples appropriate. An

alternative is to use mean-�eld methods (Saul et al , 1996; Jaakkola et al , 1996).

Here, a parameterised form is chosen for the approximation to the whole inverse

distribution for a particular image, where the particular parameterisation is cho-

sen to make calculations easy. The parameters are then updated to minimise a

Kullback-Leibler based measure of the di�erence between the approximate and

the actual recognition distributions. A further alternative to the Helmholtz ma-

chine or mean �eld methods is to abandon the requirement of �nding the true

posterior distribution, and rather look for just its maximum.

This paper studies aspects of these di�erent recognition choices. We are par-

ticularly interested in the relationship between the information contained in the

bottom-up weights and that contained in the top-down or generative weights.

Iterative recognition schemes that employ top-down weights turn out to re-

quire that the bottom-up weights are essentially the transpose of the generative

weights (as is also true for principal components analysis). Recognition schemes

that concentrate on feedforward processing require bottom-up weights that are

1 The inverse is a whole distribution, and therefore can be speci�ed by samples as in

Monte-Carlo methods, or through a parameterisation, as in mean-�eld methods.



not purely the transpose of the top-down weights. In general, there remains an

unresolved con
ict between having fast and feedforward recognition, as inspired

by Perrett et al's (1982) results, and having iterative recognition that blends

bottom-up and top-down information in an appropriate way, including handling

so-called explaining away e�ects in non-linear generative models in which either

one generative cause for an input is active, or another one is active, but proba-

bly not both. The role of lateral processing is also unclear. There is neither the

experimental evidence nor the computational compulsion to adopt one scheme

in particular at present. Other issues are also important, particularly the way

in which the e�cacies of the connections are speci�ed through experience, but

they are not the current focus.

The next section studies in depth the factor analysis case of a two-layer

and linear generative model with Gaussian noise, and comments on its multi-

layer extension, as in Chou, Willsky & Benveniste (1994) and Chou, Willsky

& Nikoukhah (1994); and section 3 looks brie
y at causal belief networks with

binary units, which raise such problems as explaining away.

II Factor Analysis

A simple two-layer generative model is shown in �gure 1 and is given by:

y � N [0; �] x � N
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where N (a; � ) is a multivariate Gaussian distribution with mean a and covari-

ance matrix � , y 2 <m, x 2 <n, and G is an m�n matrix of generative weights.

Equations 1 imply that the components xi of x are mutually independent, given

the values of their belief net parents y. Components yi are called the factors

underlying the observed examples x.
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Fig. 1. Factor Analysis. The dotted lines on the right show the elements of the

linear and Gaussian generative model in equations 1, involving factors y and

observables x. The solid lines on the left show the elements of the recognition

model of equations 3 that is the inverse of the generative model.



This generative model is exactly that underlying the statistical technique of

factor analysis (see Everitt 1984; Jolli�e, 1986 for introductions; Dempster, Laird

& Rubin, 1977, and Rubin & Thayer, 1982 for more proximal analysis). It was

pointed out as being a linear version of the Helmholtz machine by Neal (personal

communication; Neal & Dayan, 1996) and was used for to model images of digits

by Hinton et al (1996). Given this generative model, and a particular example x,

the role of recognition is to calculate the posterior distribution P [yjx] over the

generators y given the observed image x, or perhaps instead to calculate some

particular value y� that summarises this posterior distribution.

The joint distribution over x and y is Gaussian

P [x;y] / expf�
1

2
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T
�
�1
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�
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�
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g; (2)

therefore the posterior distribution P [yjx] is also Gaussian N [RT
x; �], where
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G

�
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The maximum a posteriori value yMAP comes from minimising � logP [x;y]:
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�
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MAP = R
T
x (4)

as it must be, since the posterior distribution is Gaussian and therefore unimodal.

The maximum likelihood value yML comes from setting �
�1 = 0 in equation 4,

which is dimensionally reasonable in the case in which there are fewer factors

than input variables, ie m < n.

Top-down information for a particular case could be seen as changing the

prior over y in equation 1 in two ways. If it changes the prior covariance matrix

for the factors, then R must change too. If it just speci�es a non-zero uncondi-

tional mean for the factors: y � N [�y; �], then the new posterior is just

yjx � N

h
R
T
x+

�
�
�1 + G	�1

G
T
��1

�
�1�y; �

i
(5)

We are now in a position to describe some of the various proposals for recog-

nition. For none of them is it quite clear how the posterior covariance matrix

� might be represented in cortex (see Neal & Dayan, 1996). In the case that �

is rotationally invariant, the factors are infamously rotationally underspeci�ed.

This allows us the cortically convenient option of taking � as being just a di-

agonal matrix. An additional problem with this linear factor analysis model is

that it is only well determined (even up to rotation) if there are su�ciently fewer

factors than input dimensions. This is not true of cortex, and is not necessary

for non-linear factor analysis models (eg Olshausen & Field, 1996) or models

that include temporal e�ects (eg Rao & Ballard, 1995).



Bottom-Up Method

The factor analysis version of the Helmholtz machine (Neal & Dayan, 1996; Hin-

ton et al , 1996) is similar to the standard version of the Helmholtz machine in

that it devotes a set of parameters to a feedforward belief net structure that is in-

tended to approximate the recognition inverse using only bottom-up processing.

This uses the feedforward weights R shown in �gure 1, and an explicitly param-

eterised feedforward recognition covariance matrix �. This covariance matrix

speci�es the parameters of the noise corrupting the mean value RT
x, and so can

be used to generate samples from the recognition model.

Note that recognition only requires a linear operation on the input pattern

x, but that the relationship between the top-down weights G and the bottom-up

weights R is obscured by the priors � and 	 . This is characteristic of methods

that calculate the posterior distribution (or samples from it) based purely on

bottom-up processing. The obscuring factor, (��1 + G	
�1
G
T )�1 balances the

prior variability of a factor (from �
�1) with the extent to which that factor

might be responsible for inputs, modulated by the extent to which noise might

be responsible instead (from G	
�1
G
T ).

In principal components analysis (PCA), the value yj would be the projection

of the input x onto the jth orthonormal eigenvector of the covariance matrix

of all the inputs. For PCA, the generative and recognition weight matrices are

just transposes of each other (R = G
T ), both containing the relevant eigenvec-

tors. Most of the methods discussed below that employ top-down weights during

processing also have R = G
T , but they do not contain the eigenvectors.

The advantage of the one-shot method in giving the mean of the posterior

distribution in a single feedforward operation is o�set by the disadvantage that

it is not clear what to do if some particular input value xk is not available

on a particular case, for instance due to occlusion. R is tailored to the fact

that all the inputs will be available. Also, R implicitly incorporates knowledge

about the prior � over the factors, and so if top-down information can specify a

di�erent prior covariance matrix �
0
6= � on some particular occasion, then the

bottom-up weightsR will be incorrect. If top-down information only changes the

unconditional mean, then the expression for the posterior mean in equation 5

shows that R is still appropriate.

Top-Down Method

More in the spirit of mean �eld methods, it is also possible to derive the poste-

rior distribution of equations 3 in an iterative manner, using constitutively the

top-down weights that de�ne the generative model in the �rst place. A good

way to understand this is through the same minimum description length (MDL;

Rissanen, 1989) coding argument that motivates the Helmholtz machine. Con-

sider using a distribution N̂ � N [ŷ; �̂] as a stochastic code for example x. This

means that a sample ys is drawn from N̂ , is coded itself using the prior N [0; �]

over y, and is used to provide a conditional prior N [GTys; 	 ] over the actual

image x. The net mean description length for example x using this code has



two additive components. The �rst is the cost of coding the sample ys from N̂

(minus the bits back, Hinton & Zemel, 1994), and, on average, is:

F1 = KL

n
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h
ŷ; �̂

i
;N [0; �]

o
=

1

2
(log

j�j

j�̂j

+ tr
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�
+ ŷ

T
�
�1
ŷ) (6)

where KLfP ;Qg is the Kullback-Leibler divergence from P to Q. The second

component is the cost of coding the image x given ys, which, on average, is:
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1
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T
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+ tr
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G	
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G
T
�̂
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+
P

j log �
2
j ) +K (7)

where K is a constant that does not depend on ŷ or �̂.

Shannon's theorem guarantees that the description length F � F1 + F2

for any choice of ŷ and �̂ is greater than or equal to � logP [x] under the

generative model, and equality holds when the coding distribution N̂ is the

true recognition distribution (ie the true probabilistic inverse to the generative

distribution). Consider, therefore, minimising F with respect to ŷ and �̂. The

linear and Gaussian nature of the generative model makes the two minimisations

independent. As might be expected from equation 3, the optimisation of �̂ is

also independent of the input x and therefore can be done once and for all.

Optimising ŷ is more interesting. The parts of F that depend on ŷ comprise

a quadratic form, with rŷF = �
�1
ŷ � G	

�1
�
x� G

T
ŷ
�
. We can therefore

either read o� the optimal ŷ as implied by equation 3 (by solving for rŷF = 0),

or implement gradient descent in F using the dynamical system (Olshausen &

Field, 1996; Rao & Ballard, 1995):

�

dŷ

dt

= �rŷF = ��
�1
ŷ + G	�1

�
x� G

T
ŷ
�

(8)

where � is a time constant. The interesting aspect of this equation is its im-

plications for the bottom-up weights and processing in the x layer. Equation 8

suggests calculating the prediction error
�
x� G

T
ŷ
�
in the x layer (this is the

di�erence between the actual image x and the image that would be predicted

from the mean top-down activities ŷ), down-weighting this prediction error in

the x layer by the noise magnitudes 1=�2j along each x dimension, and then prop-

agating it through the transpose of the generative weights G to change ŷ. Note

the two major di�erences from the one-shot approach: a) the system is iterative,

based on calculating the prediction errors; and b), as in PCA, the bottom-up

weights are the transpose of the generative weights, rather than being dependent

also on 	 and �. The generative weights G that minimise F will nevertheless in

general not be the same as the ones calculated by PCA, ie they will di�er from

the eigenvectors of the covariance matrix of the images.

If there is top-down information that changes the unconditional mean of y,

then this just adds an extra term �
�1�y to the update equations. Changing the

unconditional covariance matrix � requires just a change to the update within

the y layer, and not a change to the bottom-up weights. Further, if the value of

some input dimension is not speci�ed on some particular occasion, then it should



make no contribution in the term G	
�1
�
x� G

T
ŷ
�
. This will be the case if the

result of top-down in
uences on the x layer is to set the relevant component of

x equal to its top-down mean, in the absence of any information from the scene.

Top-down inference therefore avoids all the problems alluded to for bottom-up

inference, at the expense of requiring iterations to satisfy dŷ=dt = 0.

Olshausen & Field (1996) developed a dynamical system like that of equa-

tion 8 from the starting point of minimising the cost:

C(ŷ;G) =
P

i f (ŷi) +
�
x� G

T
ŷ
�T

	
�1
�
x� G

T
ŷ
�

(9)

which is closely related to F .2 In equation 9, ŷ is again the cortical representation

of x, and is also chosen to balance two costs. The �rst term is intended to encour-

age sparseness in the ŷ, using a penalty term f(y) such as f(y) = log
�
1 + y

2
�

which encourages y units to be silent. Just like component F1 in equation 6, this

penalty term is essentially equivalent to that coming from a prior P [y] / e
�f(y)

for the activities in the y layer, in which they are mutually independent. The

term ��
�1
ŷ in equation 8 is replaced in rŷC(ŷ;G) by a vector whose com-

ponents are �f 0 (ŷi). However, making f(y) non-quadratic means that there is

no longer a separation in the minimisations with respect to ŷ and �̂ (just as

certainty equivalence in control theory only holds in the linear case), and so min-

imising C with respect to ŷ becomes itself an approximation. One can write down

the equivalent of F , but such a simple dynamical system can only �nd (local)

maximum a posteriori values and not the true Bayesian conditional mean.

Just like components F2 in equation 7, the second term in equation 9 en-

courages ŷ to provide a good model for the image x, through the medium of the

generative weights G. Olshausen & Field (1996) showed that realistic generative

receptive �elds emerge for the y units when recognition is based on choosing

ŷ
� = argmin

ŷ
C(ŷ;G), and the generative weights are altered based on these

values. Reasonable recognition receptive �elds for the y units are also observed,

but they depend on the images that are presented and require calculating ŷ�.

If f(y) is quadratic, as in Rao & Ballard (1995), and e�ectively also in F1,

then there is actually no incentive for ŷ� to be sparse. For instance, if there were
two units y1 and y2 with equal generative weights, then ŷ

2
1+ ŷ

2
2+(9� [ŷ1+ ŷ2])

2

is minimised with ŷ
�
1 = ŷ

�
2 = 3; whereas log(1+ ŷ

2
1)+log(1+ ŷ

2
2)+(9� [ŷ1+ ŷ2])

2

is minimised at (ŷ�1 ; ŷ
�
2) = (0:1; 8:8) or (8:8; 0:1).

Lateral Method

Olshausen (personal communication) has pointed out an equivalent form of equa-

tion 8, for minimising F with respect to ŷ:

�

dŷ

dt

= G	
�1
x�

�
�
�1 + G	�1

G
T
�
ŷ: (10)

2 Olshausen & Field (1996) used 	 = I, based on the reasonable assumption that all

errors in the x layer are equivalent.



This suggests a slightly di�erent calculation scheme from equation 8, in which

the image (x), rather than the prediction error for the image
�
x� G

T
ŷ
�
is down-

weighted by 	
�1 and propagated through a weight matrix G which again is just

the transpose of the generative weights. Now, though, computation in the y

layer is more complicated, including requiring connections that are sensitive to

the noise magnitudes 	�1 in the x layer. This shares the disadvantage of the

bottom-up scheme in terms of requiring weights that include information about

the priors ��1 and G	�1
G
T , but does at least allow the non-speci�cation of

some particular input, provided, as also for equation 8 that the input is set at

exactly its top-down predicted value at all times.

Combined Bottom-Up and Top-Down Method

The �nal method is based on multiplying the update in equation 10 by the

positive de�nite matrix � = (��1 + G	
�1
G
T )�1. In this case, one can also

implement the dynamics:

�

dŷ

dt

=
�
�
�1 + G	�1

G
T
��1

G	
�1
x� ŷ = R

T
x� ŷ (11)

This version has the attractive characteristic that if all the inputs are speci�ed,

then the feedforward information is instantly correct, and so iteration would

in theory not be required (if the time constant � = 1). If some inputs are not

speci�ed, then, by the same reasoning as above, the system will still �nd the

correct conditional mean for the factors.

In this simple linear and Gaussian case, there is therefore an update form that

is based on: a) the one-shot method used in the conventional Helmholtz machine,

and b) the iterative scheme employed in Rao & Ballard (1995) and also in mean

�eld methods for the non-linear case (Jaakkola et al , 1996; Olshausen & Field,

1996).

Hierarchical Factor Analysis

Figure 2 shows a slightly more complicated, but still linear and Gaussian model

which has three layers, two of which are spatially separated. This model, and

yet more complicated versions of it, is due to Chou and Willsky and their col-

leagues (Chou, Willsky & Benveniste, 1994; Chou, Willsky & Nikoukhah, 1994;

Luettgen & Willsky, 1995). These authors were interested in using Kalman �lters

in scale rather than in time to build tractable models of inputs that naturally

live in multiple dimensions (such as images) rather than one dimension (such as

auditory waveforms). The most natural generative model in two-dimensions is a

Markov random �eld (MRF; Kinderman & Snell, 1980), but inference in MRFs

is notoriously intractable. Chou et al (1994) develop a sophisticated theory of

recognition in such structures, and we will mostly just cite the relevant results

in our own terms, without writing out the more notionally gruesome ones.



One-Pass Method

The net prior distribution for ya is Gaussian, with mean 0 and covariance matrix

�
a+HaT

�H
a. One can therefore use the results of the previous section to work

out the conditional mean and variance of the Gaussian distributions yajxa, and

equivalently ybjxb. Only the means depend on the images xa and x
b. It turns

out that one can also combine the means of these conditional distributions in

a linear manner to work out the mean of the Gaussian distribution zjx
a
;x

b,

including information from both halves of the input. These linear feedforward

operations are closely related to those in equation 3, only with added complexity

because of the separated inputs.

Ξb

ψb

Ξa

ψa

G a

Φ
z

aH H b

G b

x xa b

y ya b

Fig. 2. Hierarchical factor analysis, after Chou et al (1994). The three-layer

linear Gaussian generative model for inputs xa and xb via factors z and ya and

y
b. � is the covariance of z, �a is the covariance of the noise corrupting ya from

H
aT
z, and 	

a the noise corrupting xa from G
aT
y
a. Only the generative weights

are shown.

Although one can calculate zjxa;xb using purely bottom-up calculations, and

y
a is conditionally independent of yb and therefore xb given z,, the structure of

the generative model makes it clear that ya is conditionally dependent on xb in

the recognition circumstance in which we are given only xa and xb and not z. In

fact, ya;yb and z are joinly Gaussian, with a hyper-elliptical covariance struc-

ture. The Kalman �lter framework can be used for smoothing as well as �ltering,

in this case, feeding information back from zjx
a
;x

b to update the distribution

y
a
jx

a to yajxa;xb. Chou et al (1994) show how to do this e�ciently using a

single top-down pass, in a generalization of the Rauch-Tung-Striebel smoothing

algorithm to this tree-like case. Chou et al (1994) also point out a slightly di�er-

ent variant on this two pass algorithm in which the bottom-up phase calculates

terms such as ya
ML

ignoring the prior, and then the top-down phase applies all

the information about the priors.



Iterative Methods

Although, just as for the case of the two-layer model, there is a substantially

e�cient non-iterative algorithm, Rao & Ballard (1995) pointed out that one can

calculate the means of the distributions yajxa;xb, ybjxa;xb and zjxa;xb using a

dynamical system closely related to those in equations 8 and 10. The quadratic

form comprising the terms in the description length that depend on the means

(written as ŷa, etc) is given by
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T
�
�1
ẑ+
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ẑ

�
+

�
x
a
� G

aT
ŷ
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ŷ
a
�
+
�
x
b
� G

bT
ŷ
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Using gradient descent to solve for rF 0 = 0 leads to an analogue of equation 8

(Rao & Ballard, 1995):
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These share with equation 8 the characteristic of how top-down prediction errors

at the various levels (ŷa�HaT
ẑ and xa�Ga

T

ŷ
a) are downweighted by the noise

covariances and propagated bottom-up through the transpose of the generative

weight matrices. Since the overall joint distribution z;ya;ybjxa;xb is elliptical,

the use of these means is slightly tricky. Again, in a non-linear or non-Gaussian

case, such as a multilayer analogue of Olshausen & Field's (1996) sparsity prior,

the separation between means and covariances would disappear, and it would no

longer be possible to use these equations to work out the true posterior means.

There is also an analogue of equation 10:
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dẑ

dt

= H
a
�
a�1

ŷ
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which implies the use of lateral operations. The equivalent of equation 11 is more

complicated, however, because the bottom up estimate of ŷa given just xa is

di�erent from the �nal estimate of ŷa given both xa and xb. Unlike equation 10, it

is not clear how to specify a single set of bottom-up weights that can conveniently

be used for both one-pass and iterative inference.



III Non-linear Models

The previous section considered the case of linear and Gaussian generative mod-

els for which there are computationally tractable ways of calculating the exact

recognition inverse distributions. Even though there may be purely bottom-up

ways of doing this in regular cases, for which there is no occlusion and no top-

down information relevant to inference for a particular image, iterative methods

can also be used, and have certain demonstrable advantages. However, linear and

Gaussian models are unlikely to su�ce, even for the most primitive datasets. One

class of non-linear models that has been studied in some depth is that of binary

belief networks with sigmoidal activation functions (Neal, 1992; Hinton et al ,

1995; Saul et al , 1996). These preserve the top-down structure of the generative

model, but, for a single unit x1, they have (cf equation 1):

x1 � B

�
�

��
G
T
y
�
1

��
(14)

where B[p] is the binomial distribution with mean p and � is a sigmoid function

whose output lies between 0 and 1. The activities in layer y are set similarly,

except, for a two-layer network, that the only input to the binomial distribution

is a bias term. An extra component of y is treated as a bias for determining x.

A three layer network is shown in �gure 3a.

Examples of layered belief networks with this structure are given by Hinton

et al (1995), in particular the comparatively large networks (with 4�16�16�64

units in three hidden layers and one input layer) that model 8 � 8 binary im-

ages of handwritten digits. A key aspect of these generative models is that the

activities of units within a layer are mutually independent, given the activities

of the units in the layer above. This makes specifying the generative probabili-

ties very simple. In such cases, it is again necessary to calculate the recognition

inverse to this generative model { now the recognition distribution assigns prob-

abilities to the 2n binary states of the n hidden units in the network, given the

activities in the lowest input layer. For general networks, this distribution is not

tractably computable, and therefore sampling or approximations are necessary.

Even though in the generative model, activities of units within a layer are inde-

pendent given the activities in the layer above, activities of units within a layer

in the recognition model need not be mutually independent given the activities

in the layer below.

The non-linear belief net model makes for much richer generative and recogni-

tion models than the linear Gaussian models of factor analysis. Two very simple

but revealing generative models are shown in �gure 3b;c. The left example shows

a case of explaining away (Pearl, 1988). All the units are most likely to be o�

(0). However, the occurrence of x being on (1) requires explanation by either

y1 = 1 or y2 = 1. The a priori unlikelihood that the y units are active makes it

unlikely that y1 = y2 = 1; having y1 = 1 explains away x = 1 and so obviates

the need for y2 = 1 as well. Figure 3c is a modi�cation of this example in which

y1 tends to generate x1 = x2 = 1.
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Fig. 3. a) Three layer sigmoidal belief net. The layered structure shows the con-

ditional independencies in the net P [x;y; z] = P [z]P [yjz]P [xjy] where the units

within a layer are mutually independent given the activities in the layer above

and are set according to equation 14 using the generative weights H, G (and

the biases J for the z layer that receives no other input). R and S are bot-

tom-up parameters for recognition. For the Helmholtz machine, recognition is

based on a bottom-up belief network which speci�es P [y; zjx] = P [yjx]P [zjy]

(which is true) with an approximation of mutual independence within the y

layer and within the z layer given the y activities (which is generally not

true). b,c) Two non-linear generative models. Both �gures give the genera-

tive connections allowing y units to describe activity patterns over x units.

All units are stochastic binary units, with activation functions as given in

the text. The weights with no originating nodes are biases. b) Explaining

away. x1 = 1 requires explaining by either y1 = 1 or y2 = 1 but not both

(ie P [y = f0; 0gjx = 1] = 0:0033;P [y = f1; 1gjx = 1] = 0:0033 and

P [y = f0; 1gjx = 1] = P [y = f1; 0gjx = 1] = 0:4967. c) if y1 = 1 also generates

x2 = 1, then at question is whether or not there should be a direct negative

in
uence from x2 to y2 in the recognition model.

Bottom-Up Method

The Helmholtz machine (see �gure 3a) suggests building a bottom-up recognition

model that is also a sigmoidal belief net and (at least in the stochastic version)

drawing samples from this net to approximate the full recognition distribution.

Two simpli�cations are made: a) despite the caveat above, the activities of units

within a layer are forced to be independent given the activities in the layer below,

to avoid having to parameterise and manipulate the full conditional distribution

within each layer,3 and b) the connections of the recognition belief net are set

using an incorrect training procedure that chooses them to minimise (locally) a

wrong error measure that is nonetheless computationally convenient. Write the

states of all the units other than the inputs (x) as �. Then, if the probability

3 Note, however, that this does not mean that all the units are mutually independent.



accorded to a particular � by the recognition model is Q�(R), where R are

the weights of the non-linear recognition model, then R should correctly be

chosen to minimise KLfQ�(R);P [�jx]g (Hinton & Zemel et al , 1994). Instead,

in the sleep learning procedure (Hinton et al , 1995), they are chosen to minimise

KLfP [�jx];Q�(R)g. Since the Kullback-Leibler divergence is not symmetric,

these quantities are not the same. If the divergence cannot be forced to be 0 (as

is likely given the approximations employed), then the main di�erence is that

minimising the �rst requires that P [�jx] be small whenever Q�(R) is small,

whereas minimising the second requires that Q�(R) be small whenever P [�jx]

is small.

This bottom-up method for approximating the recognition model works quite

well in practice (see Frey et al , 1996). However, in cases such as explaining

away (including the simple example of �gure 3b) it fails. It assigns independent

bottom-up probabilities of 0:5 to y1 = 1 and y2 = 1, and so 50% of the time

chooses settings for y that are incorrect.

The bottom-up recognition inverse to the generative model in �gure 3c is

correct. The point is that if x1 = x2 = 1 for a particular case, then it must be

that y1 = 1 rather than y2 = 1. Even though the generative weight from y2 to

x2 is 0, the recognition weight from x2 to y2 is negative. A more interesting case

of this is seen in the weight patterns for the 8-bit shifter problem in Dayan et

al (1995). Units in the �rst hidden layer generate the activity of single pixels

within both eyes, shifted by one pixel left or right with respect to each other.

The recognition weights for these units have positive values for the pixels whose

activities are actually generated, but inhibitory side-lobes from the neighbouring

pixels, to avoid spurious activation.

It has been suggested that lateral connections within a layer might be used

as in a Boltzmann machine solely for the recognition model (Dayan & Hin-

ton, 1996). The generative model would still involve only top-down in
uences

as in �gure 3a (to ensure that the the generative model is still tractable), but

the recognition model would employ lateral links to circumvent the requirement

that the units within a layer be independent. The disadvantage is that compu-

tationally complex Gibbs sampling within a layer has to be used to instantiate

recognition. Also, in cases such as explaining away, there would have to be an

explicit negative lateral connection between y1 and y2.

Top-Down Methods

Mean-�eld The major alternatives to the bottom-up recognition model de-

scribed above are mean �eld methods, pioneered for belief nets by Saul, Jaakkola

& Jordan (1996) and Jaakkola, Saul & Jordan (1996). These e�ectively choose

a parameterisation for an approximation to the recognition distribution for a

particular case, and optimise the parameters to minimise the equivalent of the

correct Kullback-Leibler divergence. Most approximations force all the units

to be mutually independent (not just those units within a single layer, given

the activities in the layer below). One can treat the linear and Gaussian case



from the previous section exactly in mean-�eld terms, using a parameterisa-

tion with means for all the units and a particular covariance structure. Min-

imising the Kullback-Leibler divergence turns out to require satisfying a set of

self-consistency equations at each unit, and there are algorithms that descend

monotonically in the divergence whilst updating units asynchronously using only

information local to a unit and its incoming and outgoing connections. In the

linear Gaussian case, solving these self-consistency equations is exactly solving

for the correct mean values.

The mean �eld theory of Jaakkola et al (1996) is a suitable non-linear coun-

terpart. It uses as its sigmoid activation function the normal distribution function

�(a) = 1p
2�

R a
�1 e

�b2=2
db. This leads to a cost function C for minimisation for

which the contribution from the terms in the y layer is 2Cŷ =:
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j Gji�(ŷj))
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summing for i over units in x, for j over y, for k over z, where �(ŷj) is the mean

activity of unit yj , and x̂i for input unit i is set so that �(x̂i) is very close to

0 or 1 as appropriate. Equivalent contributions to C come from the other layers

in the network. This cost function is related to that for the linear and Gaussian

case (equations 6 and 7) and for Olshausen & Field (1996) (equation 9). The

contribution to �rŷjCŷ from the second and third (ie the prediction error)

terms of equation 15 is

�(ŷj �
P

kHkj�(ẑk)) +
P

i Gji�
0(ŷj)(x̂i �

P
j0 Gj

0i�(ŷj0 ))

which has a very close parallel in the equivalent term for the linear and Gaus-

sian hierarchical model as in dŷ
a
=dt in equation 12. Minimising C can either be

accomplished using gradient descent, as in equation 12, or by updating ŷj such

that rŷjC = 0. In both cases only local information is used at each unit, and the

bottom-up connections from units in a layer to units in the layer above must be

the transpose of the generative weights in the opposite direction.

Mean �eld approximations such as this can cope well with inverting the

generative model of �gure 3b when x = 1, since there are two stable minima,

one with y1 = 1; y2 = 0 and the other with y1 = 0; y2 = 1. Moreover, unlike

the lateral Boltzmann machine, they do not require the existence of an explicit

connection between y1 and y2.

Stochastic simulation An alternative approach to calculating the recog-

nition distribution is to use a Markov-chain Monte-Carlo method. Neal (1992)

discusses stochastic simulation in sigmoidal belief nets in some detail, including

the use of such samples for learning the generative weights. Here, we point out

a simple approximation in the limit of small generative weights that shows the

similarity with the other top-down uses of bottom-up connections.

In the case in �gure 3a, with �(a) = 1=(1+e�a), we are interested in sampling
from P [y; zjx]. In the simplest version, we visit each of the units in layers y and

z in some random sequence, and choose a new state stochastically, taking into

account in
uences from its parents (just the generative biases for the z units)

and its children. Take unit y1, writing �y = fy2; : : : ; yng. We should set its new



state to 1 according to P [y1 = 1j�y; z;x]. It turns out to be most convenient to

calculate instead

�1 = log
P [y1 = 1j�y; z;x]

P [y1 = 0j�y; z;x]
= log

P [z]P [y1 = 1jz]P [�yjz]P [xjy1 = 1; �y]

P [z]P [y1 = 0jz]P [�yjz]P [xjy0 = 1; �y]

=
P

kHk1zk +
P

i log
P[xijy1=1;�y]

P[xijy1=0;�y]
as P [y1 = 1jz] = � (

P
kHk1zk) (16)

Since

P [xijy1 = 1; �y] =
xi + (1� xi)e

�G1i�
P

j 6=1
Gjiyj

1 + e

�G1i�
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then, if G1i is small compared with
P

j 6=1 Gjiyj , it turns out that

log
P [xijy1 = 1; �y]

P [xijy1 = 0; �y]
= G1i (xi �P [xi = 1jy1 = 0; �y]) :

Since G1i is small, to zeroth order

P [xi = 1jy1 = 0; �y] = P [xi = 1jy1 = 1; �y] = P [xi = 1jy]

is the top down prediction that xi = 1 whatever the state of y1. Using this in

equation 16, we have:

�1 �

X
k

Hk1zk +
X
i

G1i (xi �P [xi = 1jy]) (17)

which consists of the obvious top-down in
uence from z and a bottom-up in
u-

ence that tends to reduce the prediction error (xi � P [xi = 1jy]) for the state of

xi. Just as in the other top-down cases (such as the dynamic system in equation 8

or the mean �eld theory of Jaakkola et al , 1996) the prediction error is propa-

gated bottom-up through the transpose of the generative weights G. Stochastic

simulation then requires that y1 be set to 1 with probability �(�1). As for mean

�eld methods, explaining away can be handled (although not quite as in equa-

tion 17, since the weights are not insubstantial), again without recourse to direct

connections between y1 and y2.

For the generative model in �gure 3c, note how making the recognition weight

from x2 to y2 zero rather than negative makes it more complicated to work out

that if x1 = x2 = 1, then y1 = 1 rather than y2 = 1.

IV Discussion

In this paper, we have studied the issue of inverting various sorts of directed belief

net generative models. Such generative models are attractive as ways of capturing

the essence of the hierarchical structure of cortex, where the activities of neurons

in successively higher cortical areas represent the generation of successively more

abstract entities in scenes. Inverting the generative models, ie going from sensory

input to the activities of the neurons that represent its likely generators, is



essential to interpret scenes, and also (though this has not been stressed here) to

learn appropriate generative models. The inverse operation, called recognition,

is akin to discrimination or classi�cation, and, in many cases, doing it exactly

is computationally intractable. We assume that the bottom-up weights in the

cortex (from V1 to V2, etc) are important for recognition, but that they may

operate in conjunction with the top-down and lateral weights. We have also seen

some of the relationships amongst recent suggestions as to how cortex might

implement a generative model.

Various schemes for performing recognition have been suggested. One class

uses only bottom-up connections, either for exact recognition, as for factor anal-

ysis, or for approximate recognition, as for the Helmholtz machine. In the latter

case, it is tractable to draw samples stochastically from the bottom-up model.

Although purely bottom-up models are fast, a strong requirement suggested by

evidence on the speed of processing images of objects, they su�er from a number

of disadvantages in terms of the di�culty of incorporating top-down informa-

tion, coping with occlusion, and integrating information from disparate parts of

a scene further than the credible spread of feedforward connections. Further, in

important cases such as explaining away, bottom-up models that make reason-

able approximations, such as that the activities of units in a layer are mutually

independent given the activities in the layer below, are incompetent.

An alternative scheme is suggested by mean �eld methods (Saul et al , 1996).

Here a parameterised form is chosen for the recognition distribution for a par-

ticular case, and the parameters are set by an optimisation process. For suitable

parameterisations, optimisation is achieved by a set of local operations. Although

there are no bottom-up weights as such for mean �eld methods, we saw vari-

ous cases in which the in
uence of the units in one layer on those in the layer

above is calculated by passing some form of prediction error (ie the di�erence

between their actual activation and the activation predicted on the basis of the

states of the units in the layer above) through the transpose of the generative

weights. Optimisation is iterative { this solves the problems mentioned for the

purely bottom-up method, but raises questions as to the time required. We saw

simple cases in which there is a di�erence between the bottom-up weights im-

plied by purely bottom-up recognition and the bottom-up weights implied by

this top-down scheme.

A further alternative was to use lateral weights within each layer. This was

either to eliminate the requirement for iteration between layers (as in equa-

tion 8), or to �x problems with approximations made for bottom-up inference,

as in explaining away.

Di�erent generative models impose di�erent requirements on their recogni-

tion inverses. Linear models with Gaussian noise are particularly simple { even

in the case of Chou et al (1994) with multiple layers and only partial connec-

tivity, there are algorithms for working out the true recognition inverses which

require nothing more than one bottom-up and one top-down pass. Non-linear

models, such as the layered belief nets of �gure 3a do not possess such tractable

inverses, and so approximations are necessary.



This analysis is unsatisfyingly incomplete. Foremost, the interaction between

bottom-up, top-down and lateral connections is still open. Given the structural

di�erences between lateral and bottom-up weights, one might expect to �nd a

computational di�erence too. Top-down in
uences must clearly be felt during

recognition; however it is not apparent how to have bottom-up weights that

implement one-shot recognition in ideal circumstances, but can be used for in-

teracting bottom-up and top-down processing in less ideal cases. The role of the

lateral weights is also mysterious. One suggestion is that they help repair prob-

lems with too restrictive approximations in the bottom-up recognition model,

but this use imposes strong requirements on the presence of dense connections

(so that all cases of explaining away in the generative model can be properly han-

dled) and/or on the time available for Gibbs sampling. If the lateral weights are

also involved in specifying the generative model, then the whole system becomes

a form of Boltzmann machine.

An issue raised by the Kalman �lter models of section 2 is the various co-

variance matrices for the activities at di�erent layers. In the linear cases with

Gaussian noise that we have considered, the covariance matrices are �xed once

the parameters of the generative model are �xed, and they do not depend on the

input for a particular scene. In non-linear cases, and in cases which include tem-

poral e�ects (Rao & Ballard, 1995), this is not true. Retaining just the diagonal

terms of the covariance matrix of the activities is simple (Sutton, 1992). Retain-

ing the o�-diagonal terms is more complicated because of their numerosity and

the complexity of the calculations that lead to them.

Apart from capturing its general hierarchical characteristics, none of the

models in this paper is very faithful to the real details of cortical processing.

Apart from the many complexities of the structure of lower and higher visual

processing areas, important issues are that the anatomical spread of top-down

connections is broader than that of the bottom-up connections, and that there

appears to be a di�erence over developmental time in their speci�cation. For

instance, the top-down connections from V2 to V1 in humans wait in the lowest

cortical layers in V1 for a few months, and only migrate to what becomes their

main targets in layer 2 at the same time that the intracortical lateral connections

within layer 2 are also maturing (Burkhalter, 1993). This might favour a di�erent

class of models (Luttrell, 1995) from the ones discussed here in which the bottom-

up recognition weights are actually primary, heeding some other developmental

call, and the top-down and lateral weights merely build the generative model

that is most consistent with whatever activities the recognition model ultimately

speci�es.
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