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Unsupervised learning studies how systems can learn to represent particular input pat-

terns in a way that reflects the statistical structure of the overall collection of input pat-

terns. By contrast with SUPERVISED LEARNING or REINFORCEMENT LEARNING,

there are no explicit target outputs or environmental evaluations associated with each in-

put; rather the unsupervised learner brings to bear prior biases as to what aspects of the

structure of the input should be captured in the output.

Unsupervised learning is important since it is likely to be much more common in the

brain than supervised learning. For instance there are around 106 photoreceptors in each

eye whose activities are constantly changing with the visual world and which provide

all the information that is available to indicate what objects there are in the world, how

they are presented, what the lighting conditions are, etc. Developmental and adult plas-

ticity are critical in animal vision (see VISION AND LEARNING) – indeed structural and

physiological properties of synapses in the neocortex are known to be substantially influ-

enced by the patterns of activity in sensory neurons that occur. However, essentially none

of the information about the contents of scenes is available during learning. This makes

unsupervised methods essential, and, equally, allows them to be used as computational

models for synaptic adaptation.

The only things that unsupervised learning methods have to work with are the observed

input patterns xi, which are often assumed to be independent samples from an under-

lying unknown probability distribution PI [x], and some explicit or implicit a priori in-

formation as to what is important. One key notion is that input, such as the image of
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a scene, has distal independent causes, such as objects at given locations illuminated by

particular lighting. Since it is on those independent causes that we normally must act,

the best representation for an input is in their terms. Two classes of method have been

suggested for unsupervised learning. Density estimation techniques explicitly build sta-

tistical models (such as BAYESIAN NETWORKS) of how underlying causes could create

the input. Feature extraction techniques try to extract statistical regularities (or sometimes

irregularities) directly from the inputs.

Unsupervised learning in general has a long and distinguished history. Some early influ-

ences were Horace Barlow (see Barlow, 1992), who sought ways of characterising neural

codes, Donald MacKay (1956), who adopted a cybernetic-theoretic approach, and David

Marr (1970), who made an early unsupervised learning postulate about the goal of learn-

ing in his model of the neocortex. The Hebb rule (Hebb, 1949), which links statistical

methods to neurophysiological experiments on plasticity, has also cast a long shadow.

Geoffrey Hinton and Terrence Sejnowski in inventing a model of learning called the Boltz-

mann machine (1986), imported many of the concepts from statistics that now dominate

the density estimation methods (Grenander, 1976-1981). Feature extraction methods have

generally been less extensively explored.

Clustering provides a convenient example. Consider the case in which the inputs are the

photoreceptor activities created by various images of an apple or an orange. In the space

of all possible activities, these particular inputs form two clusters, with many fewer de-

grees of variation than 106, ie lower dimension. One natural task for unsupervised learning

is to find and characterise these separate, low dimensional clusters.

The larger class of unsupervised learning methods consists of maximum likelihood (ML)

density estimation methods. All of these are based on building parameterised models
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P[x;G] (with parameters G) of the probability distribution PI [x], where the forms of the

models (and possibly prior distributions over the parameters G) are constrained by a pri-

ori information in the form of the representational goals. These are called synthetic or

generative models, since, given a particular value of G, they specify how to synthesise or

generate samples x from P[x;G], whose statistics should match PI [x]. A typical model

has the structure:

P[x;G] =
X
y

P[y;G]P[xjy;G]

where y represents all the potential causes of the input x. The typical measure of the

degree of mismatch is called the Kullback-Leibler divergence:

KL [PI [x];P[x;G]] =
X
x

PI [x] log

�
PI [x]

P[x;G]

�
� 0

with equality if and only if PI [x] = P[x;G].

Given an input pattern x, the most general output of this model is the posterior, analytical,

or recognition distribution P[yjx;G], which recognises which particular causes might un-

derlie x. This analytical distribution is the statistical inverse of the synthetic distribution.

A very simple model can be used in the example of clustering (Nowlan, 1990). Consider

the case in which there are two values for y (1 and 2), with P[y = 1] = �;P[y = 2] =

1��, where � is called a mixing proportion, and two different Gaussian distributions

for the activities x of the photoreceptors depending on which y is chosen: P[xjy = 1] �

N [���1;�1] and P[xjy=2] � N [���2;�2], where ���� are means and �� are covariance matrices.

Unsupervised learning of the means determines the clusters. Unsupervised learning of

the mixing proportions and the covariances characterises the size and (rather coarsely)

the shape of the clusters. The posterior distribution P[y=1jx; �;����;��] reports how likely

it is that a new image x was generated from the first cluster, ie that y = 1 is the true
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hidden cause. Clustering can occur (with or) without any supervision information about

the different classes. This model is called a mixture of Gaussians.

Maximum likelihood density estimation, and approximations to it, cover a very wide

spectrum of the principles that have been suggested for unsupervised learning. This in-

cludes versions of the notion that the outputs should convey most of the information

in the input; that they should be able to reconstruct the inputs well, perhaps subject to

constraints such as being independent or sparse; and that they should report on the un-

derlying causes of the input. Many different mechanisms apart from clustering have

been suggested for each of these, including forms of Hebbian learning, the Boltzmann

and Helmholtz machines, sparse-coding, various other mixture models, and independent

components analysis.

Density estimation is just a heuristic for learning good representations. It can be too

stringent — making it necessary to build a model of all the irrelevant richness in sensory

input. It can also be too lax — a look-up table that reported PI [x] for each x might be an

excellent way of modeling the distribution, but provides no way to represent particular

examples x.

The smaller class of unsupervised learning methods seeks to discover how to represent

the inputs x by defining some quality that good 6features have, and then searching for

those features in the inputs. For instance, consider the case that the output y(x)=w � x is

a linear projection of the input onto a weight vector w. The central limit theorem implies

that most such linear projections will have Gaussian statistics. Therefore if one can find

weights w such that the projection has a highly non-Gaussian (for instance, multi-modal)

distribution, then the output is likely to reflect some interesting aspect of the input. This

is the intuition behind a statistical method called projection pursuit. It has been shown
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that projection pursuit can be implemented using a modified form of Hebbian learning

(Intrator & Cooper, 1992). Arranging that different outputs should represent different

aspects of the input turns out to be surprisingly tricky.

Projection pursuit can also execute a form of clustering in the example. Consider pro-

jecting the photoreceptor activities onto the line joining the centers of the clusters. The

distribution of all activities will be bimodal – one mode for each cluster – and therefore

highly non-Gaussian. Note that this single projection does not characterise well the na-

ture or shape of the clusters.

Another example of a heuristic underlying good features is that causes are often some-

what global. For instance, consider the visual input from an object observed in depth. Dif-

ferent parts of the object may share few features, except that they are at the same depth, ie

one aspect of the disparity in the information from the two eyes at the separate locations

is similar. This is the global underlying feature. By maximising the mutual information

between outputs ya and ya0 that are calculated on the basis of the separate input, one can

find this disparity. This technique was invented by Becker & Hinton (1992) and is called

IMAX.
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