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Abstract. Associative matrix memories with real-valued
synapses have been studied in many incarnations. We
consider how the signal/noise ratio for associations
depends on the form of the learning rule, and wc show
that a covariance rulc is optimal. Two other rules,
which have been suggested in the neurobiology litera-
wure, are asympiotically optimal io the limit of sparse
coding. The results appear to contradict a line of rea-
soning particularly prevalent in the physics community.
It turns out that the apparent conflict is due to the
adoption of different underlying models. Ironically.
they perform identically at their co-incident oplima. We
give details of the mathematical results, and discuss
some other possiblc derivations and definitions of the
signal/noise ratio.

1 Introduction

The immens¢ body of work on the neurophysiology of
synaptic plasticity severcly tantalises theoreticians.
Long term potentiation, LTP (Bliss and Lemo 1973) in
the hippocampus and neocoriex is generally thought to
support the Hebb hypothesis (Hebb 1949) about the
facilitation of synapses due to coincident pre- and
posl-synaptic activity. However, even on theoretical
grounds, it 1s clear that therc also has to be some
mechanism for reducing their efficacies, and the more
recent discovery of long term depression, LTD (Stan-
ton and Sejnowski 1989) points to this. There are
various hypothescs about how LTD might work, and
this paper presents one way 1o analysc them.
~ An associative network that is mathematically
tractable has binary inputs and outputs bui real-valued
synapses (Willshaw 197); Kohonen 1972). The most
straight-forward learning rule for these synapses is then
a linear ome, in which the contributions from each
association are just summed.
For non-linear matrix memories, such as the Asso-

ciative Net (Willshaw et al. 1969 Willshaw 1971) which

has two-valued synapses, il is hard to justify any learn-

ing rule other than the Hcbb-like one which modifies
them on the conjunction of pre-synaptic and post-
synaptic activity. In the linear case, though, there is no
such intuition. Ignoring the rolc of time, there are four
possible conjunctions of activity of quiescence on the
input and output fibres, and, in principle, the efficacy of
the synapse linking them could change by a different
amount for each of these. These four numbers define a
learning rule (Palm 1988a, b). The obvious questions
are which rule is optimal. and how far from the opti-
mum are other intcresting possibilities.

However, determining the optimal learning rule re-
quires some way of judging the quality of the unit. One
such metric is the signal/noise ratio (S/ N), which has its
roots in engineering and has proved useful in a large
pumber of applications. Consider a single unit that is to
discriminate between 1wo classcs of outputs, the ‘lows’
and the ‘highs’, based op a scalar ‘return’ the dendritic
sum. For real valued synapses. the distributions of
dendritic sums for the two classes are both approxi-
mately Gaussian, 9(y,. o?) and F(u,, 03), say. then it
will be easy to scparaic the two classes if the signal,
us — My 18 large (informally. if the peaks arc far apart)
and/or if the two contributions to the noisc, ¢> and d;.
are small (informally, if the pcaks are very Narrow).
Figure | shows the two distributions. The S/N is
defined as:
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and so incorporates both these effects. Maximising the

$/N should enhance separability.

Note that the S/N ¥ entirely independent of any
threshold 0 fhe unit might actually set 1o make the
discrimination. This is desirable, since it factors out an
issue which typically arises that onc of the classes will
occur more frequently than the other. Such an imbal-
ance might happen, for mstance, if the output patierns
are sparsely coded. having many morc lows than highs.

Then. it may be more important 10 sét 0 either to

¢

- —preserve the few of the latter. or to make fewer errors

by getting the bulk of the former correct. If high and
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low patterns occur with equal frequency. then it is likely
to be wise 1o set A = (u, + p,)/2. For very large systems,
the limit studied in the physics community, the classes
will either be perfectly discriminated or perfectly con-
fused, and so the threshold is essentially irrelevant.

In genenal, the $/N will be some function of both
the learning: rule and the input and output patterns.
Given a strong statistical assumption about these pat.
terns, il is possible to work out a theoretical value for
the S/N, and to optimise it with respect to the learning
rule. It turns out that care is necessary over exactly how
the S/N is defined. At least one incorrect and two
different correct values for it are quoted in the litera-
ture.

The next section describes the model in the {ormal-
ism due to Palm (1988a, b), Scct. 3 demonstrates how
cach of the three possible expressions for the S/N and
associated optimal rules arises, and Sect. 4 discusses
their properties. ‘Section 5 considers how thresholds
might be set, and Sect. 6 compares the results with
thosc current in the physics community. We have previ-
ously presented the leaming rules (Willshaw and Dayan
1990), but not the mathematics underlying them. The
appendix gives the mathematical details.

2 The model

The underlying formalism is based on that of Palm
(1988a, b). A matrix memory. of the form shown in
Fig. 2. is intended to store £ associations, indexed by
w. Each component of the associants can take one of
two values:

a(w)eg{c 1}, i=1...m, ceR,
and
b(w) e {l h}. j=1...n. (n

This is called the {c, 1} model for the low and high
values of the input respectively. All the patterns are
statistically independent and within cach set are dis-
tributed identically, with probabilities:

=Ma, =1],. | —p=2Pa =c.

r=2b,=h., l—r=9b =1,

+ + +
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Fig. 2. The matrix shows the sieps waken in the retrieval of the pattera
bw) that was previously stored in association with Mw). For good
recall, the calculated output b, the result of thresholding the dendnite
sum output by 6. should closely resemble the desired output b{is)

Patterns for which b, = /(h) will be called low (high).
For pauem w®, define

# (w*) asthcnumber of i € (1, m]for whicha{w*) = ¢,
and
# (0*) asthenumberofi € [I, m)jforwhicha(w*) =1.

The jth unit has synaptic weights, or efficacics. e, € R,
and consequent dendritic sum output in response 10
pattern ™ input:

d(w®) = i e,a,(w?). (2)

iz

The synaptic efficacies are set by the learning rulc as:

a

€y = Z' Aij(w, ’

where A, (w) is given in Table 1. The lincar dependency
on the associations learnt is clear. Any more inlecesting
case, for instance where the synaptic eiements saturate,
is more difficult to analyse because the effect of a
particular association can depend on when it is leamnt.
Hence, from (2),

w o B
d(w*) =} a,-(w‘)[ )3 A,,,(m)J. (3

1= “ -

Table 1. Local synaptic kearmmng rule

B,(w) Output

1w

low high
input ¢ x ]
a,{w) ) i é




Since the learning tule is local, each unit leamns sepa-
rately. The following discussion concerns only one
such unit, and the subscript j will be dropped.

For the given pattern @*, (3) can be separated into
two parts:

d(w*) = T a,(@%) A(@*)
sw i
+ Z/a,(w")[ Y

wal et

A,-(w)]. R

The first of these terms, S(w®), determines the signa/
for pattern w*®, and the second, M(w*). determines the
noLse.

The central limit theorem implies that the dendntic
sums d(w®) for both classes of patterns (those to
which the unit should respond low and high) will be
approximately Gaussian. Figure | above gives a possi-
ble frequency graph showing the distribution of the
dendritic sums. The two peaks, corresponding to the
two classes, are clearly evident, as is the fact that there
is no threshold 8 that would not result in either errors
of commission or errors of omission, or both. To see
this last point, observe that no vertical line could be
drawn that entirely separates the two peaks. As dis-
cussed in the introduction, the signal/noise ratio
(S/N). defined in (1), is a measure of the avcrage
potential fidelity of recall for the unit.

Note also that ¢, the value contributed by a ‘low’
input, is a parameter of the system. This is to allow an
evaluation of certain claims being made about how
dramatically the {0, 1} model (ie. ¢ =0) outperforms
the {—1. 1} model (i.e. ¢ = —1) for sparsc patterns. A
priori, this scems unlikely, since there is a formal
cquivalence between these 1wo models. To see this,
consider a,(w*) = Ad,(w*) + p, where &,(w*) € {0, 1}
arc the ‘canonical’ inputs for a pattemn. By varying 2
and y it is possible to generate any of these models -
cg p=c A=1=-c gives the {c. 1} model. Then

dw*) = S ea(©®)

i»)

=/'-{Z e.-d;(w‘)}+u{): e,}- (9
1| w1

wherc ¢, are the unit's weights. The u term is purely
additive, and so cannot affect the S/N. The 4 term is
multiplicative, but expanding the size of the Gaussian
curves for both classes also fails to change the SIN.
To sce this, note that although the distance between
the means goes up by the multiplicative factor. so does
the breadth of cach of the curves. Operationally. for
any given valuc of 8 for, say, the {0, 1} model, there 15
some other threshold for, say. the {—1.1) model
which allows the unit to make identical errors. Chang-
ing ¢ is essentially a formal step. The apparent contra-
diction between these results and those enjoying
currency in the physics community will be explored in
Sect. 6.

3 Establishing the signal/noise ratio

The usual method of caleulating ¢, the S/N, is fairly
straightforward. Having scparated the dendritic sum for
both Jow and high patterns into Signal + Noise, as in
(4), the numerator for ¢ (sec 1) would be the expected
difference between the signals for the two classes:

i — iy = E\S(w*)] ~ &,(S(w*)],
and the denominator would be the average vanance of

PRI

Yot +a3) = X7 [N(@*)) + ¥ . [N(@*)).

where &, implics that the expectation is taken over
those patterns for which the output b(w®*) =h, and
similarly for ¥,.

This amounts to making two assumplions:

Expeciation of the noise: that &, [N(w*)] = &N .

Variance of the noise: that it is this quantity rather than
some other measure of the spread of the dendrilic sums
that determines the ability of the unit to perform its
discrimination accurately.

Neither assumption is truc, although it 1s possible to
reconstruct results in the literature on calculating S/N
using cither or both of them. The following three
subsections demonstrate the effects of accepting and
rejecting them,

3.1 The effect of accepting both assumptions

Consider a high pattern, w,. The signal S(w,) is the
contribution due to terms A, (w,) for all the input hnes
and so:

S(w,) =6 # (0,) + ¢ # (wy).

The expectation value of the signal is therelore
&8.(S(w,)) =m{ps + (1 — p)chl.

Similarly for a signal w, for which the value of the umt
should be /,

&,[S(w)) =mipy + (1 —p)a].

Assuming that thc expectation of the noise is the same
for high and low cases,

pp — iy =mip(d —7) + (1 —p)e(f — ) (6)
For calculating the noise, therc is a lemma that i
r=11¢fwith probability 4.
¥  with probability | —a.

where ® and ¥ are random variabics, then the vanance
Y ofI'is
VN =av(®] + (1 —a) VY]

“+ a(1—a) &Y —1¥) .
Now consider in (4), the inner sum in the noise Lerm:

Q

Z A (w).

S T

)
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This 1s made up from contributions from each of  — |
patterns, where, for cach pattern,

’{6 with probability .

7 with probability | —r,

Adw) = W with probability p,
{ﬁ with probability r,

a  with probability | —r,

\ with probability 1 —p

Applying (7) twice, the variance of A{w) is:

¥ {ALw)) = plr(1 = ré — )7 + (1 = pr(1-r)}(B — 2)°]

+p(1=plrd + (1 =)y —rf = (1 - Na)*.

(8)

Equation (4) involves the sum of # (w*) copies
weighted by ¢ and # ((w*®) copies weighted by 1. Under
the apparently plausible assumption of independence
between a(w®) and I2_, .- A{w), over all the pat-
terns,

VN@*)] = (2 — e # (w*) + # () VA ()]
(9

and making the assumption that the variance for each
patlern can be averaged over all patterns w* would
produce

g;=o?
=m(Q - 1)[p + (1 —p)) Y [Aw)]
=(Q = 1p +cX1=p(l—7)

x {p(é -2+ (1 —pXB - 2)°

l - ‘ -

APy - -+ G L (10)
(1 —r)

The S/N. o. can now be calculated from expressions 6

and 10, Maximising it with respect to x. f, 7 and &

determines the conditions for an optimum.

Table 2 sets out the consequent rule, where 6 has
been arbitrarily set to f and ; to f — g. The optimal $/N
IS
. m 1
o qri—r
which, oddly enough. is correct in the general case, as
shown later.

Tabie 2. Optimal §, local synapuc keaming rule

A {w) Qutput

Hw)

low high
Input ¢ S—gl -1 +r0) f—g() =X =)
a,(w) 1 r—E /

For p =r. onc of the special cases of the rule 1s the
onc quoted by Paim (1988b).

B=—-cl—p)
o=1l—p.

o =cp
v = —p

Palm (1988b) also gives the S/Ns for two rules which
are not, in general, instances of the optima. They are:

The Hopficld rule:

gl"iupﬁelaz m I — l
2-12p()—p)1 —2p(} —p)

= | ﬂ:—] . L |

o= —1 = 1 p=r c=-

(This is optimal for p =r =1/2)

—“Ths - Y LY - He m l ]

The Hebb rulc: gﬁ“"“:a-:T; 7

1=0 f=0 0

','=0 5=1 p=r., ¢=

Although these results arc identical (o those by
Palm (1988b), it remains unclear to what extent this
derivation. and the general expression for the S/N.
mirrors his own.

That somecthing is amiss mapz be appreciated by
considering the behaviour of p}'°P*® as p =r — 0. One
might expect that the S/N should decrease under these
circumstances, since the Jearning rule is incorrectly sym-
metrical in a(w). However, p}**™¥ actually increases.
Simulations confirm this point; Table 3 shows theoreti-
cal and empirical values of ¢}'*™¥ and p}'**" for vari-
ous values of p'. It is apparent both that the
simulations diverge substantially from the theoretical
expression, ¢,. and that the Hopfield rulc does indeed
get worse for smaller p. The Hebb rule is not optimal
for any values of p or r, but it is asymptotically optimal
for sparse paticrns, as p =r — 0.

In his treatment, Palm makes the assumption from
the very outset that the S/N will be unaffected if all of
a. B. 7. and & arc multiplicd by the samc non-zero
number, or if the same number is added to them all. A
priori. and. as indeed is bornc out by simulations, the
jast invariance is most unlikely to hold. If a large
enough quantity is added to each ¢lement in the rule
such that all the weight valucs are large and positive,
then the signal which determincs the classification of a
particular pattern as low or high is likely Lo be entirely
swamped by the noise due to the uncertainty in the
number of the inputs that arc ¢ or 1. Palm uses this
assumption to reduce the number of free vanables on
which the learning rule dcpends.

| For this and the other simulations in this paper. the n = 20 units
have m = S12 input lines and arc fed 02 = 200 patterns. Figures arc
averages over 50 runs. The observed values of the varances are baxd
on 2 unil-by-unit calculation



Civ rulet

Teble 3. Theoretical and empirical values of the S/N for the Hebb
and Hopfield rules. After Willshaw and Dayan (1990)

Hebb ruke

Predicied S/N Actual

p.r o 4] 2} (4] SIN to
0.5 0 69 17 0050 0.10 +011
04 0 17 28 0.12 0.11 + 0.090
0.3 0 9.4 4.6 0.32 0.34 +0.15
0.2 0 13 8.6 1 12 +0.47
0.1 0 26 21 1.7 7.1 +10
0.05 0 52 47 32 28 118
Hopficld rule

Predicted S/N Actual
P T 3 4 %) 4] SIN to
0.5 0.5 1.0 1.0 10 ¥ + 1.3
0.5 0 5.} 51 10 11 +13
0.5 _os 93 93 10 ) T 13
0.5 -3 10 10 10 1l +1.3
0.4 -1 10 9.5 7.9 8.3 +1.5
03 -1 1 1.5 1.4 1.3 +040
02 -1 12 48 0.2§ 0.32 +022

3.2 Correcting for the expeciation of the noise

The first assumption given above was that the expected
values of the noise obscuring high and low patiems are
the same. This is not true, and so the difference between
the expected value of d(w*) for high and low patiems
cannot be taken to be equal to the difference between
the expected valuc of the signal S(w™) in the two Cases.
In (4) the noise term

Nw*) = Y a,(w‘)[ Y A,(w)]
im w1, w e
excludes pattern @™, and therc is a difference bhetween
excluding a pattern for which w*) =h and one for
which H@®) = {. If A, patterns have b(w*®) = h and A
have Kw®*) =1, so E[N ) =r and £[A47) =X —r),
then:
£ NG = méyla (@ NNy — IKpO (1= p)P)
+ A py +( 1 —p)}.
& [Nw®)] = mé [a; (@) E[AN (pd + (1 -p)h)
+ (N = Wpy + (1 =Py
and therefore:
&,(N@") — &N@*)] = —mip + (1 = P))
x [ps + (1 =p)p —p7 — (1 —-py} .
g

- gt

m contribution to amend the expression for
ja — oy in (6) yields

m"l‘:=mf.P(5—‘/)+f(l'P)(ﬁ—a)‘(P+dl —-p)
x (ps+(1=p)p —py — (I ~pl

=mp(1 —pN} = O —7) —(F — 2. (1

:" e o+ (1~ P\~

Toble 4. Optimal p; local synaptic leaming

rule
A, (w) Output
Haw)
low high
l-p-r b-r
Input ¢ h—g—— h-877—
{~p 1-p
gy | 5-3 h

Using (11) and the old expression (10) for the noisc
gives:

=P =96 =) — B

PN A Lind JEL e
I
(1-r

(s — ) —rip =2 + G =2
12)

Al

where
L I
Ta-1(p+(1-pprQ1 =1

Maximising this with respect (o . f. 7 and 6 gives the
optimal ruic shown in Table 4. where, for comparison,
5=hand 7 =h—g The optimal S/N is now:

Aﬂ;"_._l__z.(l_—z!_';f)_’

Q=TI (1—n p+c(1—p)
_.P(l—p)(l—C)2
TR I

This derivation has removed the dependence on ¢
of the learning rule, but Jeaves us frec to maximise
the S/N with respect 10 ¢ The maximum occurs al
&= =-pl(1=p\ where the average value of each wput
is zero. Then. ¢ = ;-

Not oply is this rulc somewhal inelegant, but it also
violates two cmpirical principles outlined carlicr: the
$/N should actually be independent of ¢, the numerical
value of a low input, and the rulc should not be
additively invanant, 1.c. it should not be the casc that
any number can be added to the rulc without affecting
its §/N. Table 3 also compares the theoretical ¢, and
actual S/Ns for the Hebb and Hopficid rules for vari-
ous values of p =r. It is apparent that g, is indecd
fallacious. Note again that the Hopfield rule is a special
case of the optimum for p =r = 12and h=1.8=2.

3.3 A resolution

The first pointer to a solution of these problems camec
from the simulations, There are two possible ways of
calculating the mean low and high dendritic sums:
either over the whole set of output units. or on an
individual, output-unit by output-unit basis. The esti-
mated sample variance will obviously depend on which
of these is adopted, and should be lower for the first
method than for the second. However, under the sec-
ond assumption, that it is the variance of the noise that

<P, 82 "Ptk“’l. ks —(l—p}l-) ,s (l-P)”' v)
p-(-P8 =0

Elhirand = ' &llred



Ll d

determines the theoretical discriminability, they would
not differ in the limit of large numbers of inputs.
Simulations confirmed that this was not the case.

1t was then obvious that it is not enough to calculate
the variances of the dendritic sums ~ the correlations
between two dendritic sums arc important too. The
analysis based solely on the vanance ignores the fact that
the efficacics ¢; are quenched, ic. although they are
determined during learning by the statistics of the pat-
terns, they are fixed by the time of recall. The units can
take advaniage of this by setting their thresholds inde-
pendently, each according to its own quenched weights.
The correlations in the dendritic sums come about
because the synapiic efficacies are determined by the
actual numbers of low and high pattemns the units have
lcarnt rather than just the mean numbers,

For instance, using thc Hebb rule with {0, 1} pat-
terns, a unit that happens to have learnt a large number
of high patterns will tend to have dendritic sums that
are greater than those for a unit that happens to have
learnt only a few. The variance analysis for g, just
balances these cases out, whereas it is clear that the
threshold for a unit of the first type will optimally be
larger than the threshold for one of the second.

The following simple didactic example of the effects
of correlation between noise terms demonstrates the
class of phenomenon that occurs. Imagine that signals
#(r) € {—1.}) are corrupted by additive noisc (/).
There are two possible processes generating y(1):

wl ~ g((l - ﬂ), 02) Al
and
'J’: ~ g( -1, 62)

where each collection is independent and identically
distributed. It is not known before the experiment
which process will generate the noise: all that is known
1s that

n = Py is given by ¥,].
and

1 —n =Py is given by ¥,].

Figure 3 demonstrates the two possibilitics. Rather
similarly to the effect of changing ¢ in the analysis of
the réle played by ¢ (see 5), the only difference between
the two cases is that the frequency graphs are shifted
with respect 10 each other. The S/Ns are¢ identical, and
indeed an appropriate choice of threshold would result
in no more and no fewer errors being made.

However, performing the formal analysis as for g,
gives that

SN =0,

and

Y{W)] = nle* + (1 —m)?) + (1 —n¥o? + n?)
=cl+n(l-m).

But this is clearly an overestimate of the ‘operative
vanance'. which 1s here defined as the expected disper-
sion of the corrupted signals about iheir acruai means,
rather than their expected means. So long as the unit
can set its own threshold according (0 which_of , and
¥, occurred, this is the appropriate quantily to calcu-
late, being the factor that disposes it to err. Tts value is
obviously 2, the individual variance of both ¥, and ¥,.

In the simple example. the noise terms are corre-
lated, becanse one choice (based on the probability =)
determines the distnbutions for them all. Ignoring this,
by calculating the true variance rather than the disper-
sion of the corrupted signals, leads to an incorrect
measure of how well the unit will be able to do its job
of discriminating between the two possible classes,
M) =—1and (1) = 1.

In the case of the associative memory, this issuc is
slightly more complicated. Here, the distribution of the
noise terms is also determined in advance of the opera-
tion of the unit as a discriminator, in this case by the
quenched weight values that emerge from the particular
set of input/output associations it learns. However, the
effects of the noise are mediated through the actual
{¢. 1} input values for the pattemns. If ¢ = —p/(1 —p)
then the expected value of any input is zero. This
nullifies any effect from the differences between the
actual efficacies of the synapses and their expected
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Fig 3. Distributions under v, and ¥, for n =01,
¢ =0.25 - doned lincs indicaic the low signals, solid
Distribution under ¥, Distribution under ¥, lines the high ones. Trandation is the only difference



values, which are normally the cause of the whole
probiem. If ¢ does not take this value, then there wil] be
an effect due to the quenching, that will make the
vanance of the dendritic sums diverge from the disper-
sion. To re-iterate, it is the dispersion rather than the
variance that determines the unit’s ability to discrimi-
nate, and so it is the dispersion that is the appropriate
measure for the S/N.
The mean dispersion is defined as:

g T eer-(2 ¥

1 2
diw ) ]
A i) ~ A} Ak by = b )
(13)
A.(and #,) being the number of w for which
Ww) = hor 1). 57 1s defined gimilarly as the cxpected
dispersion for low patterns. Symbolically,

Dispersion = Variance — Correlation,
and it is the interaction of the quenched weights with ¢
that introduces the correlations.

The appendix gives details of the calculation of the
expectled value of the dispersion, done explicitly through
wnting out the squares of the sums in (3). This gives:
s mp(1 - p)(1 = )*() = 2p)%(5 — P)?

= 2p(1 - pX1 = )6 — B)?)

+mp(1 = p)8Ip(1 — pX1 — YA (6 — B)* .

+ A1 — 0] + mp(1 - p)EL2(1 = )*(} — 2p)

X (8 = PUN o + A W) + mp(| = p)&[(1 —¢)?

X (Na® + ¥ ). (14)

where ¢ = pd + (1 — p)B is the average coniribution to

the synaptic efficacy from a high pattern, and
¥ = py + (1 — pla is the average contribution from a Jow

one.

For large Q, the last of these terms
SN @ + N )] =02r() — 1) —¥)*

+Q%re + () —r)? (15)

will dominate the noise and swamp the signal unless
r¢ + (1 — ri¥ = 0. In practice this removes the additive
degree of freedom in the rules for ¢, and g,, ensuring
that the average value of the efficacy of a synapse must
be 0. The component that remains arises from the
uncertainty in the values A, and .4, _

Ignoring the first terms in s}, which are dominated
by the terms which are in Q and Q?, gives

si~s;
=mQp(1 = p)} — ) p(1 = pXr(é — B)?
+ (1 =ry — %) + r(1 —rX¢ —¥)*
+ g + (1 — W)Y
=mQp(1 — pX1 = o) fr(1 —rXp(6 ~7)?
+ (1 = pXp —x)?) +p(1 —p)rd + (1 —r);
—rf —(1 —na)*+ QUré + (1 —ry)?
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and so:
_m AL —pIS —y — B+
Qp(} —pAr(d — B2+ (1 —r)y — x)?]
+r(1=nfé —¥)2+ Ared + (1 —r)?

Comparing the form of ¢, with that of ;. it turns oul
that, excluding the term in 22, they have the same
dependence on a, f, y and 4. but that the dependence on
¢ has finally been excised.

Maximising with respect to a, 8. ; and 9. the optimal
rule is just as for g, apart from the important constraint
that r¢ + (1 — r)¢ = 0. This gives one true oplimum:

The Covanance rule Rl (see Table 5):

B=—-p(1—r) ml 1

fovarmm. = —
y=—(=py s=(1—pX1—1) Qri-r

Two other sub-optfmal rules have previously been pro-
posed (see the next section for a discussion). As Alessan-
dro Treves has pointed out, our original classification in
Willshaw and Dayan (1990) of them as being locally
optimal was incorrect. In fact, they are not even optimal
under the additional condition that a = 0. They are:

[44]

x =pr

The Heterosynaptic rule R2:

2=0 ==p iletcro m |

. £ I p} =_I'|
y=0 o=1i=p i2r
The Homosynaptic rule R3:

a=0 p=0 Homo M1 1—p
y=~r é=1—r TQr -y

Table 3 shows Lhe close agreement between the theoret-
ical prediction, p,, of the S/N and the empirical result
for the Hebb and Hopfield rules. Table 6 shows the

Table 5. Optimal ¢; local synaptic leaming rule

A, (w) Output

Nw)

low high
Input ¢ pr sl -n
a{w) 1 =l (1 —pXl—7)

Table 6. Theurelical ¢, predictions of the $/N for the optimal (R1),
sub-optimal (R2 and R3), Hebb, and Hopfield rules for various
vaiues of p =r. Note that R2 and R3 are very close 10 RI as the
sparsily increases. but the Hebb rule is significamily worse Afier
Willshaw and Dayan (1990)

Signal/Noise Ratios for

pr R n2 R3 Hebb Hopficld

0.5 10 5.1 0.050 10

04 1] 6.4 0.12 7.5

0.3 12 B.S 032 1.4

0.2 16 13 [N 028
Coo 28 T2 R A = G,645

0.05 54 5t 12 0.0)5




theoretical S/N for the optimal, sub-optimal. and the
Hebb and Hopficld rules for various values of p=r,
based on g,. The Hopfield rule is optimal for p=r=
1/2, but rapidly tails off as the patierns Bet more sparse.
Even though the Hebb rule is asymptotically optimal as

p gets small, it is significantly worse than rules R1 to R3

optima even for quite tiny but finite values.

4 The optimal and sub-optimal rules

The optimal and two sub-optimal rules in the previous
section can be identified with ones suggested in various
places in the literature. The covariance rule was origi-
nally proposcd by Sejnowski (1977a, b). and. has since
been widely used in connectionist systems. For instance,
the Hopfield rule (Willshaw 1971:; Hopfield 1982) is a
special case of it when p=r=1/2. In fact, in the
physics models (Tsodyks and Feigel'man 1988; Buh-
mann et al. 1989; Perez-Vincente and Amit 1989) dis-
cussed in Sect. 6, it is taken as rcad. The motivation
behind it is even clearer from the equivalent form

Afw) X (4,(®) ~ akdw) — b) .

where a is the average value of an input p + (1 ~ p)c
and & is the average value of an outpul.

None of the g, rules described is biclogically plausi-
ble. for reasons discussed below, but ¢ §¥*'*™* is partic-
ularly difficult 10 justify because x > 0. x is the change
m efficacy of a synapse in the absence of either pre- or
post-synaptic activity. One could imagine some form of
decay process. which would tend to eliminate unused
synapses, but for the efficacy actually to nise is counter-
intuitive. 2's ‘role’ is to keep the expected value of a
synapse zero. which is thc non-additivity condition that
Palm ignored.

Vanous parts of the brain show synaptic plasticity.
including the visual system (during development), the
cerebellum and the hippocampus. Different underlying
mechanisms are believed to be responsible — for instance
the analogue of long term potentiation (LTP) in the
hippocampus scems to be long term depression (LTD)
in the cerebellum (Ito e1 al. 1982) - and the exteni to
which the plasticity is merely an artefact of the proce-
dure is also in doubt. Our hetero- and homo-synaptic
rules are so called because of their similanities with the
eponymous biological rules for 1.TD. Heterosynaptic
LTD has been known about for some time in various
parts of the brain, and a theoretical rule like this has
been suggesied by Stent (1973): Singer (1985): and
others. The evidence for homosynaptic LTD in the
hippocampus is rather more recent (Stanton and
Sejnowski 1989), and disputes remain about its reality
and properties. Bienenstock et al. (1982) made an carly
proposal along the lines of the homosynaptic rule, for
plasticity in the visual system’.

* Note that the oplimal rule under the addinonal condition that
1 =0 specifies decreases in cfficacy under both hetero- and homo-
synaptic conditions. The lalter are an order magnitude greaver than
the former for sparse patierms

Both the hetero- and homo-synaptic rules pcrform
worsc than the covariance rule; ¢4“'*° by a factor | —r.
and ¢3'°™ by a factor 1 — p. However, since the regime
n which any of the rules work well is where the patterns
are sparse (1.€. p and r are small). these factors are
relatively small. The nervous system is known to employ
sparse coding. For p =r. }'**® and g4°™ are equal.
The homosynaptic rule has also been used for connec-
tonist systems. such as Kanerva's sparse distributed
memory (SDM) (Kancerva 1988). The original version of
SDM only considers patierns with » = 1/2, and for it 10
be used optimally with different activity ratios, the
analysis here would suggest that the equivalents of ; and
4 ought to be suitably juggled.

IR T

~ — -One notabic feature of aif the riles is that for sparse

patterns, the absolute value of the increment & is an
order of magnitude larger than the decrements § or ;. If
this were also true of the real rules, it would make LTD
significantly more difficult to detect than LTP. This
would require careful experimental design, 10 ensure the
frequency of non-stimulation of input and output fibres
was sufficiently high.

All the rules involve both increases and decreases in
synaplic efficacy. Unfortunately for their biological rele-
vance. they also require the synapse to take both positive
and negative values. The whole scheme works by ensur-
ing that the expected value of every change 10 a synapse
is zero — otherwise the 07 factor lurking in (15) wil)
swamp Lhe signal cntirely. Dale's law, that almost no
synapse can change its spols from being excitatory to
inhibitory. or vice-versa. has the status almost of a
theoretical pons asinorumn - one that these rules cannot
cross. The obvious solution to this, which. for instance
Hancock et al. (1991) adopt in their related model, is to
regard each unit as a composite of two mutually inhibit-
ing units; one which sums up the excitatory inputs. and
the other which sums up the inhibitory ones. For this to
work in practice, there would have to be a high degree
of anatomical specificity in connections and connection
types, for which there is no evidence.

A further problem with these rules is that they ignore
the crucial rdle of time in the learning, and they rely too
heavily on the convenient availability of the b patterns
with which inputs arc associated. It is ironic that the
hippocampus is one of the main regions in which the
‘static’ phenomena of LTP and LTD are studied, since
it is known to be important for a variety of temporal
tasks such as delayed matching or non-matching 1o
sample (Gaffan 1974). Any model of learning, such as
these. that allows no temporal influence, is unlikely to be
very accurate. However, even given these constraints,

—-and the-added-fact of the-highly-complex-time-course of

real LTP (Racine et al. 1983), the model does prm{id; a
theoretical maximum discriminability for any associative
memory built along these lines.

§ Threshold setting

As seen above, the S/N is a threshold-independent mea-
surc of the quality of the unit. The unit is susceptibie



10 the two types of error (commission and omission)
and the threshold can be set optimally according 10
how each of these is weighed. Essentially the problem
reduces 1o the standard statistical one of class discrimi-
nation (Duda and Hart 1973) with so calied ‘Type I'
and “Type 2’ errors. As an example, consider the prob-
lem of minimising the probability of the unit erring.
given that the two distributions are distributed as Gaus.
stans with a common variance, $(y,, o?) and ¥(y,. 0?)
respectively, and with the relative frequencies of low
and high patterns being (1 ~r) : r. This is a fair approx-
imation, as discussed above. Then, for a threshold 6.
the overall probability of a mis-classification is

1—r = /202
?u= Ic—u v el gy

V2nols

r 4 \
+ e | TP gy
\/ZRﬂ‘z .o
where the first term is the probability of getting a low
pattern wrong and the second is the probability of
misclassifying a high one.
Differentiating #,, with respect to 9 gives

d 1 , .
— P, = e (8- pu a2 _ (1= r)e—lﬂ-m. Pi2g2
e v /2ne? {

which is zero at

Hy T 4y © r
f = 3 ﬁ In [ = r} .
where ¢ is the S/N. This makes intuitive sense sincc
lim, o 8=+ o0, ie i vitually every pateern is low,
the threshold will be large and positive, and so almost
cvery pattern will be classed as a low. Conversely.
hm,_, 8= -0, which arranges for the opposite
effect. Note also that the larger the S/N. the smaller the
cffect of any differcnce between the two frequencies.

Tablc 7 shows the result of using the Hopficld rule
in conjunction with this threshold for various valucs of
p =r, demonstrating the close agreement between
theory and simulation. Recall that this rule is only
optimal (as an examplc of R1) for p=r =1/2. The
normal criterion adopted for the Associative Net (Will-
shaw ct al. 1969) is that the cxpected number of errors
across all the outputs should be 1. Since the expecied
number of errors rises with the number of output units,
achicving this criterion for a nctwork of units requires a
higher S/N than for a single output unit; either there

Table 7. Using threshold 8, the expected and actual numbers of
errors across n =20 output lines. Aficr Willshaw & Dayan (1990)

Hopheld rule

Expect Actual Expect Actual
p.r ¢ SIN S/N +a Errors Errors
0.5 -1 10 ] 1.3 19 1.1
04 -1 1.5 83 1.5 1.7 1.6
03 -1 4 1.3 1040 4.6 4.5
02 -1 0.25 0.32 +0.22 40 4.2
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will need 10 be more input lines. or sparser patterns
must be used, or clse fewer patterns can be stored 1o the
same accuracy.

One interesting feature of Table 7 is that the cx-
pected and actval numbers of errors both decreasc
between p=0.3 and p =02, despite the fact that the
S/N also decreases, and so the unit might be cxpected
o behave less well, This is because the expected error
rate using the above threshold is

N/ r)

Py =(1 ——r)d’(——--f—-———ln

2 \/ p 1—r
\/I_’ 1 r
+ r¢( 3 \/[-’ In = r).
where P(x) is the area up 10 x under a standard
Gaussian curve. Figure 4 plots this as a function of r
and p, and it is apparent that for small S/N., the umit
will be cxpected to make more errors for values of r
away from 0 and 1, cven at the same S/N. An intuitive
fecl for this is given by the observation that the maxi-
mum crror rate is bounded by min{r, | —r}, as the
threshold could be set at o or —ac. Note the waxing
and waning bimodality of this function.

All this analysis is based on the assumption that
each unit can set its own threshold. Section 3 showed
that this is only necessary when ¢ # -p/(1 —p), as
otherwise the average value of any input is zero. and so
the quenching of the weights cannot affect the overall
positioning of the two distributions. This is true for the
standard Hopfield rule (p =r =0.5, ¢ = —1), but not
for any {0, 1} version of the Hebb rule. Also, the cffect
of the different values of ¢ is not confined to this
particular model of associative memory. Buckingham’s
(1991) work on sparsely connected Associative Nets,

Fig. 4. Expected ¢rvor rales using the optimal threshold as a functian
of r and the SIM



following Marr's model of the hippocampus (Marr
1971), shows exactly the same phenomenon, and indecd
its extinction when this particular value of ¢ 1s used.
Marr was apparently not aware of this effect.

6 Ptysics models

The physics connectionist community became interested
in exactly the sort of issues aired in this paper, at
aboul the same time as Palm was developing his analysis.
They were essentially responding to the poor perfor-
mance of the Hopfield learning rule (a =4 =1, 8=
7 = —1) for values of p and r (which are simply related
to a quantity called the magnetisation) other than 1/2.
The first papers were by Tsodyks and Feigel'man (1988)
and Bubmann et al. (1989), who studied the case of
asymptotic sparsity p =r — 0, followed by Percz-Vin-
ccnte and Amit (1989), who published on the case of
gencral p = r. Another mportant contribution came
from Gardper (1988), who showed how many patierns
any such network can store, and how this depends on the
magneuisation.

Having assumed a covariance rule, Tsodyks and
Fcigel'man claimed that:

‘It should be bome in mind that the “old" theories of
associative memory wcere formulated in terms of the
[{0. 1}] model, which seems to be most natural. Then,
however, it was replaced by the [{ — 1, 1}] model without
careful analysis of their equivalence. The results of our
paper give risc to an amazing conclusion that in some
cases such “obvious” simplification may drastically
affect the performance of the neural networks.’ ( Tsodyks
and Feige’'man 1988) p. 105,

However, Sect. 3 showed that changing the value of ¢
from 0 to —!. which is equivalent to changing from the
{0. 1} 1o the {— 1, 1} model, makes no diffcrence 1n this
modcl to the ability of the unit to discriminate between
low and high patierns. There is thus something rather
unceriain about any such remarkable performance in
terms of the number of patterns the unil can store. Also,
note that the mere number of patterns is not necessarily
the appropriate way (o judge a learning rule. Sparsc
patterns inherently contain less information than densc
~enes (there is less uncertainly as any element is more
likely to be a 0), so storing more of them may not
increase the informational efficiency. Gardner (1988)
showed just this - although as p = r — 0, the theorctical
maximum increases without bound, of the number of
potentially retrievable paticrms that can be stored, the
total information stored by the network actually de-
creases whatever the learning rule.

Perez-Vincente and Amit also assume a covari-
ance rule, and conclude that, in the notation of this
paper. the varance of the noise is (Amit, personal
communication)

p1—p)
r(l—-r)

x {6 —7)—rf —a) +(; = 2))°}.

al={p(d =)+ (1 —pHB — =) +

that the S/N is essentially ;. and that it is essential to
take ¢ = —p /(1 — p). This also seems to contradict the
findings above.

Three possibilities for explaining this divergence
spring to mind: the difference between heteraassocia-
tive and auloassocialive nets or between S/N and
mean field analyses, or the non-isomorphism of the
underlying models. Although the model considercd
here is hetero-associative, and the physics models au-
toassociative, it turns out that this should make no
difference so long as the ‘identity’ synapses, i.c. the
diagonal terms in the connection mairnix, are absent. In
the S/N analysis, they introduce correlations that
swamp out all the contributions from the other
synapses, whereas for autoassociation their absence is
also required for therc to be an energy function de-
scribing the trajectory of the system as 1t stabilises to a
memory.

S/N studies are generally used as a preliminary to
the more exact mean field analyses, and also to
confirm their results. The mean field analysis itself is
only true in the limit of very many inputs, whereas the
S/N can be calculated for finite systems. An cxample
of wherc this might be important is the threshoid; in
the limit, the two distnbutions shown in Fig. | are
either mfinitely far apart or totally indistinguishable.
and so0 the threshold is essenually irrelevant. This turns
out to be the case for the mean field analysis too, but
it is obviously not true for any finite system.

As became cvident in a series of discussions with
Daniel Amit, the results really differ because the mod-
els do 100. The three physics papers mentioned above,
apart from Gardner's, all consider the effects of in-

__putting_oné pattern into a whole set of output units,

cach of which has leamt its own associations indepen-
dently of the others, but is entrained to have thc same
threshold as all the others. The linear associative
modecl considers the effects of inputting many patterns
into a single output unit. The rationale behind this is
that therc i1s no necessary connection between one unit
and the next, and so no a priori reason to te the
threshold for one unit to that of another. The S/N
measures the theoretical capability of a single unit to
discriminate between its output, mot the capability of
some 'average’ unit, which, in principle, cannot exist.
This differencc between the models explains (he
divergence of the results. Lumping together a whole set
of output units forces onc to measure the vanance
rather than the dispersion of the dendritic sums, and so
to ignore the helpful correlations between them which
would be evident for any single unit in isolation. Setting
¢ = —p/(1 = p), the *optimum’ identified by Percz-Vin-
cente and Amit, ¢liminates the helpful correlations. and
s0 makes the two types of model perform equally well.
Likewise, a common thrcshold can be sct across all the
units, determined only by thc statistics of the associa-
tions. rather than their actual values. The ‘amazing
conclusion’ has been reduced to something more mun-
dane. Equivalently, it is well known that the {0.i]
model can apparently store roughly half as many pat-
terns as the {—1,1} model in the standard Hopfield



case (where p =r =1/2). but again this is almost an
artefact.

Furthermore, the Associative Net (Willshaw 1971)
uses the same threshold for all the units, namely the
number of on bits in the input. This is again due to jts
rather anomalous form.

Tsodyks and Feigel'man analyse the case in which
p — 0. For this case, the results here would predict the
opumal value of ¢ to be —p/(1 — p), which also tends
10 0. As seen in the quotation, they actually use {0, 1}
patterns, which arc only asymptotically optimal, but
find that this is adequate given the particular manner in
which the limit is approached.

Interestingly, Gardner used the lincar associa-
ave model for her analysis. She therefore also treats
the threshold in a different manner from Perez-
Vincente and Amit, not needing to introduce it in the
first instance. This allowed her rather more elegant
results.

7 Conclusions

Adopting the criterion of maximising the signal/noise
ratio (§/N) for a class of very simple associative matrix
memorics leads to one optimal, and two sub-optimal,
learning rules. Each of these, a covanance, a heterosy-
naptic, and a homosynaptic rule, has previously been
proposed, but they have not previously been analysed
in a common fashion. The covanance rule performs
better than the other two, but only negligibly so in the
limit of sparse coding. Unlike the other two rules, it
also requires synapses to increase in efficacy even if
their pre- and post-synaptic units are silent. All the
rules have the automatic consequence that the average
value of a synapse should be zero, 1o suppress noise,
and so require synapses to lake both positive and
ncgative values. The threshold may be set according to
an additional criterion, such as minimising the proba-
bility of an error, but certain of these criteria may not
be monotonic in the S/N,

The rules here, and the lack of dependency of the
S/N on the input values for patterns, differ from previ-
ous analyses. Some of thesc analyses are incorrect,
ignoring vital correlations in the noise terms. Other
analyses are correct, but are based on a different model.
The key characteristic discussed here is that each unit is
cvaluated independently, and so can set its own
threshold to allow for its particular quenched weights.
Other analyses have lumped collections of output units
together, and awarded them the same thresholds. This
reduces the apparent quality of the memory quite
markedly, unless one particular relationship holds be-
tween the high and Jow values of the input patterns. In
that case they perform identically.
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Appendix: calculating the dispersion

Having chosen the cxpected dispersion (13). repeated  below for
reference.

I i :
EHE ‘[“;-',-‘ 3 (o)’ - (_ )3 d(“’)) ]
N h e - a; Ah s = b

as thc appropnate measure to cakculate, it remained to calculaie it

First, il is necessary 1o reducc the cxpression above 10 a more
manageable form. Let w,,. ..., w, ,, be the patterns that should be
classified as lgh, and w,,. .. ., w, ,, be those that should be classified
as low. Expanding out the square, we get:

I !
(R + - rdiw,, ) - —{dUw, )+ v .,)
A Sy, -

—Ad(wy Mlwy,) + -+ dlw,,, e D} I

-

_ AT, 4 z
= v (ﬂ (w‘,, ) — d(w,.. )d(w.,))
i

since  £[d%w,, )} = 10w, ). Sldiw,,)d(w,,)) = E[dw,,)d(w,, ).
eic, for a piven valuc of 47,
It 1s far more difficult 16 calculate this quantity than to calculate

fdNw,,) ~ dlw,, )dw,, )}

which, by ecomparison with traditional statistics, might more naturally
be regarded as the sample dispersion. In any casc. the difference
between the two cxpressions is negligible, so we shall proceed with the
tatter.

To calculale this, it is necessary (0 adopt & new potation, which
will only be used here. Define:

{a(w, ) az(w,,). .. .. afw, )y mid,. ay. .. .. a,,)-
(@ (wg, ) az(ay,), ... ag(@y)) s (b, by . ... b,).
(A(wg ) Byl ) - 8 (wa,)) S (A A5y . Al
(A (wy, ). Axlesy,). - - A {w, ) =(8,. 8;. . ... B.).
(A {wg,). Bx(w,,). .. .. Balwy ) =(C Gyl ).

(Bylenr,, D) As10p,, ).... A lw, , NEY. Y. .. ¥,

V- OTRR I Y1 L M. W U 0 | ] VAT < SO AR
The point of these is that a and b represent the input values of two
high patterns for d(w,,) and d{(w,,). that A and B rcpresent thewr
associaled contributions (o the synaptic cfficacy. that C represents the
paradigmatic contribution 10 the synaptic weight of a high pattern
{other than w,, of w, ). and that Y and Z represent the paradigmatic
contribution 10 the weight from two different low patterns.

We then have.

o, V=g, A4, + - +a,A,) +(a, B+ -~ +a,B)
+ @z ¥ +aZ )

Taking the cxpectation of this quantity is then merely a tedious
process. Uzing the definitions:

dopd+(l—p)f
y=p;+(1 -pr
(=¢&la)
( = &fai))

we defive the quantitics tn Tablke 8.

a=p+c(l—p)

xwp+ci(l—p)



Tadle 8. Coatributions to fNdw, )

Number of terms m mm - 1}

Paradigm s Paradigm '
b alei pé? -tc’(l - p)f? aAa A, (pd + (] - ppp)?
Al als? Xps*+(} —pif’)  a,Ba.B, aip?
4 a_izi g7+ (1-ph’)  a,Za.Z, oyt
A4, -1) a34,8, (P8 + % ~p)I a4 B, (pb + (1 ~ p)prag
2., aid,Z, (pd + X —p)W a4 7, (p3 + () — p)frov
($%—IN.40 -2 aiB,C, xg* a,8a,.C., a’e?
26,04, aiB,Z, ndw aBya, 2, a’ey
AN =) vz, _ mu? - - ahaZ, - aly?
Table 9. Contributions 1o €ld(w, Vdw, )]
Number of terms m mm . |)

Paradigm & — - - Paradigm 4

a4, (po*+c1- p)BYo  a,db,A,  (ps+cl - p)floy

T

2.4, aAb 2, (P +c1 -p)fray 0,452,
AN, =2 a,B.b,C, {(pd + () — p)f)a¢p «Byb,,C,
2.4, 0,8,6,Z, (pd + ] —pif)ov  a,B,b,Z,,
(4,-2) a,C3b, o3 pd24 (1 —p)f)  a,ChC.
4 a,Z3b, o¥(py? 4 (1 - pla?) wZb,2Z,
(AW =204, -3  aCbhD, o 92 a,C\b,.D,,
.47, =247, a,C\h, 7, sloy a, Cibp 2
B a¥,6,2, oy’ a2,

fl./hb‘B, (Pé + f(' -‘P)p)z “Illbnsm
a,B,b,A, (pé+dl —p)fy*  a,Bb_A,
2.4, —2) a,A,b,C, (PO +dl —p)iyad 4, A,b.C.,

(pd + ol — p)fy*
d’¢7

(pé + ol -~ p)f)og
(pé + 1 - pifjoy
a!¢:

o gy

o0l

aZ*!

02¢2

aigy

oyl

Summing up the terms, we get;
Sl w,, ) = mSle A 36 + 4 W) ¥ 1oL — p).4'4(6 ~ B)?
+ W~ 17T 2000 — KL — S — B0 + 1]
=l —pH 1 = 21 - 2pKd — B)7)
= mim — ) EfoY .0, ¢ +. v )2
“2p(1 —pH1 — N6 — Pro. 470 + ¢ W)

+p =y — )6 - 1Y
and similarly:

81d%wn, ) = m A7 = 8 WP+ xp(] — pf. V(S - B
+ A5G =20+ 200 = PN = NG — WA + A )
+R=pK) = W = 2py — 2]
+mim — NfloY. 47,8 + .1 H)
+ 201 —pX 1l — Ny — xpof. 4 o = . )
P =P =) — 27
Now we have.
dlw, Jdlw, ) =a, A+ +a, A )+ +(a, 2, + +a,Z,)}
xf(b A+ 4D AY+ (B Z -~ +b2)).
Summing these terms as in Table 9. we denve:
S(dlw,, ey )] = mElo .4 0t +.9 #)°
+4p(] ~pN1 —c}d — Blo(. 4,0 - .t W)
+p1—pie - P2 9
+ 20U - p)(L ~ )Hé - B)F
+ 2opt1 —pl1 — U] — 2pX6 - B)?)
+mim - )8l Vo + AW

200 —pMT — X3 — frol 4 48 + .+ @]
“ P - p)1 = 0)36 — Py
and:
Sd(w, , Vdie, )] = mEo .V o + .4 )}
+ap(l —pXI| — Ny —2ho(. ¢, + .1 )
o= ppo 4408 - BE 4+ vl — 7)Y
+2270 - - —2)°
+2ap(t - pHL — X ) = 2p)y — 2)7)
+ o ~ )80 4 b + 4 )
+ 20 —pl | —ely — 2ot 8 .0 + .0 Y]
+p = Py < )y - 3)Y).
So, as in (14):
A1 (wy ) =~ dlwy, )d(w, )] =mp(d —px | - )
x E1plL —pN.A4 A8 - B
G = [ )
SRR AR TRy TR RR P
+101 - 2p)7 = 2001 — p)KS — 7
and smmilary:
4w, - dow, d(w,,) =mph —p() = ¢)°
x 8[p(1 - ph. 1 \18 — p)°
+ 0 -2 [ W)
2 - 20K -2 Ve v W]
+it = 20)" = 2p(1 — P57 - 27



The correctness of the summation performed using the terms of
Tables 8 and 9 was verified using the computer program REDUCE.
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