
A simple algorithm that discovers e�cient

perceptual codes

Brendan J. Frey, Peter Dayan and Geo�rey E. Hinton

Department of Computer Science, University of Toronto

Toronto, Ontario, M5S 1A4, Canada

ffrey@cs.toronto.edu, dayan@ai.mit.edu, hinton@cs.toronto.edug

In M. Jenkin and L. R. Harris (editors), Computational and Biological Mech-

anisms of Visual Coding, Cambridge University Press, New York NY, 1997.

Abstract

We describe the \wake-sleep" algorithm that allows a multilayer,

unsupervised, neural network to build a hierarchy of representations of

sensory input. The network has bottom-up \recognition" connections

that are used to convert sensory input into underlying representations.

Unlike most arti�cial neural networks, it also has top-down \genera-

tive" connections that can be used to reconstruct the sensory input

from the representations. In the \wake" phase of the learning algo-

rithm, the network is driven by the bottom-up recognition connections

and the top-down generative connections are trained to be better at

reconstructing the sensory input from the representation chosen by

the recognition process. In the \sleep" phase, the network is driven

top-down by the generative connections to produce a fantasized repre-

sentation and a fantasized sensory input. The recognition connections

are then trained to be better at recovering the fantasized representa-

tion from the fantasized sensory input. In both phases, the synaptic

learning rule is simple and local. The combined e�ect of the two phases

is to create representations of the sensory input that are e�cient in the

following sense: On average, it takes more bits to describe each sen-

sory input vector directly than to �rst describe the representation of

the sensory input chosen by the recognition process and then describe

the di�erence between the sensory input and its reconstruction from

the chosen representation.

Introduction

Arti�cial neural networks are typically used as bottom-up recognition de-

vices that transform input vectors into output vectors via one or more layers

of hidden neurons. The networks are trained by repeatedly adjusting the

1



weights on the connections to minimize the discrepancy between the ac-

tual output of the network on a given training case and the target output

supplied by a teacher. During training, the hidden neurons are forced to

extract informative features from the input vector in order to produce the

correct outputs. Although this kind of learning works well for many practi-

cal problems, it is unrealistic as a model of real perceptual learning because

it requires a teacher who speci�es the target output of the network.

When there is no explicit teacher, it is much less obvious what learning

should be trying to achieve. In this chapter, we show how it is possible to

get target activities for training the hidden neurons of a network without

requiring a teacher. This leads to a very simple, local rule for adjusting the

weights on connections. We then show that this simple rule can be viewed

as a way of optimizing the coding e�ciency of the representations extracted

by the network.

A simple stochastic neuron and how to train it

There are many di�erent idealized models of neurons. Here we use a par-

ticular model in which the neuron has two possible activity states, 1 and 0.

The inputs to the neuron only have a probabilistic in
uence on its state of

activity. Big positive inputs tend to turn it on and big negative ones tend to

turn it o�, but there is always some chance that the neuron will adopt the

less probable of its two states. A neuron, i, �rst computes its total input, xi

xi = bi +
X
j

sjwji (1)

where bi is the bias of the neuron, sj is the binary state of another neuron,

and wji is the weight on the connection from j to i. The probability that

the neuron turns on then depends only on xi

pi = prob(si = 1) =
1

1 + e�xi
(2)

If a teacher supplies target states for the neuron it is relatively straightfor-

ward to adjust the weights on the incoming connections so as to maximize

the probability that the neuron will adopt the correct target states on all the

various training cases. This overall probability is just the product over all

training cases of the probability that the neuron adopts each target activity.

First we note that maximizing the product of these probabilities is equiv-

alent to maximizing the sum of their logs. This can be done by an online

procedure that simply adjusts a weight to improve the log-probability of the

2



target value on each training case as it is presented. Provided these improve-

ments are small and in proportion to the derivative of the log-probability

with respect to the weight, the combined e�ect of the weight changes over all

of the di�erent training cases will be to improve the overall log-probability.

Fortunately, the derivative of the log-probability is very simple and leads to

the following learning rule:

�wji = �sj(ti � pi) (3)

where � is the learning rate and ti is the target value.

The nice thing about this learning rule is that all of the information it

requires is local to a synapse (assuming that the synapse can �nd out pi or

the actual postsynaptic activity si which is a stochastic estimate of pi). The

major di�culty in applying this simple rule to a multilayer network is that

we do not generally have targets for the hidden neurons.

How bottom-up and top-down models can train

each other

One way of solving the problem of hidden targets for a network that performs

vision is to use synthetic images that are generated by a realistic graphics

program. This program randomly chooses a sensible representation and then

produces a synthetic image using its graphics rules. It can therefore provide

pairings of images with their underlying representations and these pairings

can be used to train a recognition network to recover the underlying repre-

sentation from the image. If the graphics program is written as a top-down

hierarchical network of binary stochastic neurons (see �gure 1), each top-

down pass will produce an image together with a set of targets for all the

hidden neurons in the layers above. So, given a graphics program in this

form, we can train a vision program that inverts the generation process. Of

course, images will typically be ambiguous in the sense that the graphics

program could have generated them using di�erent representations. This

means that, given the image, the best we can hope to do is to assign proba-

bilities to the underlying representations. The stochastic neurons we use are

therefore entirely appropriate.

The rule for learning the weight, �ij , on the recognition connection from

neuron i to neuron j is:

��ij = �si(tj � qj) (4)

where tj is the actual binary state of neuron j produced by the generation

3



j

s

0 i

j

is

s

θ
0θ i

j iθ

j iθ1 + exp
1p

(
=i

j
-

j+1

s )Σ-

Figure 1: A top-down generative model composed of stochastic neurons. The

model can be used to generate data in the bottom layer. Because the neurons

are stochastic, many di�erent data vectors can be generated by the same

model. A neuron is turned on with probability pi so its binary state depends

on its generative bias and on the binary states already chosen for neurons in

the layer above. At the top layer the neurons have uncorrelated states. The

correlations between neurons become more and more complicated in lower

layers.

process and qj is the probability that neuron j would be turned on by the

recognition connections and the recognition bias, �0j :

qj =
1

1 + exp(��0j �
P

i si�ij)
(5)

So far we seem to have merely exchanged one problem for another. In order

to get the hidden targets to train a network to do vision, we have appealed

to a network that can already do graphics. But where does this network

come from?

Suppose we already have a multilayer bottom-up vision network that can re-

cover underlying representations from images. It would then be easy to train

a top-down graphics network since the vision network can provide training

examples in which images are paired with the higher level representations

from which they should be generated.

The rule for learning the weight, �ji, on the generative connection from

neuron j to neuron i is:

4



��ji = �sj(ti � pi) (6)

where ti is the actual binary state of neuron i produced by the recognition

process and pi is the probability that neuron i would be turned on by the

generative connections and generative bias.

So, given a graphics network we can train a vision network and vice versa.

Now comes the leap of faith. Given a poor graphics network, we use the

images it generates to train a vision network. When this vision network is

then applied to real images we can use it to improve the graphics network.

Intuitively, the reason the two networks can improve each other is that the

mutual training keeps decreasing the discrepancy between the distribution

of the real images and the distribution of the fantasies generated by the

graphics network. As we shall see later, this intuitive reasoning is only

approximately correct.

A statistical perspective

There are two equivalent but very di�erent approaches to analyzing what the

wake-sleep algorithm does. In one approach we view the generative model

as primary and the aim is to adjust the top-down generative connections so

as to maximize the likelihood that the generative model would produce the

observed data. This type of maximum likelihood model �tting is a standard

statistical approach. In order to perform the maximization, we need to know

how the current generative model explains each data vector. An explanation

of a data vector is an assignment of 1's and 0's to all of the hidden neurons in

the network. For a given set of generative weights, each possible explanation

will have some posterior probability of having generated each data vector

and these probabilities are needed in order to adjust the generative weights

correctly. This is tricky because the number of possible explanations is

exponential in the number of hidden neurons so it is completely intractable

to compute all those posterior probabilities.

The recognition connections can be viewed as a way of approximating the

posterior probabilities of explanations. Given a data vector, a bottom-up

pass through the network will produce a particular explanation. Since the

neurons are stochastic, another bottom-up pass may well produce a di�erent

explanation for the same data vector. The recognition connections therefore

determine a probability distribution over explanations for each data vector.

Although this is not the true posterior distribution, the learning in the sleep

phase makes it approximate the posterior distribution which is good enough

to allow the generative weights to be improved. A more rigorous account

5



from this perspective is given by Dayan, Hinton, Neal and Zemel (1995).

In this chapter we focus on a coding perspective (Hinton and Zemel 1994;

Hinton, Dayan, Frey and Neal 1995).

The minimum description length perspective

Consider the following communication game: A sender must communicate

an ensemble of binary data vectors to a receiver using as few bits as possible.

The simplest method is for the sender to treat all the components of each

data vector as independent and to communicate each component separately.

The cost of communicating the binary value of a component depends on how

often that component is on in the whole ensemble of data vectors. It can be

shown that the best possible code for an event that occurs with probability

p requires at least � log
2
p bits. Moreover, by using clever coding techniques

it is always possible to approach this limit, so to simplify matters we shall

simply assume that an event with probability p can be communicated us-

ing � log
2
p bits. This is only possible if the sender and the receiver both

know the value of p, which would require some additional communication.

For large ensembles, this additional communication can be amortized across

many data vectors so it is negligible and we shall ignore it here. So, taking

into account the two possible states of component i of the data vector, the

cost of communicating that component is

Ci = �si log2 pi � (1� si) log2(1� pi) (7)

where pi is the probability that it is on and si is its actual binary state.

If the components of the data vector are not independent it is wasteful to

communicate them separately and independently. It is more e�cient to

transform the data into a di�erent representation in which the components

are approximately independent. Then this representation is communicated

together with any errors that occur when the raw data is reconstructed

from the representation. This gives rise to an interesting criterion for what

constitutes a good representational scheme. We simply measure the cost of

communicating the representations of all the data vectors in the ensemble

plus the cost of communicating the reconstruction errors. The smaller this

combined description length, the better the representational scheme. This

is a simpli�ed version of the minimum description length (MDL) approach

introduced by Rissanen (1989). In MDL it is usually important to include

the cost of communicating the representational scheme itself since this is

needed in order to reconstruct each data vector from its representation. For

our current purposes we ignore this additional cost.

6



A simple idea about how to communicate images may make the MDL per-

spective clearer. Instead of sending the individual pixel intensities, we could

�rst extract edges from the image and then extract instances of objects from

the edges as shown in �gure 2. To communicate the image we �rst send

the top-level representation in terms of instantiated objects. If the number

of possible object types is limited and if each type of object only has a few

degrees of freedom in how it can be instantiated (eg. position, size and ori-

entation) it will be much cheaper to send the top-level representation than

to send the raw image. Once the receiver knows the instantiated objects he

can use a top-down generative model to predict where the edges are. More

speci�cally, his predictions can take the form of a probability distribution

across the various possible instantiated edges. If the predictions are good,

they will assign fairly high probabilities to the actual edges. Since both the

sender and the receiver can construct the predicted probability distributions,

these distributions can be used for communicating the edges. This should

be much more e�cient than communicating the edges under the assumption

that all possible edges are equally likely. In e�ect, an edge is only expensive

to communicate if it violates the expectations created from the layer above

by the top-down model. Finally, the edges (plus the contrast across them)

can be used to create expectations for the pixel intensities so that intensities

which meet these expectations can be communicated cheaply.

For an appropriate ensemble of images, this whole scheme is an e�cient

way to compress the images for communication. But even if we are not

interested in communication, the e�ciency of the compression can be used

as a criterion for whether the representational scheme is any good. The

MDL criterion allows us to take an ensemble of images and decide that it

really is sensible to code them in terms of edges and objects even if we have

no prior bias towards this type of representation1.

Quantifying the description length

Figure 3 shows how a multi-layer network could be used to communicate

data vectors to a receiver. To communicate an individual data vector, the

sender �rst performs a bottom-up recognition pass which assigns a binary

value sj to each hidden neuron2. This value is chosen stochastically using

the recognition probability distribution for the neuron fqj ; 1� qjg, where qj

1To be fair, we need to also take into account the cost of communicating the genera-

tive model itself | how object instantiations predict edges and how edges predict pixel

intensities. This raises some tricky issues about what probability distribution to use for

communicating the generative models, but these di�culties can be handled.
2Notice that the states of neurons within one layer are conditionally independent given

the particular binary states chosen for neurons in the layer below, but this still allows the

states of neurons in the top layer to be far from independent given the data.

7



Receiver

Coded using expectations

generated by objects

generated by edges

Coded using expectations

Coded using fixed expectations

Sender

expectations

Intensity image

Objects

Edges

Intensity image

Edges

Top-down

expectations
Top-down

Objects

Figure 2: An illustration of the relationship between good representations

and economical communication. If the images are well-modelled in terms of

objects and edges, then they can be communicated cheaply by using this rep-

resentation. The top-down expectations produced by the generative model

operating on representations at one level will assign high probabilities to the

data actually observed at the next level down, so by using the top-down

expectations it is possible to communicate the data cheaply.

is determined by the states of the neurons in the layer below and the recog-

nition weights. The binary states of neurons are then sent to the receiver

starting with the top layer and working down. Each top-layer neuron si has

a generative bias, �0i, that adapts during learning. Applying the logistic

function to this bias yields the generative probability pi that the neuron is

on. Assuming that the sender and receiver use the distribution fpi; 1� pig

as an agreed prior distribution for communicating the binary state si, the

cost is given by equation 73. For neurons in the middle and bottom lay-

ers, the generative probability pj depends not only on the generative bias

of the neuron but also on the states of neurons in the higher layers and the

generative weights from those neurons.

Summing over all neurons, the number of bits that would have to be sent

across a channel to communicate a data vector is:

3To approach this theoretical limit it is necessary to combine the states of many neurons

into one message, so what would actually have to be sent across a channel would be much

more complicated than just sending the binary value si.

8



s

Data vector

i

sj
jq

jp

Figure 3: A multi-layer network can be used to communicate data vectors.

Binary values for the hidden neurons are obtained by a bottom-up sweep

of the recognition network. Assuming that the sender and receiver have

identical copies of the generative weights, the generative probability pj can

be used to encode each binary activity.

C =
X
i

Ci = �

X
i

(si log2 pi + (1� si) log2(1� pi)) (8)

C is a stochastic quantity because it depends on the states si that are stochas-

tically picked during the bottom-up recognition pass. Apart from this, the

only peculiar property of equation 8 is that it is wrong, for reasons explained

in the next section.

The bits-back argument

Consider the simple network shown in �gure 4a which might be obtained

by training on the data set shown in �gure 4b. Since there is only one

hidden neuron, the network has two alternative ways of representing each

data vector. The generative bias of the hidden neuron, h, is 0 so its gen-

erative probability is ph = 0:5. It therefore costs 1 bit to communicate the

state of the hidden neuron whichever representation is used. The generative

probabilities for the two input neurons are (0:5; 0:75) if neuron h is on and

(0:25; 0:5) if it is o�. Either way, if the data vector is (1; 0) it costs an addi-

tional 3 bits to communicate the states of the two data neurons once sh has

9



-ln3

(b)

0

(a)

ln3ln3

0

1 1
0 1
0 1
0 1

s

hs

ji s

1 0
1 0
0 1

0 0
0 1
0 1

1 1

0 0
0 0
0 0

1 1
1 1

Figure 4: a) A simple example of a generative model. The logistic of �ln3

is 1=4, so it costs 2 bits to communicate si = 1 when sh = 0 because the

top-down distribution (pi; 1�pi) under which the state of si must be coded is

then (1=4; 3=4). Similarly, when sh is o� it only takes 1 bit to communicate

the state of sj . b) A data-set which is well-modelled by the simple network.

Note that the frequency of the vector (1; 0) in the dataset is 1=8 so the

optimal code takes 3 bits.

been communicated. The network has two equally good ways of coding the

data vector (1; 0) and each way takes a total of 4 bits. Now we show a rather

surprising result: Two 4 bit methods are as good as one 3 bit method.

We start with a vague intuitive argument. If we can send the data using

two di�erent messages each of which costs 4 bits, why can't we save a bit

by being vague about which of the two messages we are actually sending?

This intuition can be made precise using the scheme illustrated in �gure

5. Imagine that in addition to the data vector, the sender and the receiver

are also trying to communicate some totally separate information across the

same channel. This other information has already been e�ciently encoded

into a string of binary digits that appears totally random. We show how to

communicate both the data vector and the �rst bit of this random bit-string

using only the 4 bits that are required to communicate the data vector. So

the net cost of sending the data vector is really only 3 bits which is just what

it should be for a vector that occurs one eighth of the time.

During the bottom-up recognition pass, the sender discovers that qh = 0:5

because there are two equally good choices for sh. Instead of using a random

number generator to make the decision, the sender simply uses the �rst

10



Data DataLossless
compression Other

information
Other

information

Sender Receiver

Figure 5: An illustration of how to make e�ective use of the freedom of

choice available when there are several alternative ways of coding the data.

Another source of information is used to decide between alternative codes.

This allows the other information to be communicated as well as the data.

So the true cost of communicating the data is reduced by the amount of

information needed to choose between the alternative codes.

bit in the other message since these bits conveniently have a probability of

0:5 of being on. Using whatever value of sh gets selected, the sender then

communicates sh and the data vector for a total cost of 4 bits. Assuming the

receiver has access to the same recognition model as the sender, the receiver

can now recreate the choice that the sender was faced with. He also knows

what value was chosen for sh so he can �gure out the �rst bit of the other

message.

In general, the various alternative representations will not give equal descrip-

tion lengths for the data vector, and the recognition probabilities will not be

0:5. In the general case, there are many alternative codes, �, each requiring

E� bits, where E� includes the cost of communicating the reconstruction

error. If we have a probability Q� of picking each code, the expected num-

ber of bits that are used to send the data is
P

�Q�E� and the expected

number of bits from the other message used to pick a single code from the

Q distribution is the entropy of this distribution, �
P

�Q�log2Q�. So the

net cost of communicating a data vector is:

F =
X
�

Q�E� �

 
�

X
�

Q�log2Q�

!
(9)

Frey and Hinton (1996) describe an actual implementation of this coding

method. Equation 9 is well known in physics. We interpret � as a particular

con�guration of a physical system, E� as its energy measured in appropriate

units and Q as a probability distribution over con�gurations. F is then the

Helmholtz free energy of the system at a temperature of 1. We call a model

that uses separate recognition connections to minimize the Helmholtz free

11



energy in equation 9 a \Helmholtz machine".

The probability distribution that minimizes F is the Boltzmann distribution:

Q� =
e�E�P

 e
�E


(10)

The generative weights and biases de�ne the \energy" of each representa-

tion and the Boltzmann distribution is then the best possible recognition

distribution to use. But F is perfectly well de�ned for any other recognition

distribution over representations and it is generally not worth the e�ort of

computing the full Boltzmann distribution. Our simple bottom-up recogni-

tion network builds up the Q distribution as a product of lots of fqi; 1� qig

distributions within each hidden layer.

When we take into account the savings that occur when the generative model

allows many alternative ways of representing the same data, the coding per-

spective tells us to minimize free energy. If we also decide to restrict the

recognition model to using a product distribution in each hidden layer, the

free energy can be rewritten as:

F =
X
i

�
qi log2

qi

pi
+ (1� qi) log2

1� qi

1� pi

�
(11)

where i is an index over all of the neurons, and most of the p's and q's

are stochastic quantities that depend on choices of s in higher or lower lay-

ers. A pleasing aspect of equation 11 is that each neuron makes a separate

additive contribution which is just the asymmetric divergence between the

recognition and generative probability distributions for the state of the neu-

ron. A less pleasing aspect of the equation is that changes in the recognition

weights in lower layers cause changes in q's and hence p's in higher layers,

so the derivatives of the free energy with respect to the recognition weights

are complicated. Dayan et al. (1995) show how the derivatives can be

approximated accurately and e�ciently using a backpropagation scheme if

the recognition process is modi�ed. However, this is much less biologically

plausible than the simple wake-sleep algorithm.

Does the wake-sleep algorithm minimize free energy?

All that remains to be shown is that the simple, local wake-sleep algorithm

de�ned by equations 4 and 6 is actually performing gradient descent in the

free energy. For the wake phase, this is easy because the q's are una�ected

by changes in the generative weights. When averaged over the stochastic

choices of states for the hidden neurons, the right hand side of equation

12



6 is exactly �� times the derivative of the free energy with respect to the

generative weight �ji. So wake-phase learning does exactly the right thing.

The sleep phase is more problematic for two reasons. First, the sleep phase

uses fantasy data produced by the generative model instead of real data.

Early on in the learning the fantasies will be quite di�erent from the real

data. Later in the learning, however, the distribution of fantasies comes to

resemble the distribution of real data. The second problem is more serious.

Instead of performing gradient descent in the free energy, the sleep phase

performs descent in a similar expression with the p's and q's interchanged:

G =
X
i

�
pi log2

pi

qi
+ (1� pi) log2

1� pi

1� qi

�
(12)

Fortunately, the free energy and G have very similar gradients when the p's

and q's have soft values that are not close to 1 or 0. Extensive simulations

have shown that so as long as we avoid large weights, following the gradient

ofG almost always reduces the free energy. Naturally, during on-line learning

there are stochastic 
uctuations in the free energy because the binary states

produced by the recognition process are stochastic.

An example: Extracting structure from noisy im-

ages

An interesting problem relevant to vision is that of extracting independent

horizontal and vertical bars from an image (Foldiak 1990; Saund 1995; Zemel

1993; Dayan and Zemel 1995; Hinton et al. 1995). Figure 6 shows 48 exam-

ples of the binary images we are interested in. Each image is produced by

randomly choosing between horizontal and vertical orientations with equal

probability. Then, each of the 16 possible bars of the chosen orientation is

independently instantiated with probability 0.25. Finally, additive noise is

introduced by randomly turning on with a probability of 0.25 each pixel that

was previously o�. So, the graphics program used to produce the training

data has three levels of hierarchy: the �rst and lowest level represents pixel

noise, the second represents bars that consist of groups of 16 pixels each,

and the third represents the overall orientation of the bars in the image.

Using the wake-sleep algorithm, we trained a Helmholtz machine that has

4 top-layer neurons, 36 middle-layer neurons, and 256 bottom-layer image

neurons. Learning is performed through a series of iterations, where each

iteration consists of one bottom-up wake phase sweep used to adjust the

generative connections and one top-down sleep phase sweep used to adjust

the recognition connections. Every 5000 iterations, an estimate of the free

13



Figure 6: Examples of training images produced by a graphics program with

three levels of hierarchy. First, an orientation (ie., horizontal or vertical) is

randomly chosen with fair odds. Second, each bar of the chosen orientation

is randomly instantiated with probability 0.25. Third, additive noise is in-

troduced by randomly turning on with a probability of 0.25 each pixel that

was previously o�.

energy and the variance of this estimate are computed. To do this, 1000

recognition sweeps are performed without learning. During each recognition

sweep, binary values for the hidden neurons are obtained for the given train-

ing image. The negative log-likelihood of these values under the recognition

model gives an unbiased estimate of the second (entropy) term in the free

energy of equation 9. The negative log-likelihood of the values of all the

neurons under the generative model gives an unbiased estimate of the �rst

(energy) term in the free energy of equation 9. In this way we obtain 1000

independent, identically distributed, noisy unbiased estimates of the free en-

ergy. The average of these values gives a less noisy unbiased estimate of the

14



free energy. Also, the variance of this estimate is estimated by dividing the

sample variance by 999.

Since we are interested in solutions where the generative model can construct

the image by adding features, but cannot remove previously instantiated

features, we constrain the middle-to-bottom connections to be positive by

setting to zero any negative weights every 20th learning iteration. In order

to encourage a solution where each image can be succinctly described by

the minimum possible number of causes in the middle layer, we initialize

the middle-layer generative biases to -4.0 which favors most middle-layer

neurons being o� on average. All other weights and biases are initialized to

zero. For the �rst 100,000 iterations, we use a learning rate of 0.1 for the

generative connections feeding into the bottom layer and for the recognition

connections feeding into the middle layer; the remaining learning rates are

set to 0.001. After this, learning is accelerated by setting all learning rates

to 0.01.

Figure 7 shows the learning curve for the �rst 300,000 iterations of a simu-

lation consisting of a total of 1,000,000 iterations. Aside from several minor


uctuations, the wake-sleep algorithm minimizes free energy in this case.

Eventually, the free energy converges to the optimum value (170 bits) shown

by the solid line. This value is computed by estimating the free energy for

the graphics program that was used to produce the training images (ie., in

this case, how many random bits it uses when generating an image).

By examining the generative weights after learning, we see that it has ex-

tracted the correct 3-level hierarchical structure. Figure 8 shows the genera-

tive incoming weights, incoming biases, and outgoing weights for the middle-

layer neurons. A black blob indicates a negative weight and a white blob

indicates a positive weight; the area of each blob is proportional to the mag-

nitude of the weight (the largest weight shown has a value of 7.77 and the

smallest a value of -7.21). There are 36 blocks arranged in a 6x6 grid and

each block corresponds to a middle-layer neuron. The 4 blobs at the upper-

left of a block show the weights from each of the top-layer neurons to the

corresponding middle-layer neuron. The single blob at the upper-right of a

block shows the bias for the corresponding middle-layer neuron. The 16x16

matrix that forms the bulk of a particular block shows the weights from the

corresponding middle-layer neuron to the bottom-layer image. The outgoing

weights clearly indicate that 32 of the 36 middle-layer neurons are used by

the network as \bar neurons" to represent the 32 possible bars. These bar

neurons are controlled mainly by the right-most top-layer \orientation" neu-

ron { the weights from all the other top-layer neurons are nearly zero. If the

orientation neuron is o�, the probability of each bar neuron is determined

mainly by its bias. Vertical bar neurons have signi�cantly negative biases,

15



160

180

200

220

240

260

280

300

320

340

0 100000 200000 300000

E
st

im
at

e 
of

 f
re

e 
en

er
gy

 (
bi

ts
)

Iterations

2 std. dev. error bars
Optimum free energy

Figure 7: Variation of free energy with the number of wake-sleep learning

iterations.

causing them to remain o� if the orientation neuron is o�. Horizontal bar

neurons have only slightly negative biases, causing them to �re roughly 25%

of the time if the orientation neuron is o�. The vertical bar neurons have

signi�cantly positive incoming weights from the orientation neuron, so that

when the orientation neuron is on the net inputs to the vertical bar neurons

are slightly negative, causing them to �re roughly 25% of the time. The hor-

izontal bar neurons have signi�cantly negative incoming weights from the

orientation neuron, so that when the orientation neuron is on the net inputs

to the horizontal bar neurons are signi�cantly negative, causing them to re-

main o�. The 4 middle-layer neurons that are not used to represent bars

are usually inactive, since they have large negative biases and all incoming

weights are negative. Because the bottom-layer biases (not shown) are only

slightly negative, a pixel that is not turned on by a bar neuron still has a

probability of 0.25 of being turned on. This accounts for the additive noise.

Once learned, the recognition model can nonlinearly �lter the noise from a

given image, detect the underlying bars, and determine the orientation of

these bars. To clean up each of the training images shown in �gure 6, we

apply the learned recognition model to the image and obtain middle-layer

activities which reveal an estimate of which bars are on. The results of this

procedure are shown in �gure 9 and clearly show that the recognition model

is capable of �ltering out the noise. Usually, the recognition model correctly

16



Figure 8: Weights for connections that feed into and out of the middle-

layer neurons. A black blob indicates a negative weight and a white blob

indicates a positive weight; the area of each blob is proportional to the

weight's magnitude (the largest weight shown has a value of 7.77 and the

smallest a value of -7.21).

identi�es which bars were instantiated in the original image. Occasionally,

a bar is not successfully detected. In two cases a bar is detected that has

an orientation that is the opposite of the dominant orientation; however,

usually the recognition model preserves a single orientation. Inspection of

17



Figure 9: Filtered versions of the training examples from �gure 6 extracted

using the the learned recognition model.

the original noisy training images for these two cases shows that aside from

the single-orientation constraint, there is signi�cant evidence that the mis-

takenly detected bars should be on. Further training reduces the chance of

misdetection.

If all the weights and biases are initialized to zero, the middle-to-bottom

connections are not constrained to be positive, and all the learning rates are

set to 0.01, the trained network is not able to separate the horizontal bars

from the vertical bars. Figure 10 shows the middle-to-bottom weights after

5,000,000 learning iterations. The black bars indicate that some middle-

layer neurons are capable of uninstantiating bars that may be instantiated

by other neurons. Although it is imaginable that such a complex scheme is

still capable of modelling the training images, the free energy for this trained

network is 190 bits { signi�cantly higher than the optimum value of 170 bits.

Although this bar extraction problem may seem simple, it must be kept

18



Figure 10: Weights for connections that feed out of the middle-layer neurons

after learning without special initialization of the weights, without di�erent

learning rates between layers, and without positive weight constraints.

in mind that the network is not given a priori topology information { a

�xed random rearrangement of the pixels in the training images would not

change the learning performance of the network. So, insofar as the network

is concerned, the actual training examples look like those shown in �gure

11 which were produced by applying a �xed random rearrangement to the

pixels in the images from �gure 6.

19



Figure 11: Training examples from �gure 6 after a �xed random rearrange-

ment of the pixels has been applied. These are indicative of the di�culty

of the bars problem in the absence of a topological prior that favors local

intensity coherence.

Summary

We have shown that a very simple local algorithm for adjusting synapse

strengths is capable of constructing sensible hierarchical representations from

the sensory input alone. The algorithm performs approximate gradient

descent in a measure of the coding e�ciency of the representations. The

top-down generative connections are required both for de�ning the measure

that is to be optimized and for generating fantasies to train the recognition

weights.

Although the wake-sleep algorithm performs moderately well, we believe

that there is room for considerable further development in order to make it

more useful in practice (Frey, Hinton and Dayan 1996) and more realistic as

20



a neural model (Dayan and Hinton 1996). The simple form of the algorithm

presented here is unable to account for top-down in
uences during recogni-

tion (Palmer 1975) because it lacks top-down recognition weights. Nor does

it explain the role of lateral connections within a cortical area which seem to

be important in modelling a number of psychophysical phenomena (Somers,

Nelson and Sur 1995). The whole approach would be more plausible if the

learning could be driven by the discrepancy between recognition probabil-

ities and generative expectations during recognition. How to achieve this

without making recognition tediously slow is an open issue.

Acknowledgements

This research was funded by the Information Technology Research Center

and Natural Sciences and Engineering Research Council. Hinton is a fellow

of the Canadian Institute for Advanced Research. We thank Radford Neal,

Rich Zemel and Carl Rasmussen for helpful discussions.

References

Dayan, P., and Hinton, G. E. 1996. Varieties of Helmholtz Machine. Neural

Networks, to appear.

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. 1995. The Helmholtz

Machine. Neural Computation 7, 889-904.

Dayan, P., and Zemel, R. S. 1995. Competition and multiple cause models.

Neural Computation 7, 565-579.

Foldiak, P. 1990. Forming sparse representations by local anti-Hebbian

learning. Biological Cybernetics 64, 165-170.

Frey, B. J., and Hinton, G. E. 1996. Free energy coding. To appear in Pro-

ceedings of the Data Compression Conference 1996, IEEE Computer Society

Press.

Frey, B. J., Hinton, G. E., and Dayan, P. 1996. Does the wake-sleep algo-

rithm produce good density estimators? In D. S. Touretzky, M. C. Mozer,

and M. E. Hasselmo (editors), Advances in Neural Information Processing

Systems 8, MIT Press, Cambridge, MA.

Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. 1995. The wake-sleep

algorithm for unsupervised neural networks. Science 268, 1158-1161.

Hinton, G. E., and Zemel, R. S. 1994. Autoencoders, Minimum Description

Length, and Helmholtz Free Energy. In J. D. Cowan, G. Tesauro, and J.

Alspector (editors), Advances in Neural Information Processing Systems 6,

Morgan Kaufmann, San Mateo, CA.

21



Palmer, S. E. 1975. Visual perception and world knowledge: Notes on a

model of sensory-cognitive interaction. In D. A. Norman and D. E. Rumel-

hart (editors), Explorations in Cognition, W. H Freeman and Co., San Fran-

cisco, CA.

Rissanen, J. 1989. Stochastic complexity in Statistical Inquiry, World Scien-

ti�c, Singapore.

Saund, E. 1995. A multiple cause mixture model for unsupervised learning.

Neural Computation 7, 51-71.

Somers, D. C., Nelson, S. B., and Sur, M. 1995. An emergent model of orien-

tation selectivity in cat visual cortical simple cells. Journal of Neuroscience

15, 5448-5465.

22


