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Abstract

In the temporal difference model of primate dopamine neurons, their phasic activity reports a prediction error for future reward. This

model is supported by a wealth of experimental data. However, in certain circumstances, the activity of the dopamine cells seems anomalous

under the model, as they respond in particular ways to stimuli that are not obviously related to predictions of reward. In this paper, we address

two important sets of anomalies, those having to do with generalization and novelty. Generalization responses are treated as the natural

consequence of partial information; novelty responses are treated by the suggestion that dopamine cells multiplex information about reward

bonuses, including exploration bonuses and shaping bonuses. We interpret this additional role for dopamine in terms of the mechanistic

attentional and psychomotor effects of dopamine, having the computational role of guiding exploration. q 2002 Published by Elsevier

Science Ltd.
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1. Introduction

Much evidence, reviewed by Schultz (1998), suggests

that dopamine (DA) cells in the primate midbrain play an

important role in reward and action learning. Electrophysio-

logical studies in both instrumental (Schultz, 1992, 1998)

and classical (Waelti, Dickinson, & Schultz, 2001) con-

ditioning tasks support a theory that DA cells signal a global

prediction error for summed future reward in appetitive

conditioning tasks (Montague, Dayan, & Sejnowski, 1996;

Schultz, Dayan, & Montague, 1997), in the form of a

temporal difference (TD) prediction error term. One use of

this term is training the predictions themselves, a standard

interpretation for the preparatory aspects of classical

conditioning; another is finding the actions that maximize

reward, as in a two-factor learning theory for the interaction

of classical and instrumental conditioning. Storage of the

predictions involves at least the basolateral nuclei of the

amygdala (Hatfield, Han, Conley, Gallagher, & Holland,

1996; Holland & Gallagher, 1999; Whitelaw, Markou,

Robbins, & Everitt, 1996) and the orbitofrontal cortex

(Gallagher, McMahan, & Schoenbaum, 1999; O’Doherty,

Kringelbach, Rolls, Hornak, & Andrews, 2001; Rolls, 2000;

Schoenbaum, Chiba, & Gallagher, 1998, 1999; Schultz,

Tremblay, & Hollerman, 2000; Tremblay & Schultz, 2000a,

b). The neural substrate for the dopaminergic control over

action is rather less clear (Dayan, 2002; Dickinson &

Balleine, 2001; Houk, Adams, & Barto, 1995; Montague

et al., 1996).

The computational role of dopamine in reward learning

is controversial for various reasons (Gray, Young, & Joseph,

1997; Ikemoto & Panksepp, 1999; Redgrave, Prescott, &

Gurney, 1999). First, stimuli that are not associated with

reward prediction are known to activate the dopamine

system in a non-trivial manner, including stimuli that are

novel and salient, or that physically resemble other stimuli

that do predict reward (Schultz, 1998). In both cases, an

important aspect of the dopamine response is that it

sometimes consists of a short-term increase above baseline

followed by a short-term decrease below baseline. Second,

dopamine release is associated with a set of motor effects,

such as species- and stimulus-specific approach behaviors,

that seem either irrelevant or detrimental to the delivery of

reward. We call these motor effects mechanistic because of

their apparent independence from prediction or action.

In this paper (see also Suri & Schultz, 1999; Suri, 2002),

we study various of these apparently anomalous activations

of dopamine cells. We interpret the short term increase and

decrease in the light of generalization as an example of

partial information—the response is exactly what would be
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expected where the animal to be initially incompletely

certain as to whether or not the presented stimulus was the

one associated with food. We interpret the short-term effects

after new stimuli as suggesting that the DA system

multiplexes information about bonuses on top of infor-

mation about rewards. Bonuses are fictitious quantities

added to rewards (Dayan & Sejnowski, 1996; Sutton, 1990)

or values (Ng, Harada, & Russell, 1999) to ensure

appropriate exploration in new or changing environments.

In Section 2, we describe the TD model of dopamine

activity. In Section 3 we discuss generalization; in Section 4

we discuss novelty responses and bonuses.

2. Temporal difference and dopamine activity

Fig. 1 shows three aspects of the activity of dopamine

cells, together with the associated TD model. The

electrophysiological data in Fig. 1(A) and (B) are based

on a set of reaction-time operant conditioning trials, in

which monkeys are learning the relationship between an

auditory conditioned stimulus (the CS) and the delivery of a

juice reward (the unconditioned stimulus or US). The

monkeys had to keep their hands on a resting key until the

sound was played, and then they had to depress a lever in

order to get juice. Fig. 1(A) shows the activity of a single

dopamine cell in early trials, before the monkey has learned

the relationship between the CS and the reward. At this

point, dopamine cells fire substantially over baseline to the

reward, but only weakly, if at all, to the CS. Once the

relationship is established, the cells fire to the CS (Fig.

1(B)), but not to the (now expected) reward. Fig. 1(C) shows

the result from a different experiment in which a monkey

expected a reward on the basis of a CS, but the reward was

not delivered. In this case, activity of dopamine cells goes

below baseline at the time that they were formerly activated

by the presentation of reward. Note also the rather

temporally precise response to the predictive stimulus.

Although these data come from operant tasks, Waelti et al.

(2001) showed that dopamine cells are activated similarly in

Pavlovian circumstances. Thus, we consider how dopamine

provides information about errors in prediction of reward,

irrespective of actions. This information is also useful for

the operant task to choose appropriate actions.

The pattern of neural responses in the upper plots of Fig.

1 is matched by the three lines in the lower part of the figure,

which show the prediction error dðtÞ in a TD model under

equivalent circumstances. In the model, assuming that there

is only one CS, predictions vðtÞ are made at time t during a

trial using information about the state of the trial (or more

generally the state of the environment) at time t. A simple

assumption is that

vðtÞ ¼
X

s#t

wðt 2 sÞuðsÞ; ð1Þ

where uðsÞ ¼ 1 if the conditioned stimulus is presented at

time s in the trial, and 0 otherwise, and wðt 2 sÞ is the weight

associated with the stimulus having been presented t 2 s

timesteps before. In writing Eq. (1), we have made the tacit

assumption that there is a different state of the trial for every

timestep since the stimulus was presented. This assumption

amounts to the use of a serial compound conditioned

stimulus, i.e. a different stimulus for every timestep (Kehoe,

1977); more realistic models of interval timing (Church,

1984; Gibbon, Malapani, Dale, & Gallistel, 1997) have also

been suggested (Grossberg & Schmajuk, 1989). If multiple

stimuli are presented, so the state is defined by the

simultaneous presence of multiple cues, then, as in Rescorla

and Wagner (1972) rule (though not necessarily the data,

Fig. 1. Activity of DA cells (upper), and temporal difference prediction error model thereof (lower). The maximal firing rate is a function of the bin size used in

the original data. (A) In early learning trials, a single dopamine cell responds to the delivery of the reward, but is barely excited by the delivery of the predictive

stimulus. This is matched by the temporal difference prediction error dðtÞ; which follows the reward signal rðtÞ: (B) In later learning trials, a dopamine cell

responds to the delivery of the stimulus, but not the reward. This is again matched by dðtÞ—there is no response at the time of the reward because the animal can

predict the occurrence of the reward based on the stimulus. In the lower traces of (A) and (B), it is assumed that there is a fixed interval between stimulus and

reward, so, unlike the upper traces, the model dopamine activity is not separately triggered on these two events. (C) In a different experiment, with otherwise

similar activity, a dopamine cell is again activated by the predictive stimulus, but when the reward is unexpectedly not delivered, activity dips below baseline

around the time the reward was expected. In this case, since rðtÞ ¼ 0; the temporal difference error signal dðtÞ follows Dv ¼ vðt þ 1Þ2 vðtÞ; which has the same

characteristic. (A) and (B) adapted from Mirenowicz and Schultz (1994); (C) adapted from Schultz, Dayan, and Montague (1997)—note the difference in the

timescale of C. The absolute magnitudes of the firing rates in this plot and the other plots of neural activity are rendered a little arbitrary by the different

resolutions with which time is binned in the different plots, but the patterns of responding are consistent.
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see, Pearce, George, Redhead, Aydin, & Wynne, 1999), the

net prediction vðtÞ is the sum of the predictions made by

each stimulus. In the temporal difference model, the value

vðtÞ is supposed to predict the sum future rewards within a

trial

vðtÞ ,
X

s$t

rðsÞ: ð2Þ

where rðsÞ is the value of the reward immediately provided

at timestep s. The use of a sum over discrete time steps

rather than an integral over continuous time steps is mainly

for convenience (see Doya, 1999 for a fully continuous

version). Below, we divide time into fine steps, each

nominally of 50 ms, which seems roughly the temporal

resolution of the dopaminergic activity. As in one form of a

Bellman equation (Bertsekas & Tsitsiklis, 1996; Sutton &

Barto, 1998), Eq. (2) gives rise to the consistency condition

vðtÞ , rðtÞ þ vðt þ 1Þ; ð3Þ

which states that the sum future reward from time t is the

sum of the immediate reward and the future reward from

time t þ 1. Thence the temporal difference prediction error,

which is the inconsistency between left and right hand sides

of Eq. (3), is

dðtÞ ¼ rðtÞ þ vðt þ 1Þ2 vðtÞ: ð4Þ

This prediction error can be used to train the weights using

the delta-like rule:

Dwðt 2 sÞ ¼ edðtÞuðsÞ; ð5Þ

where the uðsÞ picks out the timestep at which the stimulus

was presented and e is a learning rate parameter. If there is

stochasticity either in the amount or timing of reward, then

Eqs. (2) and (3) should involve averages. Strictly speaking,

Eq. (5) is called the TD(0) learning rule; there are variants

(Sutton, 1988) involving eligibility traces for stimuli (Hull,

1943) which lead to faster learning, at least under some

circumstances. The substantial theory underlying temporal

difference learning (Bertsekas & Tsitsiklis, 1996; Sutton &

Barto, 1998) indicates circumstances under which the

learning rule in Eq. (5) leads to the predictions vðtÞ

becoming correct on average.

Fig. 2 shows the model’s construction of the dðtÞ shown

in the lower traces of Fig. 1. The two sets of traces show

successively the stimulus, u, the reward r, the prediction

v, the temporal difference of the predictions Dv ¼

vðt þ 1Þ2 vðtÞ, and the temporal difference prediction

error d, which is the sum of r and Dv. Here, we consider

the simple Pavlovian case that a stimulus is shown around

time t0 ¼ 1 in a trial, the reward is provided during a small

time interval around time 2, and the sum total amount of

reward presented is about 2 units. Before learning (left

plots), wðsÞ ¼ 0 and so vðtÞ ¼ 0 for all t, and so dðtÞ ¼ rðtÞ:
Once learning is complete (right plots), vðtÞ ¼ 0 until the

stimulus is shown. Then vðtÞ ¼ 2; the total sum of the reward

expected in the future of the trial. Finally, as the reward is

delivered, around time t ¼ 2; vðtÞ slowly decreases to 0,

since less reward is expected in the future once some has

already been provided. Turning this back into a prediction

error signal leads to dðtÞ being 2 at t ¼ 1; and then being 0

throughout the remainder of the trial. There is no prediction

error at the time of the reward, since the reward is expected.

If the reward is not delivered, then dðtÞ follows the temporal

difference signal Dv. This shows the same peak at t ¼ 1; but

then is negative at the time the reward should have been

delivered, since the delivery of reward is no longer masking

this negativity. This TD prediction error model of the

activity of dopamine cells has been validated in quite a wide

variety of circumstances (Schultz, 1998), including a recent

study of Pavlovian blocking (Waelti et al., 2001). Note that

these responses, as with those shown later, are those only of

a fraction of the relevant cells, albeit often most of the

fraction that respond at all to any of the cues. In general,

models have yet to account for the full variability that exists

in the data.

In an instrumental conditioning context such as an

abstract maze task, animals are assumed to choose between

different possible actions to maximize their sum future

Fig. 2. Construction of the temporal difference prediction error signal d in the model of Fig. 1. Left and right plots show the various key signals, including uðtÞ;

marking the presentation of the stimulus, rðtÞ; the immediate reward, vðtÞ; the prediction of summed future reward, Dvðt þ 1Þ ¼ vðt þ 1Þ2 vðtÞ; the time

difference of this prediction, and dðtÞ ¼ rðtÞ þ Dvðt þ 1Þ; the temporal difference error signal. Left plots show the traces before learning; right plots show the

same signals after learning. The difference lies in the prediction signal vðtÞ; which, at the end of learning, rises to matches the integral of rðtÞ when the stimulus

is presented, only then to decline as the reward is being provided. Its temporal difference Dvðt þ 1Þ exactly negates the activity rðtÞ associated with the reward at

the time of the reward. The lower plots are aligned with t þ 1 rather than t since dðtÞ depends on vðt þ 1Þ: Adapted from Dayan and Abbott (2001).
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return. This is usually challenging, since rewards might be

delayed for long periods. However, the temporal difference

prediction error signal can also be used to control action

choice. The basic idea, which is a form of a standard

engineering algorithm called policy iteration (Bertsekas &

Tsitsiklis, 1996; Sutton & Barto, 1998), starts from the fact

that the learned values of states estimate the sum of all the

delayed rewards starting from those states. Thus, states with

high value are good destinations, even if the act of getting to

them does not itself lead to substantial reward.

More concretely, a policy is a systematic, though

possibly stochastic, way of choosing actions. Consider a

case in which the policy is indeed stochastic, but the other

aspects of the problem, notably the delivery of reward, are

deterministic. Then, applying the TD rule will result in

learning the average values of the states in the maze, until

kdðtÞl ¼ 0; averaging over randomness in the policy. If an

action is executed at a state and dðtÞ . 0; then this implies

that the action may be better than average, since the value of

taking the action (the sum of the reward rðtÞ associated with

the action and the value, vðt þ 1Þ; of the next state achieved

by the action) is bigger than the average value vðtÞ of the

current state. Conversely, if dðtÞ , 0 then the action may be

worse than average. This temporal difference prediction

error signal thus provides immediate criticism for actions

(such as turning left or right in the maze) even if the rewards

will only be provided at much later times (such as at the

goal). Of course, as the animal changes its policy, the values

change too. For instance, the goal in a maze might only be

10 steps away from the start given the correct strategy, but

on average 200 steps from the start gives a uniform

probability of choosing any action at any location.

One action control strategy (Montague, Dayan, Person,

& Sejnowski, 1995) involves choosing a random action (i.e.

a random movement direction), which is performed

continually until dðtÞ is negative. Then a different, random,

action is selected and is itself performed continually until

dðtÞ is negative, when the process repeats. Montague et al.

called this learned klinokinesis after the chemotactic

strategy of bacteria. A more general strategy, called the

actor-critic (Barto, Sutton, & Anderson, 1983) uses dðtÞ to

train a system for selecting actions, favoring those that lead

to positive values over those that lead to negative values.

This step is analogous to one part of policy improvement; it

must be followed by a step of policy evaluation, which is the

application of Eq. (5) to learn the values vðtÞ associated with

the new choice of actions. In practice, values and policies

are usually updated in tandem. In learning systems such as

the actor-critic, there is an inevitable trade-off between

exploitation of existing knowledge about how to get

rewards, and exploration for new and good actions that

lead to even greater rewards. In studying novelty responses,

we consider models of bonuses, which are fictitious rewards

that are designed to encourage appropriate exploration.

3. Generalization and uncertainty

Fig. 3 shows two aspects of the behavior of dopamine

cells that are not obviously in accord with the temporal

difference model. These come from two related tasks

(Schultz & Romo, 1990) in which there are two boxes in

front of a monkey, one of which always contains food

(door þ ) and one of which never contains food (door 2 ).

On a trial, the monkey keeps its hand on a resting key until

one of the doors opens (usually accompanied by both visual

and auditory cues). If door þ opens, the monkey has to

move its hand into the associated box to get a food reward. If

door 2 opens, then the monkey has to keep its hand on the

resting key until the next trial. Fig. 3(A) shows the response

of a single dopamine neuron in just this task. Fig. 3(B)

shows the responses in an augmented version of the task in

which there are cue lights (called instruction lights) near to

the doors, indicating which door will open. Here, cue þ is

associated with door þ and cue 2 with door 2 . To

complicate matters, in this case there is also a randomly

variable interval (2–3 s) between the illumination of the cue

light and the opening of the door.

Comparing Figs. 1(B) and 3(A), we see that the response

to door þ is as we might expect, showing a phasic

Fig. 3. Generalization responses. (A) Responses of a dopamine cell in an experiment in which there are two doors, one (door þ ), behind which there is always

food, and the other (door 2 ), behind which there is never food. These traces show just the response around the time of the door opening (signaled by a

collection of auditory and visual cues). The response to door þ is stronger than that to door 2 ; the latter is followed by a depression below baseline. (B) In

this case, a light (cue þ or cue 2 ) signals which door is to open, and there is a random interval between 2 and 3 s before the associated door opens. Phasic

activation and depression is associated with cue 2 , as for door 2 in (A), but there is activation to both cue þ and door þ . Adapted from Schultz and Romo

(1990).
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activation to the delivery of a stimulus that predicts a

forthcoming reward. However, the response to door 2 is

not expected under the TD model. Why should dopamine

cells be activated by a cue that is known not to be followed

by a reward? Something similar is evident in the bottom row

of Fig. 3(B), only now to cue 2 , the reliable predictor that

there is to be no reward. Schultz and his collaborators have

called these generalization responses (Schultz, 1998).

Note first that this activity is probably not associated with

an expectation of future reward. For one thing, there is no

depression at the time the reward would normally be

delivered (Fig. 1). For another, in the blocking study of

Waelti et al. (2001), similar responses were observed to

stimuli not predictive of reward, and an explicit condition

was run in which a reward was unexpectedly delivered. This

reward led to the same sort of activity that is evident before

learning in Fig. 1, suggesting that the reward was indeed not

expected.

Closer study of the bottom rows of Fig. 3(A) and (B)

shows a feature that Schultz and Romo (1990), and also

subsequent studies, have frequently noted for generalization

responses. The phasic activations to door 2 and cue 2

appear to last for a shorter time and be lower than to door þ
and cue þ and are accompanied by a phasic depression

below baseline activity levels, which lasts for something

around 100 ms. Different cells show this to different degrees

but, for instance, Schultz and Romo (1990) report that it is

between two and three times more prevalent for the door 2
than the door þ responses.

Fig. 4 shows our models of these responses. These are

based on the idea of partial observability, which will be later

interpreted as a refinement of generalization. We suggest

that the initial information from the world is ambiguous as

to whether the stimulus is actually positive (i.e. door þ or

cue þ ) or negative (i.e. door 2 or cue 2 ). This puts the

animal briefly into a state of uncertainty (labeled door ^
and cue ^ ) that is resolved based on further processing of

input information that is already available, or the collection

of further information, for instance from an attentional shift.

Note that physical saccades are usually too slow to account

for these timescales. Following resolution of the uncer-

tainty, there are two possible states, one of which leads to

the reward (called þ ), and other which does not (called 2 ).

TD treats the intermediate and resolved states just like all

other states, and so learns a value for them which is the

average of the values following those states. Consider the

example above Fig. 1 in which a sum total reward of 2 was

provided around t ¼ 2: If the uncertainty when the stimulus

is first provided is total (so the probabilities of þ and 2 are

equal). Then, the value of the intermediate state is 1, and the

values of þ and 2 are 2 and 0, respectively.

Fig. 5(A) shows the output of the TD model of Fig. 4(A)

in the equivalents of the door þ and door 2 condition. As

in the data of Fig. 3, the model response to door 2 shows

phasic activation followed by phasic depression. The

depression comes because the prediction goes from 1 to 0

when the uncertainty is resolved, and so the temporal

difference in the predictions Dv becomes negative. In the

absence of rectification of below-baseline activity in the

model, the depression is more evident in the model than in

the actual data. Compared with Fig. 2, the response to

door þ in Fig. 5(A) is lower and longer. This comes from

the time taken for the resolution of the uncertainty. The

timescale of the activation in the door þ condition and

the activation–depression in the door 2 condition is set

by the timescale of the model and the time for the resolution

of the ambiguity. Here we made the simplest assumption

that the resolution happens completely within one (extra)

timestep.

Comparing the responses in Fig. 3(A) and (B), we see

that those at the time of cue þ and cue 2 are quite similar

to those associated with door þ and door 2 . Further, in

the case of cue 2 , there is almost no change in the activity

when door 2 actually opens. In fact, the existence of the

tiny dip in the response at the time of door 2 , which is also

just about apparent in the data, disappears after more

extensive training. However, the second main difference

from the straightforward temporal difference model that is

shown by this experiment is that there is a significant

increase in the activity when door þ opens. Under

conventional TD, this activity might be expected to be

predicted away, since the monkey can predict that it is going

to get a reward based just on seeing cue þ . Contrary to this

expectation, Fig. 5(B) shows the output of the temporal

Fig. 4. Model for generalization responses. (A) In the model of Fig. 3(A), the initial information about door þ or door 2 is ambiguous (leading to the state

labeled door ^ . The ambiguity is resolved in favor of one or other door, leading either to reward (R) or nothing (·). (B) The same ambiguity now applies to the

initial cue (giving rise to the ambiguous state cue ^ . Now the uncertainty at the time of the door opening is resolved; however, there is a variable delay

(squiggly line) between the cue and the door opening.
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difference model of the activity in this experiment. Just as in

the data, there is extra activity at the time of door þ . The

reason for the activity at this time is that there is a random

interval between cue þ and door þ (see also Suri &

Schultz, 1999). In contrast, in the experiment in Fig. 1, by

the time the monkey’s behavior is automatic, there exists a

relatively constant time between stimulus and reward. In the

case of Fig. 3, based on cue þ , the monkey can predict that

it is to receive a reward, but it cannot predict when that

reward will arrive. That is, there does not exist a setting of

weights in experiment 1 that makes a exactly correct

prediction of the time of the delivery of the reward, since

that time is varying over the trials. In contrast, door þ is a

temporally reliable predictor of the delivery of reward. The

consequence of this is that the prediction is ultimately

associated with both cue þ and door þ .

Consistent with this explanation, Schultz, Apicella, and

Ljungberg (1993) performed an experiment related to the

one in Fig. 3(B). In the condition they called the ‘instructed

spatial task’, there was always a fixed interval between a cue

and a trigger instruction that indicated that a movement was

now required. In this case, the only activity in the dopamine

cells was at the time of the cue, a fact replicated by the

temporal difference model since the cue is a temporally

reliable predictor of the delivery of reward. They had

another condition (called the ‘spatial delayed response

task’) more like the one in Fig. 3(B), and saw a similar

pattern of response to that shown there.

4. Novelty responses

Another main difference between the temporal difference

model of the activity of dopamine cells and their actual

behavior has to do with novelty. Salient, novel, stimuli are

reported to activate dopamine cells for between a few and

many trials. One example of this may be the small response

at the time of the stimulus in the top line of Fig. 1(A). Here,

there is a slight increase in the response locked to the

stimulus, with no subsequent decrement below baseline. In

this case, the activity could just be the early stages of

learning the prediction associated with the stimulus, as

subsequently seen more fully in Fig. 1(B) and (C). However,

such novelty responses are seen more generally to stimuli

that are not predictive of reward. In this case, they decrease

over trials, but quite slowly for very salient stimuli (Schultz,

1998). Fig. 6(A) shows a more dramatic example from an

experiment in which novel auditory stimuli were played to a

cat while the activity of dopamine cells was recorded

(Horvitz, Stewart, & Jacobs, 1997). Here, just as in the case

of generalization for door 2 and cue 2 , the activation in

response to the stimulus is rapidly followed by depression

below baseline. This response, as with others to very salient

stimuli, is quite persistent, lasting for many trials.

4.1. Novelty bonuses

In the theoretical reinforcement learning literature, there

are two main theoretical approaches to novelty responses. In

one set of theories, novelty acts like a surrogate reward, i.e.

something that is itself sought out. This surrogate reward

distorts the landscape of predictions and actions, as states

predictive of future novelty come to be treated as if they are

rewarding. There is some evidence that animals do indeed

treat novelty as rewarding (Reed, Mitchell, & Nokes, 1996).

It is also computationally reasonable in an instrumental

conditioning context, at least in moderation, since it allows

animals to plan to visit novel states a number of times so that

they can explore the consequences of different actions at

those states.

In temporal difference terms, this sort of novelty

response, which we call a novelty bonus, comes from

Fig. 5. Dopamine responses for the temporal difference model of Fig. 4, to be compared with Fig. 3. (A) dðtÞ for the case without a prior cue. Here the states ^

and þ and 2 are explicitly labeled. (B) dðtÞ for the case with a prior cue. Here, the responses at the time of door þ and door 2 are aligned with the opening of

the door before averaging (as was also done in the data of Fig. 3(B)).

Fig. 6. Novelty response with phasic activation and depression. This shows

a histogram of the activity of a single dopamine cell in cat VTA in response

to repetitions of an initially novel tone. This neuron shows a clear pattern of

activation and depression in response to the stimulus. Adapted from

Horvitz, Steward, and Jacobs (1997).
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replacing the true environmental reward rðtÞ at time t with

rðtÞ! rðtÞ þ nðuðtÞ; TÞ;

where uðtÞ is the state at time t and nðuðtÞ; TÞ is the novelty of

this state in trial t. Here we imagine that the mechanism that

provides nðuðtÞ; TÞ uses information about the novelty of the

stimuli associated with state uðtÞ; and makes the novelty

signal decrease over trials t as the stimuli associated with the

state become familiar. The effect of the novelty bonus on the

temporal difference prediction error is then

dðtÞ ¼ rðtÞ þ nðuðtÞ; TÞ þ vðt þ 1Þ2 vðtÞ: ð6Þ

The upper plots in Fig. 7 show the effect of including such a

novelty bonus, in a case in which just the first timestep of a

new stimulus in any given trial is awarded a novelty signal

which decays hyperbolically to 0 as the stimulus becomes

more familiar. Here, a novel stimulus is presented for 25

trials without there being any reward consequences. The

effect is just a positive transient which decreases over time,

a putative model of the effect shown in the top row of Fig.

1(A). Learning has no effect on this, since the stimulus

cannot predict away a novelty signal that lasts only a single

timestep. The lower plots in Fig. 7 show that it is possible to

get a small phasic depression through learning, (though less

dramatic than that in Fig. 6), if the novelty signal is applied

for the first two timesteps of a stimulus (for instance if the

novelty signal is calculated relatively slowly). In this case,

the initial effect is just a positive signal (leftmost graph), the

effect of TD learning gives it a negative transient after a few

trials (second plot), and then, as the novelty signal decays to

0, the effect goes away (third plot). The righthand plots

show how dðtÞ behaves across trials for the first two

timesteps. If there were no learning, then there would be no

negative transient. The growth and decay of the phasic

depression of the dopamine signal is determined by both the

speed at which the novelty signal decays and the dynamics

of learning.

4.2. Shaping bonuses

Since novelty bonuses distort the reward function, they

can have a deleterious effect on instrumental behavior if

they do not decrease to 0 adequately quickly. Ng et al.

(1999) suggested a second theory for a form of novelty

responses that they called shaping bonuses. Shaping

bonuses are guaranteed not to distort optimal policies,

although they can still change the exploratory behavior of

agents. Shaping bonuses are derived from a potential

function fðuÞ of the state u, so that the estimated value

vðtÞ at time t is replaced by

vðtÞ ¼ vðtÞ þ fðtÞ: ð7Þ

Here, fðtÞ ¼ fðuðtÞÞ is the value of the potential function

associated with the state at time t and is assumed to be set

high for states associated with novel stimuli and that

therefore deserve exploration. Also, vðtÞ is the conventional

plastic estimate of the prediction associated with the same

state (as in Eq. (1)). If we substitute this into the temporal

difference prediction error of Eq. (4), we get

dðtÞ ¼ rðtÞ þ fðuðt þ 1ÞÞ2 fðuðtÞÞ þ vðt þ 1Þ2 vðtÞ: ð8Þ

The difference from the novelty bonus of Eq. (6) is that the

shaping bonus enters into dðtÞ via the difference between the

potential functions for one state and the previous state. If

the shaping bonuses are fixed, they can also be seen as

coming from the initializing values vðuÞ given to the states

(see also Suri & Schultz, 1999, for application of this to

dopamine responses). In fact, it is a standard practice in

reinforcement learning, for which there exists a formal basis

(Brafman & Tennenholtz, 2001), to use optimistic initial

values for states in order to encourage exploration.

Ng et al. (1999) provide a formal proof of this non-

distorting property of shaping bonuses. However, an

intuition for this result comes from considering the sum of

the un-shaped prediction errors over a whole trial
X

t$0

dðtÞ ¼ vðtendÞ2 vð0Þ þ
X

t$0

rðtÞ;

where tend is the time at the end of the trial. Assuming that

vðtendÞ ¼ 0 and vð0Þ ¼ 0; i.e. that the monkey confines its

reward predictions to within a trial, we can see that any

additional influences on dðtÞ whose sum effect over the

Fig. 7. Activity of model dopamine cells given novelty bonuses. The plots show different aspects of the TD error d as a function of time t within a trial (first

three plots in each row) or as a function of number t of trials (last two). (Upper) A novelty signal was applied for just the first timesteps of the stimulus and

decayed hyperbolically with trial number as 1/T. (Lower) A novelty signal was applied for the first two timesteps of the stimulus and now decayed

exponentially as e20:3T to demonstrate that the precise form of decay is irrelevant. Trial numbers and times are shown in the plots. The learning rate was

e ¼ 0:3:
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course of a whole trial is 0, preserve the sum of future

rewards. This is the key quantity that optimal control

methods seek to maximize. Responses such as that in Fig. 6

with activation and depression may well indeed have no net

effect on the sum of the prediction errors.

The upper plots in Fig. 8 show the effect of shaping

bonuses on the temporal difference prediction error. Here,

the potential function is set to the value 1 for the first two

timesteps of a stimulus in a trial, and 0 otherwise. The most

significant difference between this sort of shaping bonus and

the novelty bonus of Eq. (6) is that the former exhibits a

negative transient even in the very first trial, whereas, for the

latter, it is a learned effect. Although the data in Fig. 6 show

the transient depression, the development over early trials is

not clear. If the learning rate is non-zero, then shaping

bonuses are exactly predicted away over the course of

normal learning, since vðtÞ comes exactly to compensate for

fðtÞ: Thus, even though the same bonus is provided on trial

25 as trial 1, the temporal difference prediction error becomes

0 since the shaping bonus is predicted away. The dynamics of

the decay shown in the last two plots is controlled by the

learning rate for temporal difference learning. The lower plots

show what happens if learning is switched off at the time the

shaping bonus is provided—this would be the case if the

system responsible for computing the bonus takes its effect

before the inputs associated with the stimulus are plastic. In

this case, the shaping bonus is preserved.

It may be that as stimuli become less novel, the shaping

bonuses associated with them are reduced to 0. In this case

the components of the plastic values vðtÞ that compensate for

the shaping bonuses will track fðuðtÞÞ as it decreases.

However, the theoretical guarantee offered by Ng et al.

(1999) that shaping bonuses will not distort action learning

may not survive such decreases.

5. Discussion

We have suggested a set of interpretations for the activity

of the DA system to complement that of reporting

prediction error for reward. First, we considered activating

and depressing generalization responses, arguing that they

come from short-term ambiguity about the predictive

stimuli presented. Second, we considered novelty

responses, showing that they are exactly what would be

expected where the dopamine cells to be reporting a

prediction error for reward in a sophisticated reinforce-

ment learning setting in which an explicit link is made to

exploratory behavior.

We accounted for activating and depressing generaliz-

ation responses by suggesting that the initial information

available about a predictive cue is ambiguous, but that this

ambiguity is resolved by extra information, that could come

as a result of an act of the monkey (such as a shift of

attention), or from the result of on-going neural processing.

The latter is somewhat analogous to the finding that

uncertainty about the direction of motion coming from the

aperture problem is resolved over the course of tens of

milliseconds in the activity of MT cells (Pack & Born,

2001). Ambiguity is a form of generalization, in that the

aspects of the stimulus that are distinctive between door þ
and door 2 or cue þ and cue 2 are initially ignored. We

have considered the case in which all the dopamine cells

receive the same sensory information. Since there is some

substantial variation in the behavior of the dopamine cells, it

would be interesting to consider a population of cells that

receive predictions based on different sensory inputs, some

more or less ambiguous about the cues and even about time.

It is possible that some cells in the population would be

activated only by door þ and cue þ , i.e. would be

instantly unambiguous, whereas others would never tell the

difference between the þ and 2 conditions. This might

require some extra assumptions about the learning rates

associated with different aspects of the representation of the

stimuli. We certainly cannot yet fully account for all the

multifarious dopamine cell responses.

Generalization responses emerge naturally from a

conventional temporal difference framework, provided

that ambiguity is taken into account. Novelty responses

require extending the framework. We showed that two

aspects of the data could be accounted for by two different

extensions, namely novelty and shaping bonuses. Novelty

Fig. 8. Activity of the dopamine system given shaping bonuses (the figure has the same format as Fig. 7). (Upper) The plots show different aspects of the

temporal difference prediction error d as a function of time t within a trial (first three plots) or as a function of number T of trials (last two) for the first two

significant timesteps during a trial. Here, the shaping bonus comes from a fðtÞ ¼ 0 for the first two timesteps a stimulus is presented within a trial, and 0

thereafter, irrespective of trial number. The learning rate was e ¼ 0:3: (Lower) The same plots for e ¼ 0:
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bonuses distort the structure of the rewards, and so can

distort things like the policies that optimize long-term

rewards. In contrast, shaping bonuses do not distort the

optimal policies and they can be exactly learned away. This

means that the dopamine system can multiplex information

about novelty and prediction errors for future reward

without damaging interference. This extra information is

directly available for target structures, such as the prefrontal

cortex and the striatum.

Other evidence confirms the role of dopamine in

processing novelty (for a review, see Ikemoto & Panksepp,

1999). For instance, dopamine is implicated in specifically

novelty-induced motor activity (Hooks & Kalivas, 1994);

there are suggestions that individual differences in the

dopamine system of humans links novelty seeking to

susceptibility to drug addiction (Bardo, Donohew, &

Harrington, 1996); and there is an active, if currently

somewhat inconclusive, debate about the role of a specific

(D4) dopamine receptor gene and novelty seeking in humans

(Ekelund, Lichtermann, Jaervelin, & Peltonen, 1999;

Paterson, Sunohara, & Kennedy, 1999). Concretely, the

release of dopamine in the striatum of rats is associated with

at least some aspects of attentional orienting to stimuli (Han,

McMahan, Holland, & Gallagher, 1997; Ward & Brown,

1996). Thus, the release of dopamine from the phasic

activation above baseline might be associated with beha-

viors that allow novel stimuli or states to be approached and

explored. These behaviors might continue despite the

subsequent depression below baseline of the dopamine

system shown in Fig. 6, for instance. This continuation

would be important to organize a temporally extended set of

exploratory actions—orienting is one of the shortest of

these. The attentional aspect of the theory is broadly in line

with Redgrave et al.’s (1999) proposal for the role of phasic

dopamine responses, although these authors consider this

component as an alternative rather than an addition to a

prediction error signal.

We regard these effects associated with dopamine as being

mechanistic, in the sense that they are hard-wired habits and not

learned. In the case of partial observability, as for general-

ization responses, dopamine release due to the uncertain

prediction of reward could directly cause further investigation,

and therefore resolution of the uncertainty. When mechanistic

and conditioned behaviors conflict, the former seem to

dominate, as in the well-known descriptions of the failures of

instrumental conditioning (Breland & Breland, 1961).

Apart from exploratory behaviors, the phasic activation

of the dopamine system might have other neural effects. For

instance, following studies by Braver, Barch, and Cohen

(1999), Cohen, Braver, and O’Reilly (1998) and Williams

and Goldman-Rakic (1995) suggested that the release of

dopamine might gate stimulus information into prefrontal

working memory. The novelty response of the dopamine

system could thus allow a new stimulus to be stored in

working memory until its consequences for future reward

have been evaluated.

We considered novelty and shaping bonuses. There is

another type of bonus that is often considered in theoretical

reinforcement learning, namely an ongoing exploration

bonus (Dayan & Sejnowski, 1996; Sutton, 1990) which is

used to ensure continued exploration. Sutton (1990)

suggested adding to the estimated value of each state, a

number proportional to the length of time since it was last

visited. This ultimately makes it irresistible to go and visit

states that have not been visited for a long time. Sutton

(1990) actually showed that, in his task, the best behavior

came from using exploration bonuses in a Q-learning

system. Q-learning (Watkins, 1989) is a theoretically

somewhat better motivated version of the actor-critic

model; however, its use of state-action values rather than

state values as in the critic, makes it harder to map onto the

neural substrate. Dayan and Sejnowski (1996) derived a

Sutton-like exploration bonus as an adaptive consequence

of a model of environmental change. There is no evidence

for a continuing exploration bonus in the dopamine data,

perhaps not surprisingly, since the tasks undertaken by the

monkey offer little possibility for any persistent trade-off

between exploration and exploitation.

The most major remaining conflict between the data on

the response of the dopamine system and the temporal

difference model has to do with the involvement of

dopamine in reporting punishment or aversion. Neuro-

physiological recording studies are somewhat equivocal on

this (Guarraci & Kapp, 1999; Mirenowicz & Schultz, 1996),

although there is certainly no evidence for the sort of phasic

responses to unexpected rewards or reward-predicting

stimuli such as those shown in Fig. 1(A) and (B). However,

a number of experiments using techniques other than

neurophysiological recordings of the dopamine cells has

suggested that dopamine is released under aversive as well

as appetitive conditions (Salamone, 1994). We (Daw,

Kakade, & Dayan, 2002) are exploring opponent process

models (Grossberg & Schmajuk, 1987; Solomon & Corbit,

1974) involving an putative opponent interaction between

dopamine and the dorsal raphe serotonin system, in the

computational context of average-case reinforcement learn-

ing (Daw & Touretzky, 2000).
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