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A fundamental problem in computational neuroscience
concerns how information is encoded by the neural
architecture of the brain. What are the units of compu-
tation and how is information represented at the neural
level? An important part of the answers to these ques-
tions is that individual elements of information are
encoded not by single cells, but rather by populations
or clusters of cells. This encoding strategy is known as
population coding, and turns out to be common
throughout the nervous system.

The ‘place cells’ that have been described in rats are
a striking example of such a code. These neurons are
believed to encode the location of an animal with
respect to a world-centred reference frame in environ-
ments such as small mazes. Each cell is characterized by
a ‘place field’, which is a small confined region of the
maze that, when occupied by the rat, triggers a response
from the cell1,2. Place fields within the hippocampus are
usually distributed in such a way as to cover all loca-
tions in the maze, but with considerable spatial overlap
between the fields. As a result, a large population of
cells will respond to any given location. Visual features,
such as orientation, colour, direction of motion, depth
and many others, are also encoded with population
codes in visual cortical areas3,4. Similarly, motor com-
mands in the motor cortex also rely on population
codes5, as do the nervous systems of invertebrates such
as leeches or crickets6,7.

One key property of the population coding strategy
is that it is robust — damage to a single cell will not
have a catastrophic effect on the encoded representa-

tion because the information is encoded across many
cells. However, population codes turn out to have other
computationally desirable properties, such as mecha-
nisms for NOISE removal, short-term memory and the
instantiation of complex, NONLINEAR FUNCTIONS. Under-
standing the coding and computational properties of
population codes has therefore become one of the
main goals of computational neuroscience. We begin
this review by describing the standard model of popu-
lation coding. We then consider recent work that high-
lights important computations closely associated with
population codes, before finally considering extensions
to the standard model suggested by studies into more
complex inferences.

The standard model
We will illustrate the properties of the standard model
by considering the cells in visual area MT of the monkey.
These cells respond to the direction of visual movement
within a small area of the visual field.

The typical response of a cell in area MT to a given
motion stimulus can be decomposed into two terms.
The first term is an average response, which typically
takes the form of a GAUSSIAN FUNCTION of the direction of
motion. The second term is a noise term, and its value
changes each time the stimulus is presented. Note that
in this article we will refer to the ‘response’ to a stimulus
as being the number of action potentials (spikes) per
second measured over a few hundred milliseconds dur-
ing the presentation of the stimulus. This measurement
is also known as the spike count rate or the response
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NEURONAL NOISE

The part of a neuronal response
that cannot apparently be
accounted for by the stimulus.
Part of this factor may arise
from truly random effects (such
as stochastic fluctuations in
neuronal channels), and part
from uncontrolled, but non-
random, effects.



126 |  NOVEMBER 2000 | VOLUME 1  www.nature.com/reviews/neuro

R E V I E W S

In EQN 2, s
i
is the direction (the preferred direction) that

triggers the strongest response from the cell, σ is the
width of the tuning curve, s – s

i
is the angular difference

(so if s = 359° and s
i
= 2°, then s – s

i
= 3°), and k is a scal-

ing factor. In this case, all the cells in the population
share a common tuning curve shape, but have different
preferred directions, s

i
(FIG. 1a). Many population codes

involve bell-shaped tuning curves like these.
The inclusion of the noise in EQN 1 is important

because neurons are known to be noisy. For example, a
neuron that has an average firing rate of 20 Hz for a
stimulus moving at 90° might fire at only 18 Hz on one
occasion for a particular 90° stimulus, and at 22 Hz on
another occasion for exactly the same stimulus5. Several
factors contribute to this variability, including uncon-
trolled or uncontrollable aspects of the total stimulus
presented to the monkey, and inherent variability in
neuronal responses. In the standard model, these are
collectively considered as random noise. The presence of
this noise causes important problems for information
transmission and processing in cortical circuits, some of
which are solved by population codes. It also means that
we should be concerned not only with how the brain
computes with population codes, but also how it does so
reliably in the presence of such stochasticity.

Decoding population codes
In this section, we shall address the following question:
what information about the direction of a moving
object is available from the response of a population of
neurons? Let us take a hypothetical experiment. Imagine
that we record the activity of 64 neurons from area MT,
and that these neurons have spatially overlapping recep-
tive fields. We assume that all 64 neurons have the same
tuning curve shape with preferred directions that are
uniformly distributed between 0° and 360° (FIG. 1a). We
then present an object moving in an unknown direc-
tion, s, and we assume that the responses are generated
according to EQN 1. If we plot the responses, r, of the 64
neurons as a function of the preferred direction of each
cell, the resulting pattern looks like a noisy hill centred in
the vicinity of s (FIG. 1b). The question can now be
rephrased as follows: what information about the direc-
tion s of the moving object is available from the
observed responses, r?

The presence of noise makes this problem challeng-
ing. To recover the direction of motion from the
observed responses, we would like to assess for each cell,
i, the exact contribution of its tuning curve, f

i
(s), to its

observed response. However, on a single trial, it is
impossible to apportion signal and noise in the
response. For instance, if a neuron fires at 54 Hz on one
trial, the contribution of the tuning curve could be 30
Hz, with 24 Hz due to noise. However, the contributions
could just as easily be 50 Hz and 4 Hz, respectively.
Nevertheless, given some knowledge of the noise, it is
possible to assess probabilities for these unknowns. If
the noise follows a normal distribution with a mean of
zero and a neuron fires at 54 Hz on a particular trial, it is
more likely that the contribution of the tuning curve in
our example is 50 Hz rather than 30 Hz.

rate. Other aspects of the response, such as the precise
timing of individual spikes, might also have a function
in coding information, but here we shall focus on prop-
erties of response rates, because they are simpler and are
better understood. (For reviews of coding through spike
timing, see REFS 1–3.)

More formally, we can describe the response of a cell
using an encoding model4. In one simple such model,

In EQN 1, f
i
(s), the average response, is the TUNING CURVE

for the encoded variable s (the direction) and n
i
is the

noise. The letter i is used as an index for the individual
neuron; it varies from 1 to n, where n is the total number
of neurons under consideration. We use the notation r
to refer to all the activities and f(s) for their means. Here,
r and f(s) are vectors with n components, each of which
corresponds to one neuron. Experimental measure-
ments have shown that the noise term (n

i
) can typically

be characterized as following a normal distribution
whose variance is proportional to the mean value, f

i
(s)

(REF. 5). When f
i
(s) is a gaussian, it can be written as:

fi(s) = ke (2)– (s–si)2/2σ2

ri = fi(s) + ni (1)
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Figure 1 | The standard population coding model. a | Bell-shaped tuning curves to direction for
16 neurons. b | A population pattern of activity across 64 neurons with bell-shaped tuning curves in
response to an object moving at –40°. The activity of each cell was generated using EQN 1, and
plotted at the location of the preferred direction of the cell. The overall activity looks like a ‘noisy’ hill
centred around the stimulus direction. c | Population vector decoding fits a cosine function to the
observed activity, and uses the peak of the cosine function, ŝ, as an estimate of the encoded
direction. d | Maximum likelihood fits a template derived from the tuning curves of the cells. More
precisely, the template is obtained from the noiseless (or average) population activity in response to
a stimulus moving in direction s. The peak position of the template with the best fit, ŝ, corresponds
to the maximum likelihood estimate, that is, the value that maximizes P(r |s).

NONLINEAR FUNCTION

A linear function of a one-
dimensional variable (such as
direction of motion) is any
function that looks like a straight
line, that is, any function that
can be written as y = ax + b,
where a and b are constant. Any
other functions are nonlinear. In
two dimensions and above,
linear functions correspond to
planes and hyperplanes. All
other functions are nonlinear.

GAUSSIAN FUNCTION

A bell-shaped curve. Gaussian
tuning curves are extensively
used because their analytical
expression can be easily
manipulated in mathematical
derivations.

TUNING CURVE

A tuning curve to a feature is the
curve describing the average
response of a neuron as a
function of the feature values.
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property called unbiasedness), and second, it has the
minimum variance among unbiased estimators. In other
words, were we to present the same stimulus on many
trials, the average estimate over all the trials would
equal the true direction of motion of the stimulus, and
the variance would be as small as possible12–14.

Although ML is often the optimal decoding
method13, it requires substantial data, as a precise mea-
surement of the tuning curves and noise distributions
of each neuron is needed. When this information is not
available, an alternative approach to decoding can be
used that relies only on the preferred direction of each
cell. Such methods are known as voting methods,
because they estimate direction by treating the activity
of each cell on each trial as a vote for the preferred direc-
tion of the cell (or for a value related to the preferred
direction of the cell). The well-known population vec-
tor estimator belongs to this category of estimators15.
Further details about these voting methods can be
found in recent reviews7,9. Using such methods can be
sub-optimal in some situations16, but, because they
require limited knowledge of the properties of the neu-
ron, they have been extensively used in experimental
contexts.

It is worth mentioning that both ML and population
vector methods are template-matching procedures,
which effectively slide an idealized response curve (the
template) across the actual responses to find the best fit.
The population vector method fits a cosine function
through the noisy hill and uses its phase as an estimate
of actual direction13,14 (FIG. 1c). Likewise, ML fits a tem-
plate and uses the peak position as an estimate of the
direction14 (FIG. 1d). However, the template used for ML
is derived directly from the tuning curves of the cells,
which is why it is optimal (see FIG. 1d for details).

Interestingly, in such template-matching procedures,
the neurons contributing the most to the final estimate
(in the sense of those that have a greater effect on the
final estimate if their activities are modified) are not the
ones whose tuning curves peak at the current estimate,
that is, the most active neurons. Instead, the most criti-
cal neurons are those for which the current estimate lies
on the flank of the tuning curve, that is, the part of the
tuning curve with the highest derivative12,13,17. Although
this idea may sound quite counterintuitive for the pop-
ulation vector, as neurons vote according to how active
they are, it is nevertheless true. This property is consis-
tent with the observation that, in fine discrimination
tasks, human subjects also seem to rely more on those
neurons with high derivatives, and not those that are the
most active18.

As we shall see, thinking about estimation in terms
of template matching also makes it easier to understand
how these methods can be implemented in neural
hardware.

Computational processing
Most of the early computational focus on population
codes centred on the observation that they offer a bal-
ance between coding a stimulus with a single cell and
coding a stimulus across many cells. Single cell encoding

Thus, for all neurons, we can assess the probability
over the mean responses, f(s), given the observed
responses, r. We can then use this probability to recover
the probability distribution, P(s |r), which reports how
likely each direction is, given the observed responses.
This distribution is known as the posterior distribution.
A Bayesian decoding model6–9 provides a method for
combining the information from all the cells, giving rise
to a single posterior distribution, P(s |r) (BOX 1).

Maximum likelihood and other estimates
What can we do once we have recovered the probability
distribution, P(s |r)? If further computations are to be
done over s (such as computing the probable time and
position of impact of a rapidly approaching object), it
is best to preserve the probability density and to do the
computations over it in its entirety (as is common in
Bayesian settings10,11). Often, however, we need a single
value or estimate of the direction, s, on each trial. There
are several ways to select this estimate. One choice is the
direction with the highest probability density, that is,
the direction maximizing P(s | r). This estimate is
known as the maximum a posteriori (MAP) estimate6–9.
Alternatively, the mean direction for the posterior den-
sity, P(s | r), can be used. Another solution is to select
the direction that maximizes the likelihood function,
P(r |s)12,13. This is called the maximum likelihood (ML)
estimate. The ML and MAP estimates are the same in
cases for which the prior P(s) is a flat function, that is,
situations in which we have no prior knowledge about s.
Note that it is not necessary to calculate P(r) in EQN 7

to determine either the MAP or ML estimates. For
large populations of neurons, the ML estimate is often
optimal in the sense that, first, it is right on average (a

Box 1 | The Bayesian decoder

Bayes rule is used to decode the response, r, to form a posterior distribution over s:

In EQN 6, P(r |s) is called the likelihood function and P(s) and P(r) are called the priors
over s and r. The first two terms can be readily estimated from the experimental data:
P(r |s) from the histogram of responses, r, to a given stimulus value, s; and P(s) from the
stimulus values themselves. Then P(r) can be determined according to:

In EQN 7, P(s) is important, as it captures any knowledge we may have about s before
observing the responses. For instance, in a standard, two-alternative, forced choice task,
in which an animal has to distinguish just two values (say s = 0° and s = 180°) each of
which is equally likely on a trial, P(s) is just a sum of two blips (called weighted delta
functions) at these values of s. The Bayesian decoder would correctly state that the
probability that s took any other value on the trial is zero. The likelihood function, P(r |s),
can be estimated from multiple trials with stimulus value s. If all 64 cells are recorded
simultaneously, the likelihood function can be directly estimated from the histogram of
responses r. If not enough data are available for such a direct estimation, simplifying
assumptions can be used to estimate the likelihood function. For example, if we assume
that the noise is independent across neurons (the amount of noise in the firing rate of
one neuron does not affect the amount of noise in others), P(r |s) can be factorized as a
product of the individual P(r

i
|s) terms, each of which can be measured (beforehand)

separately for each of the neurons in our pool.

P(r) =  (7)∫P(r | s)P(s)ds
s

P(s | r) =  (6)
P(r)

P(r | s)P(s)
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Neural decoding
As we saw above, the variability of the neuronal respons-
es to a given stimulus is the central obstacle for decoding
methods. Sophisticated methods such as ML may form
accurate estimates in the face of such noise, but one
might wonder how such complex computations could
be carried out in the brain.A possibility is for the popula-
tion itself to actively remove some of the noise in its
response.

Recently, Deneve et al.14 have shown how optimal
ML estimation can be done with a biologically plausi-
ble neural network. Their neural network is composed
of a population of units with bell-shaped tuning
curves (FIG. 2). Each unit uses a nonlinear activation
function — its input–output function — and is con-
nected to its neighbours by SYMMETRIC LATERAL CONNEC-

TIONS. In essence, this circuit corresponds to a cortical
HYPERCOLUMN. Deneve et al.14 used simulations and
mathematical analysis to show that this class of net-
work can be tuned to implement a ML estimator, as
long as the network admits smooth hills centred on
any point on the neuronal array as stable states of
activity. This means that in response to a noisy hill,
such as the one shown in FIG. 1b, the activity of the net-
work should converge over time to a smooth hill.
Once the smooth hill is obtained, its peak position can
be interpreted as an estimate of the direction of
motion (FIG. 2). The process of finding the smooth hill
closest to a noisy hill is reminiscent of the curve fitting
procedure used in ML decoding (compare FIG. 1d and
FIG. 2), which is why the network can be shown to
implement OPTIMAL INFERENCE. This illustrates one of the
advantages of population codes, namely their ability
to easily implement optimal estimators such as maxi-
mum likelihood.

Note that if the hill were always to stabilize at the
same position (say 90°) for any initial noisy activities,
the network would be a poor estimator. Indeed, this
would entail that the network always estimate the direc-
tion to be 90° whether the true direction was in fact
35°, 95° or any other value. It is therefore essential that
smooth hills centred on any point on the neuronal
array be stable activity states, as, in most cases, any value
of the stimulus s is possible. Networks with this proper-
ty are called line (or surface) attractor networks. They
are closely related to more conventional memory
attractor networks, except that, instead of having sepa-
rated discrete attractors, their attractors are continuous
in this space of activities. Interestingly, the same archi-
tecture has been used to model short-term memory cir-
cuits for continuous variables such as the position of
the head with respect to the environment19, and similar
circuits have been investigated as forming the basis of
the neural integrator in the oculomotor system20.

An important issue is whether the network used by
Deneve et al. is biologically plausible. At first glance the
answer seems to be that it is not. For example, the tun-
ing curves of the units differ only in their preferred
direction, in contrast to the actual neurons in area MT,
area MST and elsewhere, whose tuning curves also dif-
fer in their width and maximum firing rate. Moreover,

strategies lead to problems with noise, robustness and
the sheer number of cells required. However, coding
with many cells is often wasteful, requires complicated
decoding computations, and has problems in cases such
as transparency, when many directions of motions co-
exist at the same point in visual space. More recently,
attention has turned to other aspects of population
codes that are inspired by the idea of connections
between population-coding units. These ideas are dis-
cussed in the following section.
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Figure 2 | A neural implementation of a maximum
likelihood estimator. The input layer (bottom), as in FIG. 1a,b,
consists of 64 units with bell-shaped tuning curves whose
activities constitute a noisy hill. This noisy hill is transmitted to
the output layer by a set of feedforward connections. The
output layer forms a recurrent network with lateral connections
between units (we show only one representative set of
connections and only nine of the 64 cells). The weights in the
lateral connections are determined such that, in response to a
noisy hill, the activity in the output layer converges over time
onto a smooth hill of activity (upper graph). In essence, the
output layer fits a smooth hill through the noisy hill, just like
maximum likelihood (FIG. 1d). Deneve et al.14 have shown that,
with proper choice of weights, the network is indeed an exact
implementation of, or a close approximation to, a maximum
likelihood estimator. The network can also be thought of as an
optimal nonlinear noise filter, as it essentially removes the noise
from the noisy hill.

Movie online

SYMMETRIC LATERAL

CONNECTIONS

Lateral connections are formed
between neurons at the same
hierarchical level. For instance,
the connections between cortical
neurons in the same area and
same layer are said to be lateral.
Lateral connections are
symmetric if any connection
from neuron a to neuron b is
matched by an identical
connection from neuron b to
neuron a.

HYPERCOLUMN

In the visual cortex, an
orientation hypercolumn refers
to a patch of cortex containing
neurons with similar spatial
receptive fields but covering all
possible preferred orientations.
This concept can be generalized
to other visual features and to
other sensory and motor areas.

OPTIMAL INFERENCE

This refers to the statistical
computation of specifically
extracting all the information
implied about the stimulus from
the (noisy) activities of the
population. Ideal observers
make optimal inferences.
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of all possible frequencies; this basis set underlies the
FOURIER TRANSFORM. Another example of a basis set is a set
of gaussian functions with all possible peak positions.
This is, at least approximately, what a population code
provides, as shown in FIG. 1a. Thus, for almost any func-
tion, h(s), of a stimulus, s, there exists a set of weights,
{w

i
}n

i=1
such that:

In EQN 3, f
i
(s) is the gaussian tuning curve for neuron i

(EQN 2). FIGURE 3a illustrates how a particular nonlinear
function, h(s), is obtained by combining gaussian tun-
ing curves with the set of weights shown in FIG. 3b.
Strictly speaking, there are many functions that cannot
be decomposed as linear combinations over particular
basis functions, or, in the gaussian case, cannot be
decomposed using only a finite number of peak posi-
tions and tuning widths. However, such functions are
rarely encountered in the context of mappings such as
smooth, sensorimotor transformations.

The basis function approach to nonlinear mappings
also works for multiple input variables. For instance, the
motor command, m, to reach to a target is a nonlinear
transformation of the retinal location of the target and
the current eye position (as well as other postural sig-
nals such as head, shoulder and arm position, but we
consider only eye position to simplify our discussion).
As such, it can be approximated as a linear combination
of joint basis functions of retinal location, l, and eye
position, e (REF. 22):

The basis functions in EQN 4 could take the form of two-
dimensional gaussian functions over l and e, that is, they
could take the form of a joint population code for l and
e. However, this is not the only choice. An alternative
option would be to use a product of a gaussian function
of l and a sigmoidal function of e. Although equivalent
from a computational point of view, this alternative is
more biologically plausible22. Indeed, neurophysiologi-
cal data show that the selectivity to eye position is sig-
moidal rather than gaussian23,24.

Basis functions also simplify the learning of non-
linear mappings, which otherwise seem to require
powerful, and biologically questionable, learning algo-
rithms such as BACKPROPAGATION25. This is the case, for
instance, when learning the transformation from reti-
nal location and eye position onto a reaching motor
command26. Provided that the basis functions B

i
(l,e) of

EQN 4 are available, the only free parameters are the lin-
ear coefficients w

i
, which can be learned using simple

HEBBIAN and DELTA learning rules27,28. Of course, one
might wonder how the basis functions themselves
arise, as these are always nonlinear. Fortunately, this is
simpler than it might seem, as the basis functions can
be learned using UNSUPERVISED OR SELF-ORGANIZING METHODS,
independently of the particular output functions that
will eventually be computed. Indeed, there is active
interest in unsupervised algorithms that can learn basis

m = ∑wiBi(l,e) (4)
i =1

n

h(s) = ∑wifi(s) (3)
i =1

n

once the network converges to the attractor, the
response of the output units becomes deterministic
(that is, noiseless), whereas the response of actual neu-
rons always show a near-Poisson variability throughout
the cortex5. Fortunately, these problems can be easily
resolved. Indeed, it is a straightforward step to imple-
ment an attractor network of units with distinct tuning
curves. It is also simple to add Poisson noise to the
activity of the output units; this noise could be
removed at the next stage with a similar network. The
network shown in FIG. 2 should therefore be thought of
as a single step of a recursive process, in which noise is
added and removed at each stage over the course of
implementing computations.

The neural implementation of maximum likelihood
that we have just presented is essentially performing an
optimal IDENTITY MAPPING in the presence of noise, as the
input and output population codes in the network
encode the same variable. This is clearly too limited, as
most behaviours require the computation of nonlinear
functions of the input stimuli, not just the identity map-
ping. As we show in the next section, population codes
also have exactly the right properties for performing
nonlinear mappings.

Static nonlinear mappings
Nonlinear mappings are a very general way of charac-
terizing a large range of neural operations21. A particu-
lar example whose neural instantiation has been the
subject of much investigation is sensorimotor transfor-
mation, that is, the computation of motor commands
from sensory inputs21,22.

Population codes are particularly helpful for non-
linear mappings because they provide what is known as
a BASIS SET21. A basis set is a set of functions such that
(almost) all other functions, including, in particular,
nonlinear functions, can be obtained by forming linear
combinations of the basis functions. The best-known
basis set is that composed of cosine and sine functions
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Figure 3 | Function approximation with basis functions. a | The nonlinear function shown in
red was obtained by taking a sum over the multicoloured gaussian functions plotted underneath,
weighted by the coefficients shown in b. A line connecting the coefficient values is shown for
visual convenience. Almost any other nonlinear function can be obtained by adjusting the weights
assigned to the gaussian basis functions. Note that a population code is precisely a basis set of
gaussian functions, as is evident from comparing panel a and FIG. 1a. This is one of the properties
that makes population codes so appealing from the perspective of computational processing.
Note how a smooth nonlinear function emerges from a jagged set of weights. The smoothness
and proximity of the basis functions determines how rough the nonlinear function can be.

IDENTITY MAPPING

A mapping is a transformation
from a variable x to a variable y,
such as y = x2. The identity
mapping is the simplest form of
such mapping in which y is
simply equal to x.

BASIS SET

In linear algebra, a set of vectors
such that any other vector can be
expressed in terms of a weighted
sum of these vectors is known as
a basis. By analogy, sine and
cosine functions of all possible
frequencies are said to form a
basis set.

FOURIER TRANSFORM

A transformation that expresses
any function in terms of a
weighted sum of sine and cosine
functions of all possible
frequencies. The weights
assigned to each frequency are
specific to the function being
considered and are known as the
Fourier coefficients for this
function.

BACKPROPAGATION

A learning algorithm based on
the chain rule in calculus, in
which error signals computed in
the output layer are propagated
back through any intervening
layers to the input layer of the
network.

HEBBIAN LEARNING RULE

A learning rule in which the
synaptic strength of a
connection is changed according
to the correlation in the activities
of its presynaptic and
postsynaptic sides.
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transparent motion stimuli are processed, by using
neurophysiological methods to study the behaviour of
cells in area MT and psychophysical methods to study
the percept of the monkey during the presentation of
stimuli that produce transparent motion. Each trans-
parent motion stimulus consisted of randomly located
dots within the spatial receptive field of a given cell. The
dots jump small distances between successive frames.
The motion signal provided by the stimulus can be
controlled by manipulating the proportion of the dots
that move in any given direction. In one version of the
experiment, half the dots move in direction x and half
in direction –x. Recordings of motion-selective cells in
area MT indicated that their responses to this stimulus
were closely related to the average of their responses to
two stimuli, one with only the single direction x, and
one with only the single direction –x. What does this
imply for the activity across the whole population of
cells? For separations with 2x > 30°, the activity pattern
is bimodal (FIG. 4a). But for separations less than about
30°, there is a unimodal bump or hill centred at 0°,
identical to the bump that would be created by a stimu-
lus with only a single direction of motion at 0°, except
that it is a bit broader (FIG. 4b). If this hill were presented
to an ML decoding algorithm, such as the recurrent
network described above, then it would report that
there is just 0° motion in the stimulus (and the net-
work, in fact, would sharpen the hill of activity to make
it the same breadth as for stimuli that actually contain
single directions of motion). However, for separations
with 2x > 10°, both monkeys and humans can correctly
extract the two directions of motion from such stimuli.
If, as seems likely from other experiments, the activities
of area MT cells determine the motion percepts of the
monkeys40, the standard population-coding model
cannot be the whole story41.

Motion uncertainty. The other concern is motion
uncertainty, coming, for instance, from the well-known
aperture problem (FIG. 4c). This problem arises because
the visual images of the motion of stimuli that vary in
only one spatial dimension (such as FULL-FIELD GRATINGS

or long bars placed behind apertures) provide infor-
mation about only one of the two possible dimensions
of the direction of motion (ignoring motion in depth).
The component of motion in the direction along
which the stimulus is constant produces no change in
the images, and so information about motion in this
direction cannot, in principle, be extracted from the
images. Of course, the motion of endpoints is unam-
biguous if they are visible, and motion can also be inte-
grated across spatially separated parts of extended
objects. The issue for population codes is how the
uncertainty about the component of the motion in
one dimension is represented. One way to code for
uncertainty is to excite all cells in a population whose
preferred direction of motion is consistent with the
visual input at a particular location42. For example, FIG.

4d shows the set of directions consistent with the
motion shown in FIG. 4c. This would mirror the repre-
sentation that would be given to a visual input con-

function representations29–32.
The equivalence between basis functions and popu-

lation codes is one of the reasons that population codes
are so computationally appealing. Several models rely
on this property, in the context of object recognition33,
object-centred representations34,35 or sensorimotor
transformations22,26–28,36,37. It should be noted, however,
that basis function networks may require large num-
bers of units. To be precise, the number of units
required for a transformation grows exponentially with
the number of input variables, a problem known as the
curse of dimensionality. There are many ways around
this problem, such as using dendritic trees to imple-
ment the basis function network, but they lie beyond
the scope of this review21,38.

Extensions to the standard model
Although the standard model of population codes that
we have described here has been very successful in help-
ing us to understand neural data and has underpinned
computational theories, it is clearly not a complete
description of how the brain uses population codes. We
now wish to consider two related extensions to the stan-
dard model, which focus on the problems of encoding
MOTION TRANSPARENCY and motion uncertainty.

Motion transparency. This occurs when several direc-
tions of motion are perceived simultaneously at the
same location. Treue and colleagues39 studied how
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Figure 4 | Multiplicity and uncertainty in population codes. Population activity in area MT in
response to an image containing two directions of motion. a | For direction differences of more
than 30°, the population activity is bimodal. b | When the two directions differ by less than 30°, the
population forms a single hill of activity. Standard decoding techniques such as the one described
in FIG. 1c,d would fail to recover the two directions of motion in this case. But psychophysical
experiments have revealed that human subjects perceive two distinct directions of motion for
direction differences greater than 13°. c | The aperture problem. The image of a fuzzy bar moving
behind an aperture is consistent with a whole collection of motion vectors that vary in direction
and velocity. d | The probability density of motion vectors consistent with the image shown in c.
The standard model of population codes cannot explain how such a density over direction can be
represented in the cortex.

DELTA LEARNING RULE

A learning rule that adjusts
synaptic weights according to
the product of the presynaptic
activity and a postsynaptic error
signal obtained by computing
the difference between the actual
output activity and a desired or
required output activity.

UNSUPERVISED OR SELF-

ORGANIZING METHODS

An adaptation in which a
network is trained to uncover
and represent the statistical
structure within a set of inputs,
without reference to a set of
explicitly desired outputs. This
contrasts with supervised
learning, in which a network is
trained to produce particular
desired outputs in response to
given inputs.

MOTION TRANSPARENCY

A situation in which several
directions of motion are
perceived simultaneously at the
same location. This occurs when
looking through the windscreen
of a car. At each location, the
windscreen is perceived as being
still while the background moves
in a direction opposite to the
motion of the car.
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overall level of activity in the population can provide
information differentiating between these interpreta-
tions, for example if the number of motions is propor-
tional to the total activity. Mechanisms to implement
this type of control through manipulations of α have
yet to be defined.

Discussion
The theory and analysis of population codes are steadily
maturing. In the narrowest sense, it is obvious that the
brain must represent aspects of the world using more
than just one cell, for reasons of robustness to noise and
neuronal mortality. Accordingly, much of the early work
on population codes was devoted to understanding how
information is encoded, and how it might be simply
decoded. As we have seen, more recent work has con-
centrated on more compelling computational proper-
ties of these codes. In particular, recurrent connections
among the cells concerned can implement line attractor
networks that can perform maximum likelihood noise
removal; and population codes can provide a set of basis
functions, such that complex, nonlinear functions can
be represented simply as a linear combination of the
output activities of the cells. Finally, we have considered
an extension to the standard model of population
encoding and decoding, in which the overall shape and
magnitude of the activity among the population is used
to convey information about multiple features (as in
motion transparency) or feature uncertainty (as in the
aperture problem).

We have focused here on population codes that are
observed to be quite regular, with features such as gauss-
ian-shaped tuning functions. Most of the theory we
have discussed is also applicable to population codes
using other tuning functions, such as sigmoidal, linear-
rectified, or almost any other smooth nonlinear tuning
curves. It also generalizes to codes that do not seem to
be as regular as those for motion processing or space,
such as the cells in the inferotemporal cortex of mon-
keys that are involved in representing faces48,49. These
‘face cells’ share many characteristics with population
codes; however, we do not know what the natural coor-
dinates might be (if, indeed there are any) for the repre-
sentation of faces. We can still build decoding models
from observations of the activities of the cells, but the
computations involving memory and noise removal are
harder to understand.

Many open issues remain, including the integration
of the recurrent models that remove noise optimally
(assuming that there is only one stimulus) with the
models allowing multiple stimuli. The curse of dimen-
sionality that arises when considering that cells really
code for multiple dimensions of stimulus features must
also be addressed. Most importantly, richer models of
computation with population codes are required.

taining many transparent layers of motion in all the
relevant directions. However, as the standard popula-
tion-coding model is incapable of dealing with trans-
parent motion correctly, it would also fail to cope with
uncertainty coded in this way. In fact, the standard
model cannot deal with any coding for uncertainty
because its encoding model ignores uncertainty.

Uncertainty also arises in other ways. For instance,
imagine seeing a very low-contrast moving stimulus
(such as a black taxicab at night), the details of whose
movement are hard to discern. In this case, the popula-
tion code might be expected to capture uncertainty
about the direction of motion in such a way that it
could be resolved by integrating information either
over long periods of observation, or from other sources,
such as audition.

The standard population-coding model cannot rep-
resent motion transparency and motion uncertainty
because of its implicit assumption that the whole popu-
lation code is involved in representing just one direction
of motion, rather than two, or potentially many. The
neurophysiological data indicating that the activity of
MT cells to transparency may resemble the average of
their responses to single stimuli suggests that EQN 1

should be changed to:

In EQN 5, g(s) is a function that indicates what motions
are present or consistent with the image, and α is a
constant (see below). Here, the motions in the image
are convolved with the tuning function of the cell to
give its output4,43,44. The breadth of the population
activity conveys information about multiplicity or
uncertainty. Recent results are consistent with this
form of encoding model45,46, but it is possible that a
more nonlinear combination method might offer a
better model than averaging47.

Unfortunately, although this encoding model is
straightforward, decoding and other computations
are not. In the standard population-coding model, the
presence of noise means that only a probability densi-
ty over the motion direction, s, can be extracted from
the responses, r. In the model based on EQN 5, the
presence of noise means that only a probability densi-
ty over the whole collection of motions, g(s), can be
extracted. Of course, in the same way that a single
value of s can be chosen in the standard case, a single
function, g(s) (or even a single aspect of it, such as the
two motions that are most consistent with it), can be
chosen in the new case4,44. So, although we understand
how to encode uncertainty with population codes,
much work remains to be done to develop a theory of
computation with these new codes, akin to the basis
function theory for the standard population codes
described above.

The multiplier α in EQN 5 deserves comment, as
there is a controversy about the semantics of the
decoded motions, g(s). This function can describe
multiple transparent motions that are simultaneously
present, or a single motion of uncertain direction. The

ri = α∫g(s)fi(s)ds + n (5)
s

FULL-FIELD GRATING

A grating is a visual stimulus
consisting of alternating light
and dark bars, like the stripes on
the United States flag. A full-field
grating is a very wide grating
that occupies the entire visual
field.

Links

FURTHER INFORMATION Computational neuroscience |
Gatsby computational neuroscience unit | Motion
perception | Alex Pouget’s web page | Peter Dayan’s web
page | Richard Zemel’s web page
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