e ——

Reinforcement Comparison

Peter Dayan
Centre for Cognitive Science &
Department of Physics
University of Edinburgh
2 Buccleuch Place
Edinburgh EH8 3LW
Scotland

Abstract

Sutton [2] introduced a reinforcement com-
parison term into the equations governing
certain stochastic learning automata, argu-
ing that it should speed up learning, par-
ticularly for unbalanced reinforcement tasks.
Williams’ subsequent extensions [3] to the
class of algorithms demonstrated that they
were all performing approximate stochastic
gradient ascent, but that, in terms of expec-
tations, the comparison term has no first or-
der effect.

This paper analyses the second order contri-
bution, and uses the criterion that its modu-
lus should be minimised to determine an op-
timal value for the comparison term. This
value turns out to be different from the one
Sutton used, and simulations suggest at its
efficacy.

1 INTRODUCTION

Sutton [2] introduced the notion of reinforcement pre-
diction as a way of speeding up the learning of a
class of stochastic learning automata. Most previous
methods made assumptions about the independence
of the learning of the automata from all aspects of
their reinforcement history that were not ‘compiled’
into their current action probabilities. Sutton rea-
soned that comparing the current reinforcement with
some function of its frequency of delivery in the past
might be helpful for determining whether or not their
actions were making things worse or better. He ex-
pected particular utility for such comparisons in the
difficult cases in which reinforcement delivery is un-
balanced - for instance when all actions tend to be
rewarded or punished.

Williams [3] analysed a related set of algorithms, which
includes Sutton’s, and demonstrated that they were all
performing on-line, stochastic gradient ascent in the
expected amount of reinforcement. This is reassuring,

since it implies that the algorithms are moving in the
correct direction, statistically at least. The surprising
part of his analysis was that, for the particular case
Sutton considered, the comparison term may be elim-
inated from the analysis at an early stage. The result
on stochastic gradient ascent is unaffected by its value.
Sutton’s simulations, however, demonstrated that dif-
ferent comparison terms perform very differently.

Williams essentially looked at the first order term in
the Taylor expansion of the function that relates the
expected reinforcement to the weights determining the
probability of performing the actions. Although the
comparison term vanishes from this, it would not be
expected to vanish from the second and higher order
terms. Second order analysis should reveal for it both
a role, and, potentially, an optimal value.

2 THEORY

2.1 WILLIAMS’® ANALYSIS

Williams treats a very general problem. At any time,
each of n units receives an input XERE I <isn
from some environment, and uses its weight vector
w' € R to determine whether to fire or not; yi = 1
or yi = 0 respectively. Before it chooses its action,
and before the environment evaluates the combined
set of actions, each unit also chooses a reinforcement
comparison value b;;,1 < i< n, 1< j < p for each
component of each weight. The environment returns a
global reinforcement value r that is stochastically re-
lated to the quality of the actions of the units, and each
unit then updates its weight vector according to the

- reinforcement, its chosen action, and its reinforcement

comparison values.

A simple example of such a reinforcement learning sys-
tem is the two armed bandit problem, which we shall
return to later. For this, the automaton has no inputs,
but chooses, stochastically on the basis of a stored
weight, to pull either the left arm (y = 0) of the ban-
dit or the right arm (y = 1). The machine delivers
reinforcement of r = #1 with different probabilities

45

46

Dayan

for the two arms, and the automaton has to learn, by
changing the weight, which arm it is best to pull.

More formally, Williams proves that if:
Aw,-_,— = n‘.}:,‘j(!‘ = b,’j)ﬂ,‘j, (1)
where,

T is the reinforcement,

b;; arereinforcement baselines, which are
conditionally independent of the ac-
tions y; given the weights W and the
inputs x*,

a;; is the learning rate parameter for w;j,

e eligibility
8Wij of the weight w;j, a mea-
sure of how influential it
was in choosing the ac-
tion,
fp[yi = ‘flwl1xs]
is the probability the i*h
unit emits action £ given
its weights w' and its in-
put x*.

€ij =

gf(fswiix‘l) =

then: 5[r W]
W
wy;

where W is the matrix of all w'.

Equation 2 implies that these algorithms are all per-
forming stochastic gradient ascent in an averaged
sense. The dependence on the values of the b;; drops
out at an early stage, since:

Elei;|W,x'] = 0.

However, looking at equation 1, it is apparent that
changing the b;; is likely to affect at very least the
stability of the algorithm. Sutton [2] investigated this
empirically for his algorithm, and found faster conver-
gence across a range of problems for b;; being estima-
tors of the average amount of reinforcement received
than for b;; = 0.

2.2 THE SECOND ORDER TERM

Unfortunately, treating higher order terms at the same
level of generality as Williams is not fruitful. Consider
instead the simplest of the cases that Sutton takes.
Here there is just one unit, weights w;, inputs z;, re-
inforcement r, and with:

Aw; = a(r — b)(y — m)z;

where 7 = £[y|x,w]. b can depend on x and w, but
not on the output y.

A different way of looking at Williams’ result is
through the Taylor expansion of £[r/|w, x], using the
prime ’ to indicate that it is the expected value of the

reinforcement that will be received at the next time
step:

Elr'|w,x] =
&
Elrlw] + Y E[Aw;|w, x]——gg—]+
62£[r]w']

1Y E[AwAwj|w, x]W e
Williams deals with the first order term, showing that
the first term in the product is proportional to the
second, and that b makes no contribution whatsoever.
Setting F(z) = £[r|z], the second order term is:

Y Ply = €lw,x|P[r = pl¢, x]x
£.p
(p = b)*(§ —). (3)
Note that the inner sum does not depend on the value
of i or j. Extracting the value b that minimises it,

gives:
Elr(y — m)*|w, x]

b=
Viylw,x]
However, y can only take on two values: 0 or 1. Let:
p = Ply=llw,x]
fig=s= £[P|y = O,W,X]
n = Elrly=liw, x]

then = = p, and

7 p(1=p)?r1 + (1 - p)p®ro

He =
p(1-p)
(1 = p)r1 + pro.

in which, counterintuitively, the expected reward for
emitting action 1 is paired with the probability of
emitting action 0, and vice-versa. Williams (personal
communication) derived the same expression for b on
the grounds of minimising the variance of the Aw;.!
He ultimately considered this an inappropriate reason
for choosing the value of b.

The reinforcement comparison algorithm favoured by
Sutton involves teaching an extra unit to predict the
future reinforcement level. He defines s = > iz,
where v are the prediction weights. These are changed
according to:
: Av; = B(r — 5)z;.

This tends to make s an estimator of sorts of £[r|w, x],
or b', where:

b = pry + (1 = p)ro.
which, a priori, is the more natural pairing.

'Minimising the variance leads to the same expression
since £[Aw;] is independent of b, and z; factors out.

2.3 CHOOSING b

Although b minimises the inner sum in the second or-
der term of equation 3, it is not yet clear that this is
appropriate. In the one dimensional case, since the re-
inforcement is bounded above and below, the second
derivative §2F /6w? will be positive for some values of
w and negative for others. This means that it is bound
both to speed and hinder the learning. Setting b = b
minimises this effect.

As an example, consider the first task Sutton inves-
tigated, which is a two-armed bandit problem. Here,
there are two possible actions y = 0,1, and:

y=0= P[r=1]=08 Plr
y=1= Plr=1]=109 Plr

so the optimal action is y = 1.
Choose Ply = l|w] = f(w) = 1/(1 + e™%), then:
Elrlw] = 0.6+ 0.2f(w)

0.2f(w)(1 - f(w))

2 £lrlu)

LoElrlul = 02/(w)(1- J(w)(1 - 2f(w)

So, with Aw = a(r — b)(y —), the changes are:

y| r [P Aw/a
0-T710.2(1— f(w)) (1+6)f(w)
0] TT08(1—f(w)) —(1 =b)f(w)
I{-170.1f(w) —(1+6)(1 - f(w))
IT 1T109f(w) (1 =6)(1 - f(w))

Then £[Aw] = a x 0.2f(w)(1 — f(w)), which, as ex-
pected, is independent of b.

However, let g(w) = &[rlw] = 0.6+ 0.2f(w), then:
EFlw] = 0.2(1 = f(w))g(w + af(w)(l + b)) +
0.8(1 = f(w))g(w — af(w)(1-10)) +
0.1f(w)g(w — o1 = f(w))(1 + b)) +
0.9f(w)g(w + a1 — f(w))(1 - b)),
where T is the reinforcement received after the automa-
ton’s next choice. b will not drop out of this. It is

apparent from a graph of the second order term that
it helps learning for w < 0 and hinders it for w > 0.

Setting b = b minimises both these effects.

The same will be true in higher dimensions, in that
the second order term will be alternately a hindrance
and a help. Minimising its modulus should therefore
increase the overall efficacy of gradient ascent, which
operates perfectly on linear functions.

There are two types of imbalance that can afflict prob-
lems like the two-armed bandit:

e Imbalance in the probabilities - in which both the
better and the worse action usually lead to the

Reinforcement Comparison

same value of reinforcement, the only different be-
ing in the precise frequency.

e Imbalance in the reinforcement values - in which
the actual reinforcement values received are not
centred around 0. This can make learning sub-
stantially more difficult by making the sign of the
changes in the weights on any one occasion inde-
pendent of the reinforcement received.

Reinforcement comparison only deals with the second
of these types of imbalance. Williams (personal com-
munication) has pointed out that the term r — b; in
the formula for the weight change, equation 1, will
take both positive and negative values if the b;; lie be-
tween the maximum and minimum reinforcement val-
ues. Barto [1] provides some reasons why the term
y — 7 in the learning rule helps mitigate the effects of
the first type of imbalance.

3 RESULTS

Calculating the ‘optimal’ b is more difficult than cal-
culating Sutton’s b, because of the cross-pairing of the
average reinforcement for action 1 with the probabil-
ity of doing action 0. It is possible to develop an es-
timator p'(x) = 5 vz with weights v, as in Sutton’s
algorithm, and to change them according to:

t t

l—m e .

Avf :ﬁ[rr{ys = +(l-y)1-—1‘}"}) Zi
where 7 is an approximation to £[y'|w']. p* then
estimates b = (1 — p)ry + pro. Since y is never 1 if
! = 0, the first term is never infinite. However, this
iterative scheme would not be expected to converge.

The alternative way, suggested by, but not discussed
in, Sutton’s thesis, is to develop separate predictions
of rp and ry, using two sets of weights. These would
then be combined with «* as (1 — 7')r; 4+ 7'rg. Both
methods were simulated.

For the sake of comparison, I used the problems that
Sutton developed for his thesis [2]. The set chosen are
the non-associative ones in Chapter II, although the
new comparison term will work for associative tasks
too. Table 1, copied from P18, shows the problems.
The binary tasks produce reinforcement of +1, with
the probability that it is 1 given in the last two columns
of the table. The continuous tasks produce reinforce-
ment spread uniformly within 4 0.1 of the means given

‘in the last two columns.

Formal descriptions of the algorithms compared are
given in table 2, using Sutton’s notation. Algorithms
A and A’ are Sutton’s algorithms 8 and 9, which he
found to be the best. B, B’, C and C' all make p'
estimate the quantity recommended by the analysis
above. B and B’ do this through a single term, whereas
C and C' also employ u! and u}, which are designed to
predict r; and rg respectively.

47

48

Dayan

Table 1: The Tasks (From Sutton).

Task | Reinforcement | r range T mean
Type Act 1| Act 0
1 Binary {1,-1} | 090 0380
2 Binary {1,-1} | 020 o0.10
3 Binary {1,-1} | 055 | 0.45
4 Continuous R 0.90 | 0.80
5 Continuous b -0.80 | -0.90
6 Continuous R 0.05 | -0.05

Figures 1-6 show how the algorithms performed on
each of the various tasks, for differing values of a. Fig-
ure 7 shows how the algorithms performed across the
entire range of tasks, choosing for each its best result.
The y-axis shows the terminal probability of choosing
action 1, which is the better action for all of the tasks.
It is apparent that C which uses the new estimator,
does indeed perform better than .4 and 4" which use
the original one, although not by much. B and B’ are
particularly bad on the two tasks for which reinforce-
ment is generally negative whichever action is taken.
It is unclear why this only happens for these partic-
ular tasks, although dividing by #* or (1 — 7*) does
build in an instability. The obvious way to cure this
- multiplying the rule by #*(1 — #*) does not improve
matters substantially.

In a further experiment, the standard deviation o of
the distribution of nt] was set to 0.5. This value de-
termines the balance between the exploitation of the
current weight w[t], and the exploration for a better
one. Figure 8 is the equivalent of figure 7 for this
case, showing the best performance of the algorithms,
and again algorithm C can be seen to be somewhat
superior. Indeed, it affords more improvement in this
case. It is also unclear why C should outperform (',
since Sutton generally found algorithms with eligibil-
ity terms of the form y — £[y] were preferable to those
employing y — 1/2.

A further alternative is to develop explicit estimators
of (1—p)r; and prg, and to use their sum. In the non-
associative case the resulting algorithms would not dif-
fer greatly from C and C’. They would differ in the
associative case, however, since the learning rule for
these estimators would not change, whereas the equiv-
alents of C and C’ would involve estimators of r(x)
and ro(x), which do depend on the input x.

4 CONCLUSIONS

At least one of the ways in which reinforcement com-
parison works is by reducing the effects of the non-
linearity of the function which relates the weights of
a stochastic learning automaton to the expected re-
inforcement. This is not apparent from the first or-

Table 2: The Algorithms (After Sutton).

Algonithm Update Rule
A Aul] = a(rlt+ 1] - pl) (sl - 1)
A Auft) = (et + 1) = plt)(lt) - lt)
B Awl]=a(rlt+ 1] - qlt)(ull] - 3)
B Aufl] = a(rlt+ 1] — gt (ult) - 7(t])
¢ Aufl] = a(rlt+ 1) - sl - 1)
¢ Aulf = a(rlt+ 1) - s[t)(yld) - 7[t)

Where: Aw[t] = w[t + 1] — w[t], and

w[0] = 0,7[0] = L, y[t] € {1,0},a > 0,

b=

and ~[t] is the probability that y[t] = 1.

1, if wlt]+ nft] > 0;

For all algorithms, y[t] = { T

where 7[t] is normally distributed A'[u = 0,0 = 0.3)

For A and A’,
Aplt] = B(rlt +1] - plt)), pl0] = r(1],
For B and B’,
Aqi)= 4 {rfs+1) (U2hReld 4 10l
—q(t]},
- af0] = 1],
For C and (',
Aslt]= f (u1[£t+)1](1 — w[t]) + uoft + 1=t
-5 -
s(0] = r[1],
Ayt = B(r[t + 1] — uy [t))ylt], u[0] = r[1],

Ault] = B(rlt + 1] — uo[t])(1 - y[t]), uo[0] = r[1],

and 8 =0.2.

All algorithms are run for 25 iterations (Sutton used
200), and each mark on the graphs in figures 1-7 is the
average over 500 runs.

-

{
&
e
4
L ek
=

Reinforcement Comparison 49

der term, from which one can only conclude that the
reinforcement comparison algorithms are performing
stochastic gradient ascent, independent of the actual
comparison adopted. The second order term also re-
veals an optimum value for this comparison, and simu-
lations have confirmed that the new term speeds learn-
ing, although it does not make for a dramatic improve-
ment.

This analysis, like Williams’, says nothing about the
convergence of the algorithms. However, Sutton’s sim-
ulations do provide some grounds for optimism.

n——2n AlgorithmA

Acknowledgements o——o¢ AlgorithmA’
I am very grateful to Andy Barto, Geoff Hinton, Rich - TR0 AIgonthmB
Sutton, Ron Williams, and David Willshaw for their : :
helpful comments, to the students and faculty of the e AlgonthmB
Summer School for the ambience, and to the SERC for e e 3

their money. Part of this work was done at the Univer- 4 . A'gOﬂtth
sity of Massachusetts at Amherst, and I particularly Q-=-=0 Algorltth’

thank Andy Barto for his hospitality.

Key for the following figures
References

[1) Barto, AG (1985). Learning by statistical cooper-
ation of self-interested neuron-like computing el-
ements. Human Neurobiology, 4:229-256.

(2] Sutton, RS (1984). Temporal Credit Assignment

in Reinforcement Learning. PhD Thesis. Univer- E 101+
sity of Massachusetts, Amherst, MA. 0%
[3) Williams, RJ (1988). Toward a theory of rein- «©
forcement - learning connectionist systems. Tech- = 091
nical Report NU-CCS-88-3, College of Computer =
Science, Northeastern University, 360 Huntingdon S
Avenue, Boston, MA. 081+
0.7 1T
06—
ost——t—L—|_L L
.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000
(04

Figure 1: Task 1

50 Dayan

X = R Pl o
o 0
g E
= 091 = 091
E E
P -
@ [s8)
(o H
0BT 084+
071 074+
021 061—
el] I
@5.008 0.0160.031 0.062 0.125 0.250 0.500 1.000 0.0080.0160.0310.0620.1250.250 0.500 1,000]
o o
Figure 2: Task 2 Figure 4: Task 4
= a0t - 101+
[0 o ¥ I
E T / :'
= 091 = 091 iy
€ = &
- — *
® @
= = - .
0.81— 081 / I
VAN
B8
0= 0.71= ? \X
o+ .
0.6 061~ !
os—+ || | | 1 0 eI | | |
0.0080.0160.0310.062 0.125 0.250 0.500 1.000 3008 0.016 0,031 0.062 0.125 0.250 0.500 1.000 :
o 04
Figure 3: Task 3 Figure 5: Task & i

eoe 100
o
£
= 09t
£
—
@
=
081
0T 5
0BT
0.5 o e T b
§.0080.0160.031 0.0620.1250.250 0.500 1.000
o
Figure 6: Task 6
=
G
©
=
&
-
[ah]
=
€
=
E
>
8]
=

Figure 7: All tasks - best performing

Reinforcement Comparison

Maximum Terminal P(1)

Figure 8: All tasks - best performing a,
n[t] ~ N[0, 0.5)

