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Bayesian Retrieval in Associative
Memories with Storage Errors

Friedrich T. Sommer and Peter Dayan

Abstract—t is well known that for finite-sized networks, one-
step retrieval in the autoassociative Willshaw net is a suboptimal
way to extract the information stored in the synapses. lterative
retrieval strategies are much better, but have hitherto only had
heuristic justification. We show how they emerge naturally from
considerations of probabilistic inference under conditions of noisy
and partial input and a corrupted weight matrix. We start from
the conditional probability distribution over possible patterns for
retrieval. This contains all possible information that is available
to an observer of the network and the initial input. Since this
distribution is over exponentially many patterns, we use it to de-
velop two approximate, but tractable, iterative retrieval methods.
One performs maximum likelihood inference to find the single
most likely pattern, using the (negative log of the) conditional
probability as a Lyapunov function for retrieval. In physics terms,

extensively analyzed using the methods of statistical physics,
there remain many open questions.

The Willshaw net [2] (see Section 1I-D) is one of the most
efficient associative memory models in terms of information
stored per bit of memory. However, it has not been so widely
used since its performance degrades significantly if there are
errors in the initial patterns presented or if there are errors in
the synaptic weight matrix [12]. Both sorts of error are highly
likely in large-scale hardware implementations in silicon or
optical devices and also in networks of biological neurons.

With the notable exception of [13], one of the main troubles
with most existing theory on associative memories is that

if storage errors are present, then the modified iterative update |nference. on the ba§|§ .Of the |nput§ is not treated in a
equations contain an additional antiferromagnetic interaction Systematically probabilistic way. In this paper, we attempt
term and site dependent threshold values. The second methodsuch a treatment, which offers the prospect of helping with
makes a mean field assumption to optimize a tractable estimate of the problems mentioned above. This paper presents the theory
the full conditional probability distribution. This leads to iterative underlying the approach in the context of the finite sized
mean field equations which can be interpreted in terms of a t iative Willsh tt hich it i ticularl I
network of neurons with sigmoidal responses but with the same au_oaSSOCIa Ive Wilishaw net, to which 1t1S particu ary we
interactions and thresholds as in the maximum likelihood update Suited; however, the same theory can be used for inference
equations. In the absence of storage errors, both models becomein other models, including heteroassociative memories. Com-
very similiar to the Willshaw model, where standard retrieval is  prehensive empirical studies will be needed to test forms of
iterated using a particular form of linear threshold strategy. this approach.

Index Terms—Bayesian reasoning, correlation associative Our treatment reveals the close relationship between iter-
memory, graded response neurons, iterative retrieval, maximum gatjve retrieval methods in associative memory and Bayesian
likelihood retrlevql, mean field methods, threshold strategies, reasoning and its mean-field approximati@npriori knowl-
storage errors, Willshaw model. - . —

edge about the training patterns, errors in the initial pattern,
and storage errors in the weight matrix lead to additional
I. INTRODUCTION constraint terms in a Lyapunov function governing the retrieval

EURAL associative memories with the capacity fof? @ binary neural network. Some of these terms are new,
N pattern completion were first proposed as cybernefighers justify heurl'st|c addmon; that have already 'be(.e!‘n made,
models to relate psychological phenomena with processesifl @ré known to improve retrieval performance significantly.
networks of nerve cells [1]-[6]. Such associative memorigde link between mean-field approximations to the reasoning
have a natural mapping onto parallel hardware, and can be uBERFess and graded response associative memories has not
for information retrieval from large heterogenous databasBEeviously been made, and is a further key step in our method.
[7], [8], and also to help understand information processing In the next section, we define the task for an autoassocia-
in strongly connected circuits in the cortex [9], [10]. Evefive memory, and briefly describe the Willshaw associative

though, since Hopfield’s famous paper [11], they have be&emory model. By comparing the asymptotic capacities of
different models, we will argue that iterative retrieval strategies

) ) ] hold substantial promise for Willshaw nets. In Section Ill, we
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output, and a mean field method that tries to approximate thored patterns are of the order of the log of the number
whole distribution. The methods use very similar equationsf components, and the threshold is adjusted properly, i.e.,
except that the mean field method employs sigmoidal units. ®(0) = %, z7z}.

Section VI we summarize the consequences of the approach

we propose. C. Capacity and Efficiency of a Memory Model

In order to understand the potential for our new statistical
framework for retrieval, we must first outline what is known
about the power of existing associative memory models.
Capacity results in this area are notoriously confusing, because

The task for a binaryautoassociative memorng to find many different measures of capacity have been employed in
among a set of thel/ storedtraining patterns{z”: £ € many different ways.

{0,1}",v =1,---, M}, the one which is closest to a binary Autoassociative memories only provide new information if
initial pattern £ € {0,1}". Autoassociative memory is athe initial pattern is substantially changed during retrieval as
special case of heteroassociative memory where the stotld nearest training pattern is determined. Competent pattern
associations are between training pattern pairs which cesmpletion requires the training patterns to have nonvanishing
contain different patternse” — . The metric in the space basins of attraction which allow retrieval from initial patterns
of binary patterns is usually thdamming distancavhich is containing a substantial level of noise. A given error criterion
defined as the number of components for which two patterfig retrieval and a maximum level of input noise will fix
disagree. If patterriz”) is the ultimate estimate of a trainingan upper boundiZ* on the possible number of patterns in
pattern (z7) we distinguish the two possible error types: e training set. The bound will decrease if either increased
“miss” error converts a 1-entry in to “0” and a “false alarm” retrieval precision or increased input fault tolerance is required.
error does the opposite. The number of active (1-componentye popular measure of performance is the ratio™/n

in a pattern is called thactivity: |z| = ¥, x;. We will between the number of stored pattern compondiits, and
consider training sets for which all patterns have similiahe number of required synapse$. However, this patterns-
activities, that is)z”| ~ b V. The training patterns are calledper-neuron ratio (sometimes called the critical capacity) does
sparseif their activities are much smaller than the dimensiomot allow a fair evaluation for sparse training patterns, each of

Il. ASSOCIATIVE MEMORY MODELS

A. The Autoassociative Memory Task

ie, b < n/2. which contains far fewer bits of information than its number of
components. Even if the patterns are not sparse, the measure
B. The Willshaw Model does not take into account the information loss due to retrieval

A standard, correlational, Hebbian learning rule [14] take¥Ors and theT info_rmatio_n_a_lbout the retrieved pattern which is
the outer product of the training patterns. A well-knowfi‘lr_eady cor_ltamed in the_|n_|t|al patterns. Rather_the true amount
example is the Hopfield net [11]. Nonlinear functions of th&f information about training patterrgained during retrieval
outer product have been introduced to account for synapiiaould be considered. Theformation capacityof an associa-
saturation and quantization effects. The Willshaw net [2] usti¥e memory is defined as this amount of information divided
an extreme form of synaptic saturation, clipping each synag@%the number of synapses. The information capacity measure,
at the value one. This makes the elements of the synad‘ﬁ@'Ch is also popular, still ignores one important property of a

weight matrix model—namely, the number of bits required to represent each
synaptic weight. Therefore, theformation efficiencyas been
M M . . . . . . .o
OF —min [ 1 vor ) _ 1 Lty =M proposed which is defined as the information capacity divided
¢ ’z;lxi i) = 11( — i 75) TSI Li%i- by the minimum number of bits required per synapse, see [16].

(1) Obviously, this dimensionless quantity can maximally assume
the value of one and for binary synapses its numerical value
For an empirical comparison of linear and clipped Hebbiatpincides with the information capacity.
learning for sparse training patterns, see [15]. Clearly, infor-
mation about a high number of training patterns can only lp® Asymptotic Capacity Results
extracted from the weight matrix if the training patterns are
sparse enough in order to preve‘ﬁ@C{j =1 -1
Given an initial patterre(0) = Z", which is a corrupted
version of the training pattera”, theretrieval processn the
memory is described by the update equations

As the number of units grows, the asymptotic capacity
of the heteroassociative Willshaw model for vanishing re-
trieval errors isln 2 bits/synapse [2]. Changing the task from
hetero- to autoassociative memory reduces the capacity for
the two reasons described above: the information about the
H ) final pattern contained in the initial pattern presented, and the
wj(t+1)=H Zciﬂi(t) —-6@) | Vi=1---n (2 requirement for nonempty basins of attraction for the patterns.
=1 If one thinks of the memory task as a form of informa-
where©(¢) is a global threshold, and/ (x) is the Heaviside tion channel for the memory patterns, then the information
function. In the original Willshaw model the update processapacity is bounded by the maximum capacity describing the
(2) is not iterated. The model works efficiently if the trainfearning process (10 which has been called learning bound.
ing patterns are sufficiently sparse, i.e., the activities in tr heteroassociative memories, the learning bound has been

n
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shown to coincide with the information capacity [16]. Since thef patterns and the number of neurons is called the basis
synaptic matrix for an autoassociative memory is symmetri@te, and, inspired by channel coding theory, the rate of
it has half as many free parameters, and thus the learngxponential growth is called the capacity. Requiring a positive
bound is expected to be reduced by at least a factor adpacity is consistent with placing an upper bound on the basis
two. A particular method of extracting information from theate. This idea had already been used as an alternative way
autoassociative Willshaw matrix does actually achieve tlé determining the pattern-per-neuron ratio in the Hopfield
maximum capacity ofln 2)/2 = 0.35 bits/synapse [17]. How- model: The result is close to the 0.14 cited above [25]—for a
ever, this method extracts the whole set of memory pattersigghtly different model, [24] showed that the basis rate is 0.17.
by an exhaustive exploration of the entire space of sparsé/Ne have so far only considered capacity using Hebbian-
patterns. This is fine for recognition, but cannot be used tgpe learning rules. The seminal work of [26] analyzed the
complete single patterns, as is required for an autoassociafngential capacity of autoassociative memories given the opti-
memory. For the autoassociative task the information capacibal settings of the weights. For nonsparse training patterns, the
of Willshaw model has been determined to(he2)/4 = 0.17 Gardner bound is 2 bits/synapse, which is much higher than the
bits/synapse [16]. This is still high compared to the modeldopfield capacity. However, more complicated learning rules,
discussed later, but is only half of what can be reached insech as the delta rule, which require multiple presentations
recognition task. Hence, the retrieval procedure prescribed dlythe patterns are required. For sparse training patterns, the
the Willshaw model is clearly a limiting factor, a fact which isGardner bound [26] coincides with the information capacity
also underpinned by theoretical and empirical capacity result$] for linear Hebbian learning. Therefore, for associative
of iterative retrieval in the Willshaw model [15], which exceednemories with sparse training patterns, retrieval is the bottle-
the value 0.17. neck; for dense training patterns, the learning procedure must
At first sight, the Willshaw learning procedure would als@lso be refined.
appear to be suboptimal: linear Hebbian learning without To summarize: 1) binary clipped learning as employed in the
the clipping promises higher information capacity since thé&fillshaw model has the largest information efficiency (0.17);
synapses could then carry more than one bit each. Surprisin@ly,for sparse training patterns, which are required for the
analysis for the{0,1} Hopfield model with sparse training Willshaw model to be optimally efficient, more sophisticated
patterns yields an information capacity bf(8 In 2) = 0.18 learning rules will not help; and 3) changing the retrieval
bits/synapse [18] (the result of the first reference has besgitiategy in the Willshaw model can potentially improve its
transformed to give true autoassociative information capacisgfficiency by a factor of two.
[16], which is strikingly close to that achieved with clipped
synapses. The resulting information efficiency is clearly belo®. Modifications to the Willshaw Net

that of the Willshaw model even for four-state (two bit) Aynough the Willshaw net was one of the first associative
sygapfss. | | ¢ L i h Imemories to be suggested [1], it is only recently that modifi-
nother large class of associative memories that empl@yijong ang improvements have been proposed. For one-step

dense training patterns has been investigated. However, Qfrieval, statistical arguments have been adduced in favor of

these, the asymptotic capacity always goes to zero asymptQliz,ore refined, site dependent threshold [27], [28]. Various

cally for a error criterion for retrieyal that demgnd; Vanismn&ethods for iterative retrieval have also been suggested on the
errors. For instance, for the Hopfield quel with linear Iearrb'asis of heuristic arguments [29], [30], [15]. Iterative retrieval
Ing, the numt_)er 9f patterns per neuronLj§2 In n), a”O! for in finite-sized systems reaches, and even slightly surpasses,
clipped learning, itisl/(r ln ») [19]. If @ general nonlinear o 45ymptotic capacity, typically achieving efficiencies up to
f””C“OF‘ is used n place of the HeQV|S|de f_unctlon for_ We'ghéo.2$ with much lower retrieval errors even for moderate size
saturation, the_n, in gene_ral, the |nf(_)rmat|0n capa_cny Sta¥§stems (e.g.n = 2000, see [15]). It is clearly important
below that of linear learning [20]. With a small finite errof, oide 4 strong theoretical framework for these iterative

criterion, the H_opfield model achieves an asympFotic patte_@t'rategies to understand their basis and the scope for further
per-neuron ratio of 0.14 [11], [21], and, in experiments W'thnprovement.

nonmonotonic retrieval dynamics (i.e., replacing the Heaviside
function in (2) by a nonmonotonic function), it has reached 0.3

[22], [23]. Nevertheless, even the higher result corresponds to ~ !Il- RETRIEVAL BY PROBABILISTIC INFERENCE
an information efficiency lower than that of the autoassociative We consider Bayesian analysis of the process of autoassocia-
Willshaw model. tive recall. The output of this is a posterior distribution over all

Recently, [24] suggested a further definition of capacityossible patterns, expressing how likely it is that each pattern
that we mention for the sake of completeness. Instead widerlies the initial pattern that was presented. This posterior
just the M training patterns, this measure couatk patterns distribution depends on a variety of forms of prior information,
that are stable and have some sufficiently large basin af discussed below. Given a loss function, the particular
attraction. This number grows exponentially with the numbgrattern that minimizes the expected posterior loss can be
of units and includes all mixture or spurious states. Thesbosen. Quite a range of behaviors is supported by different
states are normally considered to reduce the sizes of thes functions. This full posterior distribution is computa-
basins of attraction for the training patterns, and therefotienally intractable to manipulate. We therefore consider two
to be undesirable. The ratio between this enhanced numbeproaches. One is maximuanposteriori (MAP) inference,
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which requires finding the single pattern that maximizes ttean be eliminated using the expressien= r/g(p) with
conditional probability. We will see in the next section thag(p) = p/(1 — p).
this leads to a retrieval method that is very close to existing The probability of generating as a corruption of is
suggestions, and also provides a theoretical framework to _ _ — -
justify many of the otherwise heuristic modifications proposed Pla|z] = HP[‘”Z‘ = 1ai]* P[2; = Ofa;] ™ (6)
for all sorts of associative memory models, not only the i
Willshaw net. The second approach to the full posterigiith P[z; = 1|z;] = (1 — s)* ! =% and P[i; = O|z;] =
distribution is to approximate it by a simpler mean field=: (1 — »)1-=: The second factor in (3) is therefore
distribution.

Retrieval is cued by an initial patter® which is a noisy log P[%|z]

version of one of the training patterns. We omit the index — Z —log g(r)g(s)&;x; + log fxi +log g(r)&; + k.
where it is obvious. If the memory matrix {3, then retrieval in 7 r
the associative memory should depend on the conditional or (7)

posteriori probability P[x|C, #] = Plz, C, ]/ P[C, %], where
wherek is a constant with respect to the variable parameters.

Plz, C,&] = P[Cla]Pls|s]Plz] €)
under a reasonable probabilistic model for whi€his inde- C. Matrix Elements with Storage Errors
pendent ofz given z. In this section we derive expressions The remaining factor in (3) is the probabilit}[C|x] that
and approximations for the three factors on the right-hand si® synpatic weight matrix would bée" if = had been one
of (3), based on prior knowledge about the pattern activit9f the training patterns. This reflects the influence of three
the noise in the initial pattern, and storage noise in ti@ntributions: the effect of pattera itself, the effect of all
synaptic matrix. Based on this analysis, we go on to suggéd€ other training patterns, and the effect of noise corrupting
two approximate iterative retrieval equations, one that findge perfect Hebbian matrig’”’. The storage process may be
the z* that maximizesP[z|C, Z], using (3) as a Lyapunov corrupted by two error types: “stuck-at-0" errors denote the

function, and the other that finds a mean-field approximatié@Seé where elements of the Hebbian matrix with values one are
to Pz|C,%]. converted into zero and “stuck-at-1”" errors denote the inverse

confusion. The imperfect storage process is again characterized
by a pair of error probabilitesé = P[C;; = 0|Cg = 1]

_ ) ) o quantifying the “stuck-at-0" errors angd= P[C;; = 1|CH =
The last term in (3) is the prior probability that pattetn %i%) e

A. Biased Random Training Patterns

. ) 0], the “stuck-at-1" errors. The first factor in (3) can then be
could have been one of the training patterns. We consider roximated by
case in which each component of a training pattern is generat
independently with biag = P[z; = 1] = b/n, producing a  P[C|z] = Hp[cij = 1|z, 2] P[Cy; = 0|z, 2]+~
set of training patterns with mean activity Therefore i @)

Plz] = p*I(1 —p)m~ 1. @ with P[Cy; = 1las,z;] = (1 — 8)*%i(1 — ¢)'=** and
. . o . PlCy; = 0lz;,z;] = §%=i¢g*==", where the probabilities
Making a Gaussian approximation to the expression in (Athat matrix element€ and C* have not been changed from

the log probability is given as zero by other training patterns are

1 q=P[Ci; =Olziz; = 0] = (1 —v)¢ +6(1 — ')
logPlzg]= — ——— T, — 2 k
ogPlal = — o Z Ejjx @ = 2npla] | + ¢ =P[CH = Oziz; = 0] ~ (1 — p?)M—1. 9)

1 2 Equation (8) is only an approximation to the true probability,
= - m Z zi—b) +k (5) since we are ignoring dependencies between different elements
i of C that arise from the Hebbian storage process of the other

where k is a generic constant with respect to the variabf@€mMory patterns. 3
parameters that takes different values in each equation. Equation (8) yields the log probability

B. Noise in the Initial Pattern 8 P[0kl z;zj:{ olC) = (g i = ()

The middle term in (3) quantifies the way thatould have (10)
been produced as a corrupted version of training pattern
Clearly, the farther is from z, the less likely it is that it Where
was generated by in the_ f|_r_st plgce. We des_cnbe ttaepno_n_ i4(Cij) = —Ci;log(1 — q) — (1 — Ci;)log(q) (11)
knowledge about these initial distortions using the conditional
probabilitiesr = P[#; = 1|z; = 0] ands = P[#; = O|z; = 1]. and similarly foris(C;;). The termsiy(C;;) ands(C;,) are
In the case for which the process of corruption preserves e logarithmic probabilities of’;; under the conditior;z; =
mean activity of the patterns, one of these error probabiliti®sand z;z; = 1, respectively. If they are equal, fér= ¢ or
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equivalentlyé = 1 — ~, we have the case of total informationB. Pattern Activity Constraint

loss in C' due to storage errors, where no information about it 5| the training patterns have activity (14) suggests the
the particular training patters is preserved in the corruptedvery simple modification of setting > 0 and using®(t) = b.

matrix: log P[Clz] = —3_; ;1,(Cy;) is independent of. In this case, the second component of the Lyapunov function
On the other hand, in the absence of storage errordof® (14) is a constraint term encouragifg| = b. For retrieval

term becomes dominating and we obtain of sparse patterns, a constraint of this type was introduced
) T s S P into the Hopfield model [32]. For training patterns having
log PICle] = 10862;2]:{1 Ciyhi; =iy (Cij) varying activities this constraint term should be replaced by
aXy Plk](Jz| — k)2, where P[k] = P[|z| = k]. Nevertheless,
asé — 0. if the patterns are generated with a binomial distribution, i.e.,
PlE] = (3)p*(1 — p)»~* with p = b/n, as prescribed in
IV. APPROXIMATE MAP INFERENCE Section IlI-A, then the resulting energy can be transformed
into the form of (14), again requiring the same, constant,
threshold®(t) = b. However, this analysis does not suggest
HOW largea should be—i.e., how important is this constraint

The MAP solution is the value ofe that maximizes
Plz|C, %], or, equivalently, maximizesP[z,C,z]. Mak-
ing the approximations derived in the previous sectio X . .
—log P[x,C,%] can be used as a Lyapunov function fopompared with the term coming from the matrix.
iterative retrieval. This leads to a modified update (23), which I_n_the MAP m_odel, information about the activity of the
turns out to bear close relationships to modifications in tﬁr ining patterns IS one of_the three component®pf, €', ].
retrieval process that have previously been suggested. mparing (5) W'th the _rlght-m_ost part of (14), we can see
discuss these modifications in turn and relate them to tmeat the appropriate setting of is
MAP Lyapunov function. B 1

~ np(1—p) 13)

A. Retrieval as Constraint Satisfaction C : . L
which is just the inverse variance of the activity distribution

lterative retrieval in the Willshaw model (2) can be demn the training patterns.
scribed by the Lyapunov function

BV (2) = _% ZZ ngixj + o) sz (12) C. Storage Errors in the Synaptic Matrix
i i In the most interesting case for the memoty|s allowed
0 be a distorted version of the perfect learning mai¥.
is requires replacing the first term on the right-hand side of
(14) with a term such as

since it is easy to show that asynchronous application of t
Willshaw update in (2) sets; to 1 — z; if

E(.’L’l,"',l—.’Il'j,"',.’ll'n)—E(.’L’l,"',.’L'j,"',.’L'n)<0.

[ J T J

We call the method for setting the threshd@d¢) during the 1 s N
course of iterations théhreshold strategy 2 27: Z{CO (Co = Q)Cis iz (16)
The Lyapunov function Y
5 The term multiplied by, is just the same as that in (14). The
1 I @ term multiplied by(; is helpful if there are many “stuck-at-1”
E(z) =5 Z Z{l - Cijyrirg + 5 <Z Fi— @(t)> errors. It prevents undue advantage being given to patterns
R ‘ for which z; = z; = 1, at least to the extent that;;, = 1
(149 can occur erroneously.

is equivalent (up to a constant factor and a constant offsetyCOmMparing (10) with (16), the MAP model suggests partic-

to (12) for @ = —1. The terms in (14) can be interprete¢!/@r values for the constraint coefficients
as constraint terms om: The first term punishes pairs of 1- 6 1—x

: R , p Co=—2logl =2log (1—¢'(1- -7 (17)
components i that coincide with a matrix element?/ = 0. 0 & & 4 s

The o term in (14) is proportional to the quadratic deviation 1-6 ~

between the pattern activity and the threshold value. Since (1 =—2log 1= 2log <1 - q/<1 - m)) (18)

is negative, using a constant threshél¢t) = © vt does not 1

stabilize the pattern activity near the threshold value, but ratHequation (10) also includes the additive constant
drives the activity to its maximum or minimum value. Iterative- >, > i,(Ci;) which does not depend onc. The
retrieval can improve the performance, however, when comeefficients are nonnegative i# < 1 — ~. It can be
bined with a linear threshold-setting strateg¥(t) = |z(¢)| observed that the constraint term is independentgf i.e.,
[30], [15], [31]. Note that the linear threshold strategy jusfy = {1, only when the coefficients disappear. This happens
eliminates the influence of tha-term in (14) and hence is either forg’ = 0, if C¥ contains no information about the
equivalent to a constant threshold strategy in a network wittaining pattern due to crosstalk, ér= 1 — ~, the case of
an additional antiferromagnetic interaction. total information loss inC due to storage errors.
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D. The Influence of the Initial Pattern with the constants in (22) and (23)

Typically in associative memories, the only influence of the
initial pattern to the retrieval outcome is to determine the initial U =(o— G =2logg(q)/9(6) (24)
value of z for the dynamics. However, the initial pattern is V=a+(=1/b1~-p)—2logd/q (25)
the only piece of data pertaining to which of the memories R=ab— By =1/(1-p)+logs/(1—r) (26)

should be retrieved, and it is also usually highly correlated with
the correct memory. Therefore, retrieval may be improved by

restricting the search to the vicinity of the initial pattern by its Without storage errors, i.e., fof — oo the synaptic

dlrecéc;_r;fluer:ce tot”‘? tstysterr_l dt%nalimcs. Th|sf IS ?.rov'qedl%%nstraint termz; {1 — C;,}x;(t) dominates in the argument
an additional constraint term in the Lyapunov function in ( f the Heaviside function. In this case, the ML approach is

B Z@(l — ) +/3QZ(1 — )@ close to the linear threshold strategy adopted in the original
2 2 Willshaw model, except that all the other terms in the Lya-
. - - punov function decide among those patterns that satisfy the
= Z &+ o Z z; — (BL+ f2) me (19 \ard constraint. In practical applications this could be realized
B ‘ ‘ by a high finite (.
where the first and the second term on the LHS punish|n the case of total information loss ifi, i.e., for U = 0
deviations from 1- and 0-components of the initial patterfine argument is only determined by the additional constraint
respectively. Again, arbitrary offsets depending on the initighyms_ In all other cases, becauléx) = H(zxz) ¥z >0, we

pattern/i(z) do not change the system dynamics. Comparingn normalize the argument in (23) . The behavior of
(7) with (19), the MAP Lyapunov function suggests thene modified update equations (23) is therefore influenced by
constraint coefficients three independent coefficients/t/ > 1 implies an additional

S =p1+ P2 = —log g(r)g(s). (27)

By =—log ’ (20) antiferromagnetic interaqtiorR/U #0 re_zpresents a constar?t
1-s threshold offset consisting of a positive component which
B2 =—log I 5 ) (21) is growing with the activity of the training patterns and a

second component compensating deleted 1-entries in the initial

with the offset3(z) = log(1 — s/1 — r) ¥; Z;. The resulting pattern. It vanishes if the probabilities that a “0” in the initial

coefficients are positive if the initial pattern is closer to thpattern is correct or has been produced by the noise are equal.

training pattern than the inverted initial pattern, izes 1—s. S/U >0 introduces a site dependent threshold representing a
Modifications similar to this have previously been proposeglistained bias toward the initial pattern during the iterative

for other memory models on a heuristic basis. For instance, fetrieval.

the Hopfield net, retrieval with a persistent field aligned with

the initial pattern is known to improve retrieval performance

[33]-[35]. Another modification, which is already prescribed

by more expensive storage strategies such as pseudoinverse V- APPROXIMATE MEAN FIELD INFERENCE

learning [36] to restrict the search space to the vicinity of the The idea of a mean field treatment of the retrieval problem

initial pattern is to add a positive offset in all diagonal weightis to find a good approximation to the conditional distribution

Cii. In other words, this adds a uniform self-interaction, oP[z|C, z] which makes for tractable computation. The obvious

equivalently a transfer function with hysteresis [37]-[39]. approximate distribution that has frequently been used for

associative memories treats all the components; gfs being

E. Modified Retrieval Equations independent, Bernoulli variables
Putting together the results of this section in (5), (6), and . N .
(10), the Lyapunov function derived by the MAP treatment Qlz; C,&) = [ [ 1 (1 — )™ (28)
can be written as g
EMAP(g) = —log Pz, C, %] + k with meansP[z; = 1] = u; € [0, 1] which are adjustable free
1 B v parameters. The process of retrieval is the process of finding
o2 z; Z{V UG, }wiz; p; which minimize the Kullback-Leibler divergence between
’ Q and P
Y (R+S&)zi+ k (22)

KL[Qlz; C, ]| Ple|C, ]
where k is again a generic constant. e Qlxs O]

Finally, from (22) and (13), the modified update equation = ZQ[‘”’C’ g]log Plz|C,3] (29)
can be derived *

Sincelog P[z, C] does not depend o#
zi(t+1)=H| =Y {V-UCjla;(t) + R+ S
j > Qlz: C, ] log Pl&, C] = log P[&,C]

(23) T
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and so we can equally well choo$g;} to minimize inference) or it could be used in conjunction with other loss
functions. Hinton (personal communication) has suggested a
L(p; C, %) = KL[Q[x; C,z)|| Plx|C, Z]] better, but computationally more expensive, method for finding
—ZQ[:c;C,:E] log P[z, O] an approximate binary MAP solution from the mean field
= distribution by successively clamping units to zero or one and

. . resolving the mean field equations.
=~ Z Qlz; €, z]log Ple, €', 2] If the response function (i.e., the entropy) term is negligible
* in (32), i.e., if at least one of the constaritsV, R or S is
+>_ Qlx; C.#|log Qlz; C, & (30) large, then the attractors are the same patterns as for the binary
x system. This holds since then the energy is a linear function of
a singlew;, and must therefore achieve its minima at corners of
qee hypercube that limits the state space. On the other hand, if
the entropy term dominates in (32), there is only a single stable
statep; = 1/2 ¥i. As long as the entropy has some influence,
lthe continuous response model has fewer stable states than
the binary model but still each stable state corresponds to an
attractor of the binary model [41].
L(p;C.x) =3 Z Z{V —UC;; g The introduction of a nonzero temperature and thus graded
P response neurons is, of course, well known as a barrier method,
_ Z{[R+S-7~7i]ﬂi Vi)Y +k (31) and its link to mean field is also well understood. However,

In physics termsL(u; C, %) is the free energy. The first term
in (30) is the energy, and the second term is the negati
entropy of distribution®[z; C, ]. See [40] for a development
of this expression.

Employing the factorial distribution in (28) and the log join
distribution in (22), we obtain

this is the first application to associative memory of which
we are aware. In general, mean field methods can be expected

wherei(z) = —wlogz — (1 — x)log(1 — x) and k is again to reduce the number of spurious states, without perturbing
a generic cqns?ant. . . _ the training patterns too greatly. The extent to which this is

iy Wpi) = —Jo' o™ (p) du with o(z) = trye depends on a host of factors that are hard to determine,
(1 +e*)7" implies an interpretation of the free energy aparticularly the quality of the mean field approximation, in
& function of the mean field variables terms of the final value of the Kullback-Leibler divergence

Hi .
BV () = £ C.0) = BV + 3 [ o d " (29).
B 0
(32) VI. DISCUSSION

W_hereEl\“*P(:c) is the Lyapunov function of the network with » 1041 | imitations and Simple Extensions

binary neurons from (22) that we developed in Section Ill: The . ) ] ]

integral term inEMF () just represents the additional term Our analysis so far is predicated on the particular formula-
introduced into the Lyapunov function by a transition from &0 of the probabilistic model in Section Il This formulation
network of binary neurons to a network of neurons with thgontains assumptions which might be inappropriate in some

graded response functian(z) [41]. cases of technical interest. For instance, we assumed for the
The best choice of;; in the distribution in (28) is found by training patterns and the initial pattern, uniform probabilities
minimizing the new Lyapunov function that do not depend on the component index. If training patterns
are randomly generated with the probabilitge; = 1] = p;,
AEME () : (5) has to be replaced b
———= =0, Vi. (33) P Yy
Op;
. _ Noe Pt .

This leads to the mean field equations log Plz] = sz log -— ot k (35)

introducing additional site-dependent threshold terms in the
update prescriptions (23) and (34). Distortions in the initial
pattern can also be modeled in a site-dependent manner by
with the coefficients given by (24)—(27). These equations cagplacing parameters and s by {r;: ¢ = 1,---,n} and
either be seen as consistency conditions that the true minifng: ¢ = 1,---,n}. From this a similiar modification with
of —L(p; C,z must satisfy, or, when applied asynchronousladditional site dependent threshold terms results for both the
a method of coordinate-wise descentdty; C, . L(p; C,Z) models.
can have many local minima, so such simple descent method$here might be other situations wheaiepriori knowledge
are only guaranteed to find local MAP solutions. about the storage errors should be described in a different
The outcome of iterating (34)—initialized with = 2—to way than in Section llI-C. In the deterministic case where
convergence aa* is an approximatior)[z; C, ] to the true storage errors are completely absent or their exact locations
conditional distributionP[z|C, Z]. One could find the MAP are known, only the first constraint term on the left-hand side
pattern from this distribution (in which case the mean fieldf (16) should be used. As discussed in Section IV-E this leads
procedure is mostly a heuristic optimization strategy for Mto a diverging{,. Of course, known storage errors can be

pi=o|=> AV -UCy}u+ R+ Sz | Vi. (34)

J
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exactly compensated by an additional threshold term usiagproximation to the true posterior distribution. Retrieval in
the difference matrixl; = (o i zr(t)(CE — Ciy). this model requires changing the values of the parameters to
If different probabilities for storage errors can be specifiagduce the consequent Kullback-Leibler divergence between
for different parts of the matrix i.e.§;; and-;; are given approximate and true distributions. This leads to iterative mean
instead of and~, the coefficientg, and¢; in our model have field equations that can be interpreted as a neural network with
to be replaced by the matricg§’ and ¢;’, where the matrix similar interconnections and threshold values as prescribed by
elements are determined frofyy and~;; as in (17) and (18). the modified MAP update equation, but with sigmoid neural
There have been various recent improvements to the basisponse functions. The mean field equations should thereby
mean field method that we outlined, which are mostly baseelduce the number of spurious states [41].
on more general convexity properties [42]. These can also
be applied to the associative memory task and, by improving
the quality of the approximation to the distribution, should
improve recall. The price is mild in terms of computational The authors are grateful to five anonymous referees for
complexity. valuable comments and suggestions as to how to improve the
manuscript.
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