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Bayesian Retrieval in Associative
Memories with Storage Errors

Friedrich T. Sommer and Peter Dayan

Abstract—It is well known that for finite-sized networks, one-
step retrieval in the autoassociative Willshaw net is a suboptimal
way to extract the information stored in the synapses. Iterative
retrieval strategies are much better, but have hitherto only had
heuristic justification. We show how they emerge naturally from
considerations of probabilistic inference under conditions of noisy
and partial input and a corrupted weight matrix. We start from
the conditional probability distribution over possible patterns for
retrieval. This contains all possible information that is available
to an observer of the network and the initial input. Since this
distribution is over exponentially many patterns, we use it to de-
velop two approximate, but tractable, iterative retrieval methods.
One performs maximum likelihood inference to find the single
most likely pattern, using the (negative log of the) conditional
probability as a Lyapunov function for retrieval. In physics terms,
if storage errors are present, then the modified iterative update
equations contain an additional antiferromagnetic interaction
term and site dependent threshold values. The second method
makes a mean field assumption to optimize a tractable estimate of
the full conditional probability distribution. This leads to iterative
mean field equations which can be interpreted in terms of a
network of neurons with sigmoidal responses but with the same
interactions and thresholds as in the maximum likelihood update
equations. In the absence of storage errors, both models become
very similiar to the Willshaw model, where standard retrieval is
iterated using a particular form of linear threshold strategy.

Index Terms—Bayesian reasoning, correlation associative
memory, graded response neurons, iterative retrieval, maximum
likelihood retrieval, mean field methods, threshold strategies,
storage errors, Willshaw model.

I. INTRODUCTION

NEURAL associative memories with the capacity for
pattern completion were first proposed as cybernetic

models to relate psychological phenomena with processes in
networks of nerve cells [1]–[6]. Such associative memories
have a natural mapping onto parallel hardware, and can be used
for information retrieval from large heterogenous databases
[7], [8], and also to help understand information processing
in strongly connected circuits in the cortex [9], [10]. Even
though, since Hopfield’s famous paper [11], they have been
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extensively analyzed using the methods of statistical physics,
there remain many open questions.

The Willshaw net [2] (see Section II-D) is one of the most
efficient associative memory models in terms of information
stored per bit of memory. However, it has not been so widely
used since its performance degrades significantly if there are
errors in the initial patterns presented or if there are errors in
the synaptic weight matrix [12]. Both sorts of error are highly
likely in large-scale hardware implementations in silicon or
optical devices and also in networks of biological neurons.

With the notable exception of [13], one of the main troubles
with most existing theory on associative memories is that
inference on the basis of the inputs is not treated in a
systematically probabilistic way. In this paper, we attempt
such a treatment, which offers the prospect of helping with
the problems mentioned above. This paper presents the theory
underlying the approach in the context of the finite sized
autoassociative Willshaw net, to which it is particularly well
suited; however, the same theory can be used for inference
in other models, including heteroassociative memories. Com-
prehensive empirical studies will be needed to test forms of
this approach.

Our treatment reveals the close relationship between iter-
ative retrieval methods in associative memory and Bayesian
reasoning and its mean-field approximation.A priori knowl-
edge about the training patterns, errors in the initial pattern,
and storage errors in the weight matrix lead to additional
constraint terms in a Lyapunov function governing the retrieval
in a binary neural network. Some of these terms are new,
others justify heuristic additions that have already been made,
and are known to improve retrieval performance significantly.
The link between mean-field approximations to the reasoning
process and graded response associative memories has not
previously been made, and is a further key step in our method.

In the next section, we define the task for an autoassocia-
tive memory, and briefly describe the Willshaw associative
memory model. By comparing the asymptotic capacities of
different models, we will argue that iterative retrieval strategies
hold substantial promise for Willshaw nets. In Section III, we
consider the posterior probability distribution over the possible
output patterns, given a particular input. In Section IV, we de-
rive a Lyapunov function for iterative retrieval in the Willshaw
net and show the influence on its different threshold strategies
proposed in the literature. In Sections IV and V we discuss
two iterative retrieval methods that arise from the conditional
distribution derived in Section III: a maximum likelihood
(ML) method that attempts to find the most likely single
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output, and a mean field method that tries to approximate the
whole distribution. The methods use very similar equations,
except that the mean field method employs sigmoidal units. In
Section VI we summarize the consequences of the approach
we propose.

II. A SSOCIATIVE MEMORY MODELS

A. The Autoassociative Memory Task

The task for a binaryautoassociative memoryis to find
among a set of the stored training patterns

the one which is closest to a binary
initial pattern . Autoassociative memory is a
special case of heteroassociative memory where the stored
associations are between training pattern pairs which can
contain different patterns: . The metric in the space
of binary patterns is usually theHamming distancewhich is
defined as the number of components for which two patterns
disagree. If pattern is the ultimate estimate of a training
pattern we distinguish the two possible error types: a
“miss” error converts a 1-entry in to “0” and a “false alarm”
error does the opposite. The number of active (1-components)
in a pattern is called theactivity: We will
consider training sets for which all patterns have similiar
activities, that is, The training patterns are called
sparseif their activities are much smaller than the dimension,
i.e., .

B. The Willshaw Model

A standard, correlational, Hebbian learning rule [14] takes
the outer product of the training patterns. A well-known
example is the Hopfield net [11]. Nonlinear functions of the
outer product have been introduced to account for synaptic
saturation and quantization effects. The Willshaw net [2] uses
an extreme form of synaptic saturation, clipping each synapse
at the value one. This makes the elements of the synaptic
weight matrix

(1)

For an empirical comparison of linear and clipped Hebbian
learning for sparse training patterns, see [15]. Clearly, infor-
mation about a high number of training patterns can only be
extracted from the weight matrix if the training patterns are
sparse enough in order to prevent .

Given an initial pattern , which is a corrupted
version of the training pattern , the retrieval processin the
memory is described by the update equations

(2)

where is a global threshold, and is the Heaviside
function. In the original Willshaw model the update process
(2) is not iterated. The model works efficiently if the train-
ing patterns are sufficiently sparse, i.e., the activities in the

stored patterns are of the order of the log of the number
of components, and the threshold is adjusted properly, i.e.,

.

C. Capacity and Efficiency of a Memory Model

In order to understand the potential for our new statistical
framework for retrieval, we must first outline what is known
about the power of existing associative memory models.
Capacity results in this area are notoriously confusing, because
many different measures of capacity have been employed in
many different ways.

Autoassociative memories only provide new information if
the initial pattern is substantially changed during retrieval as
the nearest training pattern is determined. Competent pattern
completion requires the training patterns to have nonvanishing
basins of attraction which allow retrieval from initial patterns
containing a substantial level of noise. A given error criterion
for retrieval and a maximum level of input noise will fix
an upper bound on the possible number of patterns in
the training set. The bound will decrease if either increased
retrieval precision or increased input fault tolerance is required.
One popular measure of performance is the ratio
between the number of stored pattern components and
the number of required synapses. However, this patterns-
per-neuron ratio (sometimes called the critical capacity) does
not allow a fair evaluation for sparse training patterns, each of
which contains far fewer bits of information than its number of
components. Even if the patterns are not sparse, the measure
does not take into account the information loss due to retrieval
errors and the information about the retrieved pattern which is
already contained in the initial patterns. Rather the true amount
of information about training patternsgained during retrieval
should be considered. Theinformation capacityof an associa-
tive memory is defined as this amount of information divided
by the number of synapses. The information capacity measure,
which is also popular, still ignores one important property of a
model—namely, the number of bits required to represent each
synaptic weight. Therefore, theinformation efficiencyhas been
proposed which is defined as the information capacity divided
by the minimum number of bits required per synapse, see [16].
Obviously, this dimensionless quantity can maximally assume
the value of one and for binary synapses its numerical value
coincides with the information capacity.

D. Asymptotic Capacity Results

As the number of units grows, the asymptotic capacity
of the heteroassociative Willshaw model for vanishing re-
trieval errors is bits/synapse [2]. Changing the task from
hetero- to autoassociative memory reduces the capacity for
the two reasons described above: the information about the
final pattern contained in the initial pattern presented, and the
requirement for nonempty basins of attraction for the patterns.

If one thinks of the memory task as a form of informa-
tion channel for the memory patterns, then the information
capacity is bounded by the maximum capacity describing the
learning process (10 which has been called learning bound.
For heteroassociative memories, the learning bound has been
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shown to coincide with the information capacity [16]. Since the
synaptic matrix for an autoassociative memory is symmetric,
it has half as many free parameters, and thus the learning
bound is expected to be reduced by at least a factor of
two. A particular method of extracting information from the
autoassociative Willshaw matrix does actually achieve the
maximum capacity of bits/synapse [17]. How-
ever, this method extracts the whole set of memory patterns
by an exhaustive exploration of the entire space of sparse
patterns. This is fine for recognition, but cannot be used to
complete single patterns, as is required for an autoassociative
memory. For the autoassociative task the information capacity
of Willshaw model has been determined to be
bits/synapse [16]. This is still high compared to the models
discussed later, but is only half of what can be reached in a
recognition task. Hence, the retrieval procedure prescribed by
the Willshaw model is clearly a limiting factor, a fact which is
also underpinned by theoretical and empirical capacity results
of iterative retrieval in the Willshaw model [15], which exceed
the value 0.17.

At first sight, the Willshaw learning procedure would also
appear to be suboptimal: linear Hebbian learning without
the clipping promises higher information capacity since the
synapses could then carry more than one bit each. Surprisingly,
analysis for the Hopfield model with sparse training
patterns yields an information capacity of
bits/synapse [18] (the result of the first reference has been
transformed to give true autoassociative information capacity)
[16], which is strikingly close to that achieved with clipped
synapses. The resulting information efficiency is clearly below
that of the Willshaw model even for four-state (two bit)
synapses.

Another large class of associative memories that employ
dense training patterns has been investigated. However, for
these, the asymptotic capacity always goes to zero asymptoti-
cally for a error criterion for retrieval that demands vanishing
errors. For instance, for the Hopfield model with linear learn-
ing, the number of patterns per neuron is , and for
clipped learning, it is [19]. If a general nonlinear
function is used in place of the Heaviside function for weight
saturation, then, in general, the information capacity stays
below that of linear learning [20]. With a small finite error
criterion, the Hopfield model achieves an asymptotic pattern-
per-neuron ratio of 0.14 [11], [21], and, in experiments with
nonmonotonic retrieval dynamics (i.e., replacing the Heaviside
function in (2) by a nonmonotonic function), it has reached 0.3
[22], [23]. Nevertheless, even the higher result corresponds to
an information efficiency lower than that of the autoassociative
Willshaw model.

Recently, [24] suggested a further definition of capacity
that we mention for the sake of completeness. Instead of
just the training patterns, this measure countsall patterns
that are stable and have some sufficiently large basin of
attraction. This number grows exponentially with the number
of units and includes all mixture or spurious states. These
states are normally considered to reduce the sizes of the
basins of attraction for the training patterns, and therefore
to be undesirable. The ratio between this enhanced number

of patterns and the number of neurons is called the basis
rate, and, inspired by channel coding theory, the rate of
exponential growth is called the capacity. Requiring a positive
capacity is consistent with placing an upper bound on the basis
rate. This idea had already been used as an alternative way
of determining the pattern-per-neuron ratio in the Hopfield
model: The result is close to the 0.14 cited above [25]—for a
slightly different model, [24] showed that the basis rate is 0.17.

We have so far only considered capacity using Hebbian-
type learning rules. The seminal work of [26] analyzed the
potential capacity of autoassociative memories given the opti-
mal settings of the weights. For nonsparse training patterns, the
Gardner bound is 2 bits/synapse, which is much higher than the
Hopfield capacity. However, more complicated learning rules,
such as the delta rule, which require multiple presentations
of the patterns are required. For sparse training patterns, the
Gardner bound [26] coincides with the information capacity
[18] for linear Hebbian learning. Therefore, for associative
memories with sparse training patterns, retrieval is the bottle-
neck; for dense training patterns, the learning procedure must
also be refined.

To summarize: 1) binary clipped learning as employed in the
Willshaw model has the largest information efficiency (0.17);
2) for sparse training patterns, which are required for the
Willshaw model to be optimally efficient, more sophisticated
learning rules will not help; and 3) changing the retrieval
strategy in the Willshaw model can potentially improve its
efficiency by a factor of two.

E. Modifications to the Willshaw Net

Although the Willshaw net was one of the first associative
memories to be suggested [1], it is only recently that modifi-
cations and improvements have been proposed. For one-step
retrieval, statistical arguments have been adduced in favor of
a more refined, site dependent threshold [27], [28]. Various
methods for iterative retrieval have also been suggested on the
basis of heuristic arguments [29], [30], [15]. Iterative retrieval
in finite-sized systems reaches, and even slightly surpasses,
the asymptotic capacity, typically achieving efficiencies up to
$0.2$ with much lower retrieval errors even for moderate size
systems (e.g., , see [15]). It is clearly important
to provide a strong theoretical framework for these iterative
strategies to understand their basis and the scope for further
improvement.

III. RETRIEVAL BY PROBABILISTIC INFERENCE

We consider Bayesian analysis of the process of autoassocia-
tive recall. The output of this is a posterior distribution over all
possible patterns, expressing how likely it is that each pattern
underlies the initial pattern that was presented. This posterior
distribution depends on a variety of forms of prior information,
as discussed below. Given a loss function, the particular
pattern that minimizes the expected posterior loss can be
chosen. Quite a range of behaviors is supported by different
loss functions. This full posterior distribution is computa-
tionally intractable to manipulate. We therefore consider two
approaches. One is maximuma posteriori (MAP) inference,
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which requires finding the single pattern that maximizes the
conditional probability. We will see in the next section that
this leads to a retrieval method that is very close to existing
suggestions, and also provides a theoretical framework to
justify many of the otherwise heuristic modifications proposed
for all sorts of associative memory models, not only the
Willshaw net. The second approach to the full posterior
distribution is to approximate it by a simpler mean field
distribution.

Retrieval is cued by an initial pattern, which is a noisy
version of one of the training patterns. We omit the index
where it is obvious. If the memory matrix is, then retrieval in
the associative memory should depend on the conditional ora
posteriori probability where

(3)

under a reasonable probabilistic model for whichis inde-
pendent of given . In this section we derive expressions
and approximations for the three factors on the right-hand side
of (3), based on prior knowledge about the pattern activity,
the noise in the initial pattern, and storage noise in the
synaptic matrix. Based on this analysis, we go on to suggest
two approximate iterative retrieval equations, one that finds
the that maximizes using (3) as a Lyapunov
function, and the other that finds a mean-field approximation
to

A. Biased Random Training Patterns

The last term in (3) is the prior probability that pattern
could have been one of the training patterns. We consider the
case in which each component of a training pattern is generated
independently with bias , producing a
set of training patterns with mean activity. Therefore

(4)

Making a Gaussian approximation to the expression in (4),
the log probability is given as

(5)

where is a generic constant with respect to the variable
parameters that takes different values in each equation.

B. Noise in the Initial Pattern

The middle term in (3) quantifies the way thatcould have
been produced as a corrupted version of training pattern.
Clearly, the farther is from , the less likely it is that it
was generated by in the first place. We describe thea priori
knowledge about these initial distortions using the conditional
probabilities and .
In the case for which the process of corruption preserves the
mean activity of the patterns, one of these error probabilities

can be eliminated using the expression with
.

The probability of generating as a corruption of is

(6)

with and
. The second factor in (3) is therefore

(7)

where is a constant with respect to the variable parameters.

C. Matrix Elements with Storage Errors

The remaining factor in (3) is the probability that
the synpatic weight matrix would be if had been one
of the training patterns. This reflects the influence of three
contributions: the effect of pattern itself, the effect of all
the other training patterns, and the effect of noise corrupting
the perfect Hebbian matrix . The storage process may be
corrupted by two error types: “stuck-at-0” errors denote the
case where elements of the Hebbian matrix with values one are
converted into zero and “stuck-at-1” errors denote the inverse
confusion. The imperfect storage process is again characterized
by a pair of error probabilities:
quantifying the “stuck-at-0” errors and

the “stuck-at-1” errors. The first factor in (3) can then be
approximated by

(8)
with and

, where the probabilities
that matrix elements and have not been changed from
zero by other training patterns are

(9)

Equation (8) is only an approximation to the true probability,
since we are ignoring dependencies between different elements
of that arise from the Hebbian storage process of the other
memory patterns.

Equation (8) yields the log probability

(10)

where

(11)

and similarly for . The terms and are
the logarithmic probabilities of under the condition

and , respectively. If they are equal, for or
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equivalently , we have the case of total information
loss in due to storage errors, where no information about
the particular training pattern is preserved in the corrupted
matrix: is independent of .

On the other hand, in the absence of storage errors, the
term becomes dominating and we obtain

as

IV. A PPROXIMATE MAP INFERENCE

The MAP solution is the value of that maximizes
or, equivalently, maximizes . Mak-

ing the approximations derived in the previous section,
can be used as a Lyapunov function for

iterative retrieval. This leads to a modified update (23), which
turns out to bear close relationships to modifications in the
retrieval process that have previously been suggested. We
discuss these modifications in turn and relate them to the
MAP Lyapunov function.

A. Retrieval as Constraint Satisfaction

Iterative retrieval in the Willshaw model (2) can be de-
scribed by the Lyapunov function

(12)

since it is easy to show that asynchronous application of the
Willshaw update in (2) sets to if

(13)

We call the method for setting the threshold during the
course of iterations thethreshold strategy.

The Lyapunov function

(14)

is equivalent (up to a constant factor and a constant offset)
to (12) for . The terms in (14) can be interpreted
as constraint terms on: The first term punishes pairs of 1-
components in that coincide with a matrix element .
The term in (14) is proportional to the quadratic deviation
between the pattern activity and the threshold value. Since
is negative, using a constant threshold does not
stabilize the pattern activity near the threshold value, but rather
drives the activity to its maximum or minimum value. Iterative
retrieval can improve the performance, however, when com-
bined with a linear threshold-setting strategy:
[30], [15], [31]. Note that the linear threshold strategy just
eliminates the influence of the-term in (14) and hence is
equivalent to a constant threshold strategy in a network with
an additional antiferromagnetic interaction.

B. Pattern Activity Constraint

If all the training patterns have activity, (14) suggests the
very simple modification of setting and using .
In this case, the second component of the Lyapunov function
(14) is a constraint term encouraging . For retrieval
of sparse patterns, a constraint of this type was introduced
into the Hopfield model [32]. For training patterns having
varying activities this constraint term should be replaced by

, where . Nevertheless,
if the patterns are generated with a binomial distribution, i.e.,

with , as prescribed in
Section III-A, then the resulting energy can be transformed
into the form of (14), again requiring the same, constant,
threshold However, this analysis does not suggest
how large should be—i.e., how important is this constraint
compared with the term coming from the matrix.

In the MAP model, information about the activity of the
training patterns is one of the three components of .
Comparing (5) with the right-most part of (14), we can see
that the appropriate setting of is

(15)

which is just the inverse variance of the activity distribution
in the training patterns.

C. Storage Errors in the Synaptic Matrix

In the most interesting case for the memory,is allowed
to be a distorted version of the perfect learning matrix .
This requires replacing the first term on the right-hand side of
(14) with a term such as

(16)

The term multiplied by is just the same as that in (14). The
term multiplied by is helpful if there are many “stuck-at-1”
errors. It prevents undue advantage being given to patterns
for which , at least to the extent that
can occur erroneously.

Comparing (10) with (16), the MAP model suggests partic-
ular values for the constraint coefficients

(17)

(18)

Equation (10) also includes the additive constant
which does not depend on . The

coefficients are nonnegative if It can be
observed that the constraint term is independent of, i.e.,

, only when the coefficients disappear. This happens
either for , if contains no information about the
training pattern due to crosstalk, or , the case of
total information loss in due to storage errors.
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D. The Influence of the Initial Pattern

Typically in associative memories, the only influence of the
initial pattern to the retrieval outcome is to determine the initial
value of for the dynamics. However, the initial pattern is
the only piece of data pertaining to which of the memories
should be retrieved, and it is also usually highly correlated with
the correct memory. Therefore, retrieval may be improved by
restricting the search to the vicinity of the initial pattern by its
direct influence to the system dynamics. This is provided by
an additional constraint term in the Lyapunov function in (14)

(19)

where the first and the second term on the LHS punish
deviations from 1- and 0-components of the initial pattern,
respectively. Again, arbitrary offsets depending on the initial
pattern do not change the system dynamics. Comparing
(7) with (19), the MAP Lyapunov function suggests the
constraint coefficients

(20)

(21)

with the offset The resulting
coefficients are positive if the initial pattern is closer to the
training pattern than the inverted initial pattern, i.e., .

Modifications similar to this have previously been proposed
for other memory models on a heuristic basis. For instance, for
the Hopfield net, retrieval with a persistent field aligned with
the initial pattern is known to improve retrieval performance
[33]–[35]. Another modification, which is already prescribed
by more expensive storage strategies such as pseudoinverse
learning [36] to restrict the search space to the vicinity of the
initial pattern is to add a positive offset in all diagonal weights

. In other words, this adds a uniform self-interaction, or
equivalently a transfer function with hysteresis [37]–[39].

E. Modified Retrieval Equations

Putting together the results of this section in (5), (6), and
(10), the Lyapunov function derived by the MAP treatment
can be written as

(22)

where is again a generic constant.
Finally, from (22) and (13), the modified update equation

can be derived

(23)

with the constants in (22) and (23)

(24)

(25)

(26)

(27)

Without storage errors, i.e., for the synaptic
constraint term dominates in the argument
of the Heaviside function. In this case, the ML approach is
close to the linear threshold strategy adopted in the original
Willshaw model, except that all the other terms in the Lya-
punov function decide among those patterns that satisfy the
hard constraint. In practical applications this could be realized
by a high finite .

In the case of total information loss in, i.e., for
the argument is only determined by the additional constraint
terms. In all other cases, because , we
can normalize the argument in (23) by. The behavior of
the modified update equations (23) is therefore influenced by
three independent coefficients: implies an additional
antiferromagnetic interaction. represents a constant
threshold offset consisting of a positive component which
is growing with the activity of the training patterns and a
second component compensating deleted 1-entries in the initial
pattern. It vanishes if the probabilities that a “0” in the initial
pattern is correct or has been produced by the noise are equal.

introduces a site dependent threshold representing a
sustained bias toward the initial pattern during the iterative
retrieval.

V. APPROXIMATE MEAN FIELD INFERENCE

The idea of a mean field treatment of the retrieval problem
is to find a good approximation to the conditional distribution

which makes for tractable computation. The obvious
approximate distribution that has frequently been used for
associative memories treats all the components ofas being
independent, Bernoulli variables

(28)

with means which are adjustable free
parameters. The process of retrieval is the process of finding

which minimize the Kullback–Leibler divergence between
and

(29)

Since does not depend on
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and so we can equally well choose to minimize

(30)

In physics terms, is the free energy. The first term
in (30) is the energy, and the second term is the negative
entropy of distribution . See [40] for a development
of this expression.

Employing the factorial distribution in (28) and the log joint
distribution in (22), we obtain

(31)

where and is again
a generic constant.

The identity with
implies an interpretation of the free energy as

a function of the mean field variables

(32)

where is the Lyapunov function of the network with
binary neurons from (22) that we developed in Section III: The
integral term in just represents the additional term
introduced into the Lyapunov function by a transition from a
network of binary neurons to a network of neurons with the
graded response function [41].

The best choice of in the distribution in (28) is found by
minimizing the new Lyapunov function

(33)

This leads to the mean field equations

(34)

with the coefficients given by (24)–(27). These equations can
either be seen as consistency conditions that the true minima
of must satisfy, or, when applied asynchronously,
a method of coordinate-wise descent in
can have many local minima, so such simple descent methods
are only guaranteed to find local MAP solutions.

The outcome of iterating (34)—initialized with —to
convergence at is an approximation to the true
conditional distribution One could find the MAP
pattern from this distribution (in which case the mean field
procedure is mostly a heuristic optimization strategy for ML

inference) or it could be used in conjunction with other loss
functions. Hinton (personal communication) has suggested a
better, but computationally more expensive, method for finding
an approximate binary MAP solution from the mean field
distribution by successively clamping units to zero or one and
resolving the mean field equations.

If the response function (i.e., the entropy) term is negligible
in (32), i.e., if at least one of the constants or is
large, then the attractors are the same patterns as for the binary
system. This holds since then the energy is a linear function of
a single , and must therefore achieve its minima at corners of
the hypercube that limits the state space. On the other hand, if
the entropy term dominates in (32), there is only a single stable
state . As long as the entropy has some influence,
the continuous response model has fewer stable states than
the binary model but still each stable state corresponds to an
attractor of the binary model [41].

The introduction of a nonzero temperature and thus graded
response neurons is, of course, well known as a barrier method,
and its link to mean field is also well understood. However,
this is the first application to associative memory of which
we are aware. In general, mean field methods can be expected
to reduce the number of spurious states, without perturbing
the training patterns too greatly. The extent to which this is
true depends on a host of factors that are hard to determine,
particularly the quality of the mean field approximation, in
terms of the final value of the Kullback–Leibler divergence
in (29).

VI. DISCUSSION

A. Model Limitations and Simple Extensions

Our analysis so far is predicated on the particular formula-
tion of the probabilistic model in Section III. This formulation
contains assumptions which might be inappropriate in some
cases of technical interest. For instance, we assumed for the
training patterns and the initial pattern, uniform probabilities
that do not depend on the component index. If training patterns
are randomly generated with the probabilities ,
(5) has to be replaced by

(35)

introducing additional site-dependent threshold terms in the
update prescriptions (23) and (34). Distortions in the initial
pattern can also be modeled in a site-dependent manner by
replacing parameters and by and

. From this a similiar modification with
additional site dependent threshold terms results for both the
models.

There might be other situations wherea priori knowledge
about the storage errors should be described in a different
way than in Section III-C. In the deterministic case where
storage errors are completely absent or their exact locations
are known, only the first constraint term on the left-hand side
of (16) should be used. As discussed in Section IV-E this leads
to a diverging . Of course, known storage errors can be
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exactly compensated by an additional threshold term using
the difference matrix .

If different probabilities for storage errors can be specified
for different parts of the matrix i.e., and are given
instead of and , the coefficients and in our model have
to be replaced by the matrices and , where the matrix
elements are determined from and as in (17) and (18).

There have been various recent improvements to the basic
mean field method that we outlined, which are mostly based
on more general convexity properties [42]. These can also
be applied to the associative memory task and, by improving
the quality of the approximation to the distribution, should
improve recall. The price is mild in terms of computational
complexity.

B. Summary and Conclusion

The original Willshaw model was designed as a one-shot,
heteroassociative memory rather than as an iterative, autoas-
sociative memory. As an autoassociator, it is hampered, since
its Lyapunov function contains a counterproductive constraint
term which comes from the threshold. If this threshold is
kept constant, then the network is encouraged to recall just
one of two patterns—with all components being either on or
off. Linear threshold strategies [30], [15], [31], for which the
threshold depends linearly on the previous activity, merely
eliminate the influence of this harmful constraint.

Along with [13], we considered retrieval of information
from an autoassociative memory as a prime case for prob-
abilistic inference. Our retrieval strategies were determined
explicitly from prior information about the the mean activity
of the stored patterns, and the error rates in the initial pattern
and in the synaptic matrix. The resulting iterative schemes are
close to those that have been suggested in the literature, and
so provide interpretation for (and suggestions for the values
of) their otherwise purely heuristic parameters.

Compared with the Willshaw model the Lyapunov function
derived from MAP inference from the posterior probability
contains additional constraint terms. In particular, it includes
a constant antiferromagnetic interaction and a constant, but
site dependent threshold strategy. The choice in (14)
introduces an antiferromagnetic interaction (and a constant
threshold) in the Willshaw model which has heuristically been
proposed earlier [43]. The terms in (19) introduce
a threshold which consists of both a constant component and
a site dependent component that is aligned with the initial
pattern. In the Hopfield model, allowing the initial pattern to
have a persistent influence has been shown to improve the
retrieval in experiments [37], [33]–[35], [38], [39].

For pattern completion in the Hopfield model, connections
with maximum entropy inference have been explored by
MacKay [13]. His approach does not explain the antiferromag-
netic terms, but also calls for the introduction of constant and
site dependent thresholds given knowledge about the activities
of the training patterns and the similarity between the testing
pattern and the possible training patterns.

We also developed a mean field treatment of the proba-
bilistic inference process, using a parameterized but tractable

approximation to the true posterior distribution. Retrieval in
this model requires changing the values of the parameters to
reduce the consequent Kullback-Leibler divergence between
approximate and true distributions. This leads to iterative mean
field equations that can be interpreted as a neural network with
similar interconnections and threshold values as prescribed by
the modified MAP update equation, but with sigmoid neural
response functions. The mean field equations should thereby
reduce the number of spurious states [41].
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