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Simple substrates for complex cognition
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Complex cognitive tasks present a range of computational and algorithmic challenges for 
neural accounts of both learning and inference. In particular, it is extremely hard to solve 
them using the sort of simple policies that have been extensively studied as solutions to 
elementary Markov decision problems. There has thus been recent interest in architectures for 
the instantiation and even learning of policies that are formally more complicated than these, 
involving operations such as gated working memory. However, the focus of these ideas and 
methods has largely been on what might best be considered as automatized, routine or, in the 
sense of animal conditioning, habitual, performance. Thus, they have yet to provide a route 
towards understanding the workings of rule-based control, which is critical for cognitively 
sophisticated competence. Here, we review a recent suggestion for a uniform architecture for 
habitual and rule-based execution, discuss some of the habitual mechanisms that underpin the 
use of rules, and consider a statistical relationship between rules and habits.
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IntroductIon
Figure 1A shows a cognitively complex task 
(called the 12AX task) which one might attempt 
to teach to a macaque or explain to a human sub-
ject (Frank et al., 2001). The task is called a con-
ditional one-back task, since at its heart are two 
different one-back tasks. One requires a particular 
response to X when preceded by A; the other to 
Y preceded by B. Which of the two tasks is active 
depends on whether the most recent digit seen was 
a 1 or a 2. Thus the task has a hierarchical struc-
ture with the outer loop involving the storage of 
the most recent digit (the 1 or 2), and inner loops 
involving the two one-back tasks. The subjects are 
required to press one (L) of the two buttons as the 
particular response for the one-back task that is in 
operation, and otherwise to press the other button 
(R). The complexity of the task derives from the 
hierarchy, and also the long outer loops.

Sophisticated tasks of this sort (Badre et al., 
2005; Frank et al., 2001; Fusi et al., 2007; Koechlin 
and Summerfield, 2007; Koechlin et al., 1999, 2003) 
pose a variety of challenges for neurally inspired 

computational theories in terms of both acquisition 
and execution. However, despite their neuropsycho-
logical and neuroimaging importance, until rather 
recently, they fell between large cracks in compu-
tational cognitive science and neuroscience. They 
were too simple for the wing of the field interested 
in realizing artificial intelligence (AI) architectures 
in connectionist form (e.g. Derthick, 1990; Hinton, 
1990; Plate, 2003; Shastri and Ajjanagadde, 1993; 
Smolensky, 1990; Touretzky and Hinton, 1988; 
Wermter and Sun, 2000), which largely seeks to 
represent and manipulate arbitrary symbolic struc-
tures. Conversely, they were too complicated to be 
readily accommodated by the more straightforward 
feedforward (Fukushima, 1980; Riesenhuber and 
Poggio, 2000) or recurrent (Hopfield, 1982) process-
ing architectures popular in supervised, unsuper-
vised, and reinforcement learning (Rumelhart and 
McClelland, 1986; Sutton and Barto, 1998).

However, developments in larger-scale archi-
tectures in behavioural neuroscience (Frank et al., 
2001; O’Reilly and Frank, 2006; O’Reilly and 
Munakata, 2000), ideas about more sophisticated 
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to running an interpreted language on a computer, 
involving substantial mediation between the rules 
themselves and their underlying execution.

The whole architecture of the policy for solving 
this task that underlies the hand-crafted solution 
in Frank et al. (2001) and the learned solution 
in Hazy et al. (2006) is completely different from 
this. It is a single, relatively complex, procedural 
entity, putatively realized by interactions between 
basal ganglia and the prefrontal cortex (PFC), and 
requiring neither retrieval nor checking. Rigotti 
and Fusi (2006) and Rigotti et al. (2007) consid-
ered a similarly complex procedural solution to a 
slightly different task, but in their case considering 
hidden units within PFC rather than interactions 
with the basal ganglia.

Borrowing a term in broad use, but that has 
been most clearly defined in the animal condition-
ing community (Dickinson and Balleine, 2002), 
we call such solutions habits, in the sense that they 
are forms of complex stimulus-response, or con-
ditional input–output mapping, where the stimu-
lus includes both the externally presented letter or 
digit and the contents of working memory, and 
the response can be both external, such as press-
ing a button, and internal, storing a  stimulus in 
working memory. Like conventional habits, these 
are cognitively impenetrable and inflexible, in 
that parts of them cannot be edited separately. 
The main differences from the notion of a con-
ventional habit is that they include the coordi-
nated responses to many stimuli, rather than the 

multiply-articulated models of decision-making 
(Daw et al., 2005), and indeed the new attention 
being paid to the neural basis of general-purpose 
cognitive architectures such as ACT-R (Anderson 
et al., 2008) have breathed new life into the solu-
tion of such tasks (Frank et al., 2001; Hazy et al., 
2007; Rigotti and Fusi, 2006; Rigotti et al., 2007). 
Here, we review Dayan’s (2007) nascent attempt 
to meld aspects of these traditions so that a plau-
sible route towards solving the more complex, 
AI-inspired, tasks can be mapped.

The premise of that paper is that there are pro-
cedural approaches to the challenges at two differ-
ent levels, which we describe as rules and habits. 
The actual rules of a task such as 12AX can be 
described in a few sentences of a natural language 
(as indeed in the first paragraph of this introduc-
tion). More formally, they could easily be rendered 
as the productions of production-system cogni-
tive architectures such as SOAR (Newell, 1990) or 
ACT-R (Anderson and Lebiere, 1998), employing 
a blackboard-like working memory (e.g. Newell, 
1990) to remember facts such as which digit was 
most recently presented. However, using produc-
tions of this sort poses particular computational 
difficulties, including retrieving a rule most appro-
priate to the current state, checking that its precon-
ditions actually match the state of the input and 
the working memory, and then executing the rule 
in the sense of producing an appropriate output 
action and/or storing aspects of the input in work-
ing memory. This process is somewhat analogous 

Procedural representation  
of a task solution
Crudely, a set of explicit instructions 
about what actions to take given what 
input (e.g. ‘in state P press the left 
button; in state Q press the right 
button’). Standard, imperative, 
computer programming languages are 
procedural.

Rule
A combination of a (typically simple) 
input–output mapping and a set of 
conditions defining this mapping’s 
applicability. Rules require retrieval 
from memory, having their conditions 
be checked, and then their actions 
executed. The paper considers a 
uniform architecture involving habits 
and rules.

Goal-directed action
In conditioning, an action that is 
executed because a subject has good 
reason to expect it to produce a 
outcome that is actually desired. This 
form of control has been related to 
model-based reinforcement learning, 
which involves a declarative 
representation of a task.

Habit
In conditioning, a response that lacks 
the contingency or outcome sensitivity 
of a goal-directed action. This has been 
related to model-free or cached 
reinforcement learning. Here, we 
consider habits as learned, possibly 
complex, procedural, input–output 
mappings.

Working memory
Many complex tasks require 
information from the recent past to be 
stored temporarily to influence ongoing 
choices, and, in reinforcement learning 
terms, to resolve ambiguities about 
state. In this paper, we borrow an idea 
about gated working memory, allowing 
explicit internally directed actions to 
control reading information in and out 
of such memories.

Figure 1 | The 12AX task (from O’Reilly and Frank, 2006, rendered by Krueger and Dayan, 2007). (A) Subjects see  
a sequence of numbers and letters (in boxes), and have to respond by pressing one of two keys (L or R; correct 
responses are shown). They should choose L every time, except to respond R if the most recent digit is a 1 and X directly 
follows A, or the most recent digit is a 2 and Y directly follo-ws B. There can be many AX or BY subsequences following 
each 1 or 2, and inner loops always involve pairs of symbols. Different variants of the task impose slightly different 
constraints on the symbols in the non-one-back inner loops. (B) A finite state representation of one procedural solution 
to the task. S is the start state; the links are labelled with the observation and the action. The main states are annotated 
with a representation of the contents of working memory (in italics). ‘1:L’ is upside down indicating it labels the link  
from 2- to 1-; ‘2:L’ on the same arrow labels the link from 1- to 2-.
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Automatization
In conditioning, behaviour can  
transfer from being under goal-directed 
control to being habitual, and therefore 
automatic in a particular sense.  
Related and expanded notions of 
automatization in skill learning appear 
in many forms in the literature, 
including a transfer from declarative  
to procedural representations,  
and streamlined procedural forms. 

We consider a uniform architecture, in which 
rule execution indeed involves just the same oper-
ations as a habit. This then leads to a set of issues 
about the structural and statistical relationships 
between the execution components of rules and 
habits, and how one might emerge from the other. 
Again arguing by analogy, unsupervised learning 
methods applied to the natural statistics of sen-
sory inputs build models that use basis represen-
tations to split up complex perceptual scenes into 
their separate pieces (Rao et al., 2002). Top-down 
effects in perception depend on the ability to use 
these models to synthesize the internal activities 
associated with new, imagined, scenes. We con-
sider the possibility that there could be habitual 
basis functions in the space of policies that can be 
acquired in a similar manner, and that the equiva-
lent of synthesizing a new scene is synthesizing 
the execution aspect of a rule.

The other link between rules and habits stems 
from the observation that the tasks involved in 
interpreting rules themselves involve the execu-
tion of some particular internally directed actions, 
including memory retrieval for the rule (which we 
consider to be associative) and condition check-
ing. In our computer analogy, interpretation of 
a high-level language (the rules) requires execu-
tion of assembly language (the habits) associated 
with the interpreter. We thus consider some of the 
habits associated with rule use.

We first consider the habitual elements, 
crudely, the form of processor that underlies per-
formance in such tasks. We then consider rules, 
and finally generalizations beyond the work in 
Dayan (2007).

HabIts
The 12AX task (and indeed the other conditional 
input–output mapping task modelled in detail in 
Dayan, 2007) poses two particular computational 
problems associated with: (1) working memory 
(for stimuli 1, 2, A and B), and (2) the mappings 
from the current input to the required output 
conditional on the contents of the working mem-
ory. Both of these can be solved using particular 
forms of non-linear interactions based on simple 
neural representations of the input stimuli and 
working memory. Figure 1B shows a habitual 
solution to this task in a finite state represen-
tation. Working memory (annotated inside the 
nodes) is used to realize the states; at least two 
‘slots’ are needed, one for 1 or 2, and one for A 
or B. The conditional input–output mappings 
realize the actions and the transitions. Frank 
et al. (2001), O’Reilly and Frank (2006), Rigotti 
and Fusi, (2006) and Rigotti et al. (2007) sug-
gest rather different approaches to implementing 

more conventional view which generally (though 
not exclusively; Balleine et al., 1995) concentrates 
more on single stimuli and single responses, and 
that they involve complex actions such as storing 
a stimulus in working memory. If the use of rules 
can be likened to running a interpreted, high-level 
computer language, then the use of a habit is more 
like the execution of assembly language. Indeed, 
we briefly discuss two notions of compilation 
below, also providing a link with popular notions 
of automatization (Anderson, 1982; Anderson and 
Lebiere, 1998; Anderson et al., 2004; Crossman, 
1959; Fitts, 1964; Logan, 1988; Newell, 1990; Newell 
and Rosenbloom, 1981; Taatgen et al., 2008).

In conditioning, the normal opposites of habits 
are goal-directed actions (Dickinson and Balleine, 
2002). However, rules are procedural, whereas 
goal-directed actions are declarative, a term with 
resonance in both neuroscience (Eichenbaum 
and Cohen, 2004) and computer science (as in 
programming languages such as prolog). Goal-
directed methods are declarative since they specify 
a set of facts about a domain (understood by Daw 
et al., 2005 in terms of reinforcement learning as 
a form of forward model; Wolpert and Kawato, 
1998; Wolpert and Miall, 1996) leaving out the 
hard deductive task of figuring out from these 
facts (e.g. searching the forward model) to deter-
mine what it is best to do. We consider issues sur-
rounding declarative control towards the end of 
the paper. Nevertheless, like goal-directed control, 
the system of rules can be highly labile to new 
information about a task (by virtue of changing 
the contents of the store of rules). This is one of 
their most critical differences from habits.

Dayan’s (2007) intent was to build a model 
that provides two explicit links between rules and 
habits. One concerns the relationship between the 
execution component of each. For tasks such as 
12AX, rule execution involves exactly the same class 
of internal and external effects as a habit. It is just 
that the complexities of the stimulus-response 
mapping have largely been removed by the proc-
esses of rule matching and checking, leaving a sim-
ple stimulus-response map. In fact, depending on 
the exact form of the rule, the process of checking 
might obviate the need for any conditionality even 
on the stimulus. The commonality between rules 
and habits is important because it suggests that a 
rather simple architecture might implement parts 
of both, and also provides a route towards seeing 
how a set of verbal commands could ultimately 
translate into a set of activities in populations of 
neurons that actually execute them1.

1Dayan (2007) labels this process compilation, but does not 
implement it.
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not be performed without such hidden units, and 
then that, given only a modest number of random, 
fixed, hidden units, an impressively large fraction 
of all possible single operations becomes viable.

Both these ideas can be thought of in terms of 
procedural primitives, out of which more gen-
eral competence can be fashioned, for instance 
through learning. Dayan (2007) adopted the 
notion of gating from Frank et al. (2001), with 
explicit operations for reading into and out of 
working memory. However, rather than employ-
ing the random hidden units of Rigotti and Fusi 
(2006) and Rigotti et al. (2007), this model used 
a bilinear form (Koenderink and Van Doorn, 
1997; Tenenbaum and Freeman, 2000), which is 
a rather simpler structure that is an abstraction of 
the sort of multidimensional basis functions that 
are frequently considered in neural terms (Poggio, 
1990), particularly in the context of coordinate 
transformations in the parietal cortex (Olshausen 
et al., 1993; Poggio, 1990; Pouget, 1997). This 
overall habitual architecture (Figure 1A,B in 
Dayan, 2007, with the solution to the 12AX task 
being shown in Figure 7) provides a computa-
tional substrate that is rich enough to encompass 
a whole range of tasks. One important question 
for future work is whether this is formally broad 
enough, i.e., in some sense Turing equivalent (bar 
the infinite tape), possibly when coupled to an 
ability to create new representations of combined 
sensory input and internal states that are also cou-
pled to their own working memory units.

The target article considered this part of the 
architecture as being habitual, because it realizes 
a direct mapping between internal and external 
stimuli and internal and external responses. In 
the literature from which this term was borrowed, 
the distinction is made between goal-directed 
actions, which are performed because (compu-
tationally, as a deductive consequence of the fact 
that) subjects have good reason to (1) expect that 
they will give rise to particular outcomes; and (2) 
value those outcomes, and habits, which form 
a more amorphous class of control, including 
stimulus-response mappings, that do not respect 
one or other of these precepts (Dickinson, 1985; 
Dickinson and Balleine, 2002). For instance, if a 
subject learns that a formerly valuable outcome 
is currently worthless (for instance having been 
poisoned), under goal-directed control, it should 
refuse to perform an action leading to that out-
come. The policies realized by the bilinear archi-
tecture are not based in any way on the sort of 
reasoning processes inherent to goal-directed 
actions, and cannot be changed in the sort of on-
line way implied by the poisoning experiment. 
This underlies their habitual moniker.

such a solution, which were partially integrated 
in Dayan (2007).

Based on the analysis of Hochreiter and 
Schmidhuber (1997), Frank et al. (2001) and 
O’Reilly and Frank (2006) build a model of gated 
working memory called PBWM (prefrontal, basal 
ganglia working memory). The idea is that regions 
(stripes; Pucak et al., 1996) in the PFC are disposed 
to provide the sort of activity-based storage fre-
quently observed in electrophysiological studies 
of neurons in this area (Fuster, 1997), for specific 
information available in inputs from higher order 
sensory areas. In our case, this on-line storage is 
the substrate for the representation of the slots, 
i.e., the persistent states associated with the inner 
and outer loops in the task. In this framework, 
control over working memory amounts to con-
trol over reading information into (and out of; 
Gers et al., 2000) the memory. O’Reilly and Frank 
(2006) suggest that this is implemented by plastic 
connections between the PFC and the basal gan-
glia that learn to implement appropriate gating 
operations at suitable points in the performance 
of the task. Other connections through the basal 
ganglia realize the mapping necessary to gener-
ate motor outputs. Frank et al. (2001) show that 
it is possible to wire up such a gated working 
memory system in a way that executes the 12AX 
task; O’Reilly and Frank (2006) provide a rather 
complex reinforcement learning mechanism that 
can acquire this ability from (substantial) experi-
ence. However, the sloth of learning may be at least 
partially ameliorated through structured shaping 
of competence, itself an underinvestigated topic 
(Krueger and Dayan, 2007).

Gating information into or out of work-
ing memory is a particular sort of non-linear 
computational operation. In PBWM, one can 
interpret the neurons in the basal ganglia path-
way as hidden units with trainable inputs (to 
accommodate the different operations that are 
required) and fixed outputs (i.e. gating particular 
pathways from sensory cortices to PFC) associ-
ated with this non-linearity. By contrast, although 
Rigotti and Fusi (2006) and Rigotti et al. (2007) 
also consider working memory attractors as the 
core substrate of PFC, they employ hidden units 
that are intended to form part of PFC itself, with 
random, fixed, inputs, but trainable outputs. They 
do not consider gating operations as a particular, 
separate, class, with their own specific (striato-
thalamo-cortical) mechanism, instead treating 
them like any other computational operation. 
Rigotti and Fusi (2006) and Rigotti et al. (2007) 
show first that many simple computational opera-
tions associated with conditional input–output 
mappings are not linearly-separable, and so can-



Frontiers in Neuroscience www.frontiersin.org December 2008 | Volume 2 | Issue 2 | 259

Dayan Simple substrates for complex cognition

computation in different ways (Marr, 1982), pos-
ing greater or lesser loads on different aspects of 
neural competence.

Cast in this manner, the action part of a rule 
is really an isolated, basic procedure that can be 
implemented using the same mechanism that 
realises the complete, complex, habit for 12AX 
(that we discussed in Section ‘Habits’). This uni-
form realization is very important, since it pro-
vides a natural means of melding rules and habits 
in the same structure. We can imagine a whole 
task such as 12AX ultimately becoming the execu-
tion component of a rule all on its own, illustrat-
ing a compositional route to more sophisticated 
functionality.

Of course, the rule itself can only be simple if 
the complexity of extracting it from the store of 
rules that collectively solve the task, and decid-
ing which of this collection should be active at 
what point in the task, is addressed by some 
other mechanism. We argue that rule storage 
and extraction is the job for a content-addressable 
episodic memory; and testing the exact condi-
tions for the match of a rule is a specialized, but 
bilinearly simple, procedure all of its own, based 
on matching conditions that form a critical part 
of the representation of the rule.

The rules describing a complex task, like the 
rules describing a board game, can readily exceed 
the limited explicit storage capacity of working 
memory (Halford et al., 2007). It therefore seems 
likely that they are stored in long-term memory, 
extracted by associative match with the sensory 
input and the contents of working memory. 
However, there is a critical computational dif-
ference between associative matching and rule 
matching that has to do with exclusion. Rules 
can have exclusion conditions – for instance firing 
only if some aspect of the input does not match 
a particular feature, whereas associative recall is 
generally more promiscuous, using any available 
information as a key to recall. It is straightforward 
to specify a bilinear matching process that tests 
inclusion and exclusion conditions associated 
with a rule; this can be seen as another special-
ized procedure or habit itself.

In sum, we have created all the elements for 
rule storage, recall, testing and execution. The 
execution component of rules are, just like habits, 
stimulus-response mappings, but with the condi-
tionality that plays an important part in the full 
habitual representation of a whole task such as 
12AX being replaced by an explicit test of a set 
of conditions that the input must meet, or must 
fail to meet. In Dayan (2007), these conditions 
are simple to enforce, since the representations 
of inputs and the contents of working memory 

rules
Another way of viewing the habitual solution is 
that it is automatic, in the terms of Chaiken and 
Trope (1999), Dickinson (1985), Epstein (1994), 
Evans (2003), Kahneman and Frederick (2002), 
Schneider and Shiffrin (1977), Shiffrin and 
Schneider (1984), Sloman, (1996) and Stanovich 
and West (2002). These authors all consider dual 
process theories, setting up different, but inter-
related dichotomies between different systems. 
One of these, which involves the equivalent of 
habits, is typically inflexible and slow to learn, but 
fast to execute and attentionally undemanding. 
The other, ‘System 2’ in the sense of Kahneman 
and Frederick (2002) and Stanovich and West 
(2002), is rule-based, and subject to something 
more akin to attentional or deliberate control2. 
We now turn to this flexible, but demanding and 
computationally expensive (and hence likely inac-
curate, Daw et al., 2005) system.

In humans, rules for this controlled processor 
can be provided through verbal instructions, which 
can obviously only impact behaviour by affecting 
the underlying mechanisms of choice, putatively, 
exactly the same elements of working memory and 
conditional input–output control as above. We 
think of the mapping from precept to procedure 
as a problem of compilation or translation, an area 
that is ripe for further investigation. However, at 
a minimum, there must be a set of pre-existing 
execution competences that can be the targets of 
such mappings. In our uniform architecture, we 
consider these competences to be simple habits 
themselves, and suggest that simple habits form a 
basis set for the rule-governed execution of tasks.

The first step is to consider what rules might 
look like for a task such as 12AX. One view of a 
rule is that it captures an appropriate procedure 
for a restricted piece of the task, as in a (formal-
ized) part of the description given at the start of 
this paper. Examples of this include requiring 
that 1 or 2 be stored in working memory when it 
occurs (rules 1 and 2 of Table 4 in Dayan, 2007), 
or that if 1A is stored and is followed by an X then 
the R button should be pressed, and the A (but 
not the 1) forgotten. This latter rule (rule 5 in the 
table) has a limited domain (i.e. only applying 
at a restricted set of steps of the trial). A whole 
collection of rules has to be combined to create 
performance that is appropriate overall. Different 
sets of rules can be computationally equivalent, 
just as different algorithms rendered in differ-
ent programming language can realize the same 

2Although, of course, it is not clear how similar are all these 
different dichotomies, which span different species and 
different computational problems.
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the  transitions and  outcomes that result from 
actions. However, this is a declarative form of rep-
resentation of a problem, and hides the (search) 
complexities of how this knowledge can be used 
to work out what to do.

There are at least two straightforward analogies 
for this. One is with logic or theorem  proving – 
the model is like a set of axioms, the task of work-
ing out what to do is like deducing a consequence 
that is true. Deciding which of the declarative facts 
to use in this deduction and in what order, is well 
known to be a tough computational problem. A 
second analogy is to generative (or synthesis) 
and recognition (or analysis) models in statistical 
unsupervised learning for sensory input (Dayan 
et al., 1995; Hinton and Zemel, 1994; Hinton 
et al., 1995; Kawato et al., 1993; Neisser, 1967). 
Consider the case of vision – the generative model 
is a form of graphics model that indicates what a 
scene would look like given that it contains certain 
objects, lit in particular ways and viewed from 
some angle. The recognition model takes a view of 
a scene, and reverse-engineers it to work out what 
objects and lighting generated it. This is also well 
known as a computationally challenging inverse 
problem; and indeed the recognition model is 
often seen as the (Bayesian statistical) inverse of 
the generative model.

For us, the rules of the task are actually them-
selves already an inverse, i.e., they already deter-
mine an effective procedure for executing the task 
successfully. One can also imagine a set of rules 
that is more declarative in form – a set of genera-
tive rules which describes the workings of a task 
without directly indicating its solution (that is, a 
generative model without an inverse). Indeed, by 
contrast with imperative programming languages 
such as basic, there are declarative languages like 
prolog which require inverting in a somewhat 
analogous manner, employing a similar form of 
tree search. Our architecture should generalize to 
cases in which tree search is required based on a 
declarative specification of a task; this would then 
combine goal-directed and rule-based aspects of 
cognitive competence.

Despite being procedural rather than declara-
tive, the sort of rules that we have considered do 
share one important characteristic with goal-
directed actions, namely that they can readily be 
changed. Depending on the flexibility of storage 
and controlled forgetting in the associative mem-
ory, it would be straightforward to add new rules, 
and erase old ones and have them work appro-
priately, without changing everything about the 
existing rule-base. This is impossible for habits. 
Of course, if sets of rules come to conflict as they 
change, behaviour will be confused – declarative 

are unary. We assume that the associative match-
ing procedure can recall a number of candidate 
rules; the testing process winnows this down to 
the one that is appropriate; its associated habit is 
then executed in exactly the same (bilinear) man-
ner as the overall habit for 12AX.

Rule-based execution of a task is more com-
putationally involved than habitual execution, 
because of the sequential process of retrieving, 
testing and realizing the procedures associated 
with multiple rules. This computational challenge, 
and the resulting possibility of error, provides a 
spur towards automatization and the learning and 
acquisition of habitual competence.

ProsPects
The target article Dayan (2007) contains an exten-
sive discussion of the gaps in, and immediate 
extensions of, this work, notably to cases in which 
multiple rules may be appropriate at any point in 
a task, and to more complex matching conditions. 
However, two issues merit more notice, namely 
the relationships between habitual, rule-based, 
and declarative control, and the provenance of 
the basis sets of rules.

Our work was partly inspired by the analy-
sis of the difference between goal-directed and 
habitual control (Dickinson and Balleine, 2002) 
in terms of model-based and model-free rein-
forcement learning (Daw et al., 2005). Both forms 
of reinforcement learning attempt to acquire 
optimal policies. Model-based mechanisms do it 
by building a model of the world, which is typi-
cally straightforward and can readily change with 
new information. However, using such a model 
requires its inverse. For instance, for the case of 
a Markov decision problem, this requires tak-
ing a description of the transition structure of a 
domain and outcome utilities, and performing an 
operation equivalent to dynamic programming to 
calculate the optimal actions (Sutton and Barto, 
1998). This amounts to a form of search in the 
tree that comprises the transitions and outcomes 
produced by actions. Search is computationally 
expensive, taxing on working memory, and error-
prone. Daw et al., (2005) suggested that these 
challenges motivated model-free mechanisms, 
which learn the inverse by substituting experience 
and sampling for search. This makes them slower 
to acquire optimal behaviour, and less adaptable, 
but also much easier to use in practice.

However, the requirement for tree search 
points out an important distinction between 
model-based and rule-based control. The most 
natural form of model is a forward or gen-
erative (Dayan et al., 1995; Wolpert and Miall, 
1996) account of the domain that specifies 

Declarative representation  
of a task solution
Crudely, this describes the 
contingencies of the task (e.g. ‘pressing 
the left button in state P leads to state 
Q; pressing the right button in state Q 
leads to reward’) leaving a search 
problem to work out the appropriate 
action. Programming languages  
such as PROLOG are declarative; in  
the text, we relate such representations 
to model-based control.
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required to invert a declarative specification of a 
task would be yet more complicated.

We have argued that rules employ a basis set of 
habitual primitives. This poses an obvious ques-
tion as to the origin and choice of these primitives. 
Much of the work on connectionist structure-sen-
sitive rule and symbol processing (Hinton, 1990; 
Plate, 2003; Smolensky, 1990) has focussed on 
universality, i.e. on the implementation of a small 
set of powerful operations that can be combined 
and manipulated in a nearly arbitrary manner. By 
contrast, motivated by notions about structured 
visual representations (Dayan, 2006), we suggested 
considering this basis set in an hierarchical man-
ner as the result of an unsupervised representa-
tional learning process (Rao et al., 2002) applied 
to the internal descriptions of habitual procedures, 
just like the internal descriptions in early sensory 
cortices of visual, auditory or other sensory input 
that arise in the paired generative and recognition 
models that we discussed above.

The representational learning process that 
creates these paired models involves taking 
an ensemble of patterns and determining and 
parameterizing their underlying statistical struc-
ture. Given this, (old and) new members of the 
ensemble can be represented according to their 
parameter values with respect to this structural 
decomposition. This representation is the prod-
uct of the recognition or analytical model. Along 
with this model comes the statistical generative 
model that can synthesize new instances of the 
ensemble. Unsupervised learning applied to the 
internal representations of habits would decom-
pose complex ones into their individual parts, 
and provide a mechanism by which new habits, 
and the execution components of new rules, can 
be synthesized from their elemental pieces. One 
can imagine basing learning of a sophisticated 
representational system for habits, which will be 
automatically appropriate for rules, on the acqui-
sition over the course of a developmental period 
of a whole range of different tasks.

conclusIons
The main goal of Dayan (2007) was to pro-
vide a uniform architecture into which habits 
and instructed, rule-based, competence both 
fit. Although the former provides the ultimate, 
automatic, means by which we and animals 
negotiate simple and complex tasks, instructed 
rule-based performance is very important, at least 
for humans. Further, the issues for instantiating 
rules, such as the notion of hierarchically specified 
basis sets of habits created by a representational 
learning procedure, are important even in the 
absence of instruction. The other point stressed 

representations face a similar concern in the form 
of the infamous frame problem (McCarthy and 
Hayes, 1969).

In conditioning, behaviour that is initially 
goal-directed, emanating from the model-
based system, often becomes habitual, control-
led in a model-free manner, over the course 
of experience. This is related to the notions of 
automatization cited above. One difference is 
that the distinction in conditioning between 
goal-directed and habit systems has a somewhat 
sharper operationalization than for the other 
cases. There is an active debate in the field about 
the nature of the transfer from the former to the 
latter, for instance, whether it is for reasons of 
decreased perceived covariance between action 
and outcome arising from overly regular choices 
(Dickinson, 1985), or the relative uncertainties 
of the two systems arising from their different 
statistical and computational profiles (Daw 
et al., 2005). The characterizations of trans-
fer in the other treatments of automatization 
again appear somewhat less formal than these. 
However, Dayan (2007) focussed on the repre-
sentation of policies rather than their evolution 
over the course of skill learning; the latter is an 
important direction for the future.

Note that Anderson (1982); Taatgen et al. 
(2008), building on the notion of ‘chunking’ in 
SOAR (Newell and Rosenbloom, 1981), consider 
that one aspect of automatization is turning a 
declarative representation of a task that is solved 
(inverted) by general-purpose procedures into a 
rule-based representation in terms of productions. 
They call this knowledge or procedural compila-
tion, which is slightly different from the compila-
tion step that Dayan (2007) suggested as being 
involved in the translation from a verbal to a rule-
based specification of the policy for a task.

Our account stresses an additional feature of 
the interaction between the systems, namely the 
dependence of rule-based control on habitual 
mechanisms. First, the action components of 
rules are seen as being just like simple habits. 
Second, rule matching can be performed by a 
bilinear computational substrate just like the 
one assumed for the execution of other habits. 
Rules influence other rules directly by changing 
the contents of working memory (which acts like 
a form of blackboard; Newell, 1990), and indi-
rectly by causing actions in the world, which may 
then change (observable) state. In principle, the 
cognitive operations associated with rule-based 
control, such as influencing or manipulating 
associative matching, could themselves be rule-
based or habitual. However, this recursion must 
in the end be habitually grounded. The operations 
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in the paper is the rather strong reliance of rule 
instantiation and execution on habits. Not only is 
the action component of a rule a habit, but also we 
have suggested that mechanisms such as match-
ing that are associated with using rules, depend 
on habits too. At a most fundamental level, it is 
habits that are in control.
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