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Abstract

Inference and adaptation in noisy and changing, rich sensory environ-
ments are rife with a variety of specific sorts of variability. Experimental
and theoretical studies suggest that these different forms of variability
play different behavioral, neural and computational roles, and may be
reported by different (notably neuromodulatory) systems. Here, we re-
fine our previous theory of acetylcholine’s role in cortical inference in
the (oxymoronic) terms of expected uncertainty, and advocate a theory
for norepinephrine in terms of unexpected uncertainty. We suggest that
norepinephrine reports the radical divergence of bottom-up inputs from
prevailing top-down interpretations, to influence inference and plasticity.
We illustrate this proposal using an adaptive factor analysis model.

1 Introduction

Animals negotiating rich environments are faced with a set of hugely complex inference
and learning problems, involving many forms of variability. They can be unsurewhich con-
text presently pertains, cues can be systematically more or less reliable, and relationships
amongst cues can change smoothly or abruptly. Computationally, such different forms of
variability need to be represented, manipulated, and wielded in different ways. There is
ample behavioral evidence that can be interpreted as suggesting that animals do make and
respect these distinctions,® and there is even some anatomical, physiological and pharma-
cological evidence as to which neural systems are engaged.?®

Perhaps best delineated is the involvement of neocortical acetylcholine (ACh) in uncer-
tainty. Following seminal earlier work,'>* we suggested® that ACh reports on the un-
certainty associated with a top-down model, and thus controls the integration of bottom-up
and top-down information during inference. A corollary is that ACh should also control the
way that bottom-up information influences the learning of top-down models. Intuitively,
this cholinergic signal reports on expected uncertainty, such that ACh levels are high when
top-down information is not expected to support good predictions about bottom-up data
and should be modified according to the incoming data.

We® 35 formally demonstrated the inference aspects of this idea using a hidden Markov
model (HMM), in which top-down uncertainty derives from slow contextual changes. In
extending this quantitative model to learning, we found, surprisingly, that it violated our
qualitative theory of ACh. That is, in the HMM model, greater uncertainty in the top-
down model (ie a lower posterior responsibility for the predominant context), reported by
higher ACh levels, leads to comparatively slower learning about that context. By contrast,
we had expected that higher ACh should lead to faster learning, since it would indicate



that the top-down model is potentially inadequate. In resolving this conflict, we realized
that, at least in this particular HMM framework, we had incorrectly fused different sorts
of uncertainty. As a further consequence, by thinking more generally about contextual
change, we also realized the formal need for a signal reporting on unexpected uncertainty,
that is, on strong violation of top-down predictions that are expected to be correct. There is
suggestive empirical evidence that one of many roles for neocortical norepinephrine (NE)
is reporting this;?° it is also consonant with various existing theories associated with NE.

In sum, we suggest that expected and unexpected uncertainty play complementary but dis-
tinct roles in representational inference and learning. Both forms of uncertainties are postu-
lated to decrease the influence of top-down information on representational inference and
increase the rate of learning. However, unexpected uncertainty rises whenever there is a
global change in the world, such as a context change, while expected uncertainty is a more
subtle quantity dependent on internal representations of properties of the world. Here, we
start by outlining some of the evidence for the individual and joint roles of ACh and NE in
uncertainty. In section 3, we describe a simple, adaptive, factor analysis model that clar-
ifies the uncertainty notions. Differential effects induced by disrupting ACh and NE are
discussed in Section 4, accompanied by a comparison to impairments found in animals.

2 AChand NE

ACh and NE are delivered to the cortex from a small number of subcortical nuclei: NE
originates solely in the locus coeruleus, while the primary sources of ACh are nuclei in the
basal forebrain (nucleus basalis magnocellularis, mainly targeting the neocortex, and me-
dial septum, mainly targeting the hippocampus). Cortical innervations of these modulators
are extensive, targeting all cortical regions and layers.%

As is typical for neuromodulators, physiological studies indicate that the effects of direct
application of ACh or NE are confusingly diverse. Within a small cortical area, iontophore-
sis or perfusion of ACh or NE (or their agonists) may cause synatic facilitation or suppres-
sion, depending on the cell and depending on whether the firing is spontaneous or stimulus-
evoked; it may also induce direct hyperpolarization or depolarization.®1%17 Direct appli-
cation of either neuromodulator or its agonist, paired with sensory stimulation, results in
a general enhancement of stimulus-evoked responses, as well as an increased propensity
for experience-dependent reorganization of cortical maps (in contrast, depletion of either
substance attenuates cortical plasticity).® More interestingly, ACh and NE both seem to
selectively suppress intracortical and feedback synaptic transmission while enhancing tha-
lamocortical processing.®121315.17.18.20 Based on these roughly similar anatomical and
physiological properties, cholinergic and noradrenergic systems have been attributed cor-
respondingly similar general computational roles, such as modulating the signal-to-noise
ratio in sensory processing.% 0

However, the effects of ACh and NE depletion in animal behavioral studies, as well as
microdialysis of the neuromodulators during different conditions, point to more specific
and distinct computational roles for ACh and NE. In our previous work on ACh,%3® we
suggested that it reports on expected uncertainty, ie uncertainty associated with estimated
parameters in an internal model of the external world. This is consistent with results from
animal conditioning experiments, in which animals learn faster about stimuli with variable
predictive consequences.?* A series of lesion studies indicates cortical ACh innervation is
essential for this sort of faster learning.4

In contrast to ACh, a large body of experimental data associates NE with the specific ability
to learn new underlying relationships in the world, especially those contradicting existent
knowledge. Locus coeruleus (LC) neurons fire phasically and robustly to novel objects
encountered during free exploration,® novel sensory stimuli,?>28 unpredicted changes in
stimulus properties such as presentation time,? introduction of association of a stimulus



with reinforcement,'®28 32 and extinction or reversal of that association.®2® Moreover, this
activation of NE neurons habituates rapidly when there is no predictive value or contingent
response associated with the stimuli, and also disappears when conditioning is expressed
at a behavioral level %

There are few sophisticated behavioral studies into the interactions between ACh and NE.
However, it is known that NE and ACh both rise when contingencies in an operant condi-
tioning task are changed, but while NE level rapidly habituates, ACh level is elevated in a
more sustained fashion.®28 In a task designed to tax sustained attention, lesions of the basal
forebrain cholinergic neurons induced persistent impairments,?? while deafferentation of
cortical adrenergic inputs did not result in significant impairment compared to controls.?

One of the best worked-out computational theories of the drive and function of NE is that
of Aston-Jones, Cohen and their colleagues.>** They studied NE in the context of vigi-
lance and attention in well-learned tasks, showing how NE neurons are driven by selective
task-relevant stimuli, and that, influenced by increased electrotonic coupling in the locus
coeruleus, a transition from a high tonic, low phasic activity mode to a low tonic, high
phasic activity mode is associated with increased behavioral performance through NE’s
suggested effect of increasing the signal to noise ratio of target cortical cells. This is a
very impressive theory, with neural and computational support. However, its focus on
well-learned tasks, means that other drives of NE activity (particularly novelty) and effects
(particularly plasticity) are downplayed, and a link to ACh is only a secondary concern. We
focus on these latter aspects, proposing that NE reports unexpected uncertainty, ie uncer-
tainty induced by a mismatch between prediction and observation, such as when there is a
dramatic change in the external environment. We do not claim that this is the only role of
NE; but do see it as an important complement to other suggestions.

3 Inferenceand Learningin Adaptive Factor Analysis

Our previous model of the role of ACh in cortical inference involved a generative scheme
with a discrete contextual variable z;, evolving over time ¢ with slow Markov dynamics
Pz = ilz1 = j] = Kjj;, a discrete representational variable y, that was stochastically
determined by z;, and a noisy observed variable x; ~ Ny, , Z] (normal distribution). The
inferential task was to determine y;|x1, X2 . . . x¢; the HMM structure makes this interesting
because top-down (z;) and bottom-up (x;) information have to be integrated. Top down
information can be uncertain, in which case mainly bottom-up information x; should be
used to infer y;. We suggested that ACh reports the uncertainty in the top-down context,
namely 1 — P[zf|x; ...x;—1], where z; is the most likely value of the context and P
indicates the use of an approximation. ACh thereby reports expected uncertainty, as in the
qualitative picture above, and appropriately controls cortical inference. However, if one
also considers learning, for instance if P[y;|z:] is unknown, then the less certain the animal
is that z; is the true contextual state, the less learning accorded to P[y;|z;]. This is exactly
the opposite of what we should expect according to our empirically-supported arguments
above.

In fact, this way of viewing ACh is also not consistent with a more systematic reading® ' of
Holland & Gallagher’s cholinergic results, which imply that ACh is better seen as a report
of uncertainty in parameters rather than uncertainty in states. In order to model this more
fitting picture of ACh, we need an explicit model of parameter uncertainty. We constrain
the problem to a single, implicit, context z; = 1. It is easiest (and perhaps more realistic)
to develop the new picture in a continuous space, in which the parameter governing the
relationship between z; = 1 and y; is u; (scalar for convenience), which is imperfectly
known (hence the parameter uncertainty, reported by ACh), and indeed can change. Again,
y; stochastically specifies x; through a normal distribution.

Specifying how u; can change over time requires making an assumption about the nature
of the context. In particular, novelty plays a critical role in model evolution. In general,
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Figure 1: Adaptive factor analysis model. (a) 2-layer adaptive factor analysis model, as specified by
Eg. 1 & 2. (b) Sample sequence of 70 data points generated with parameters: ¢ = 0.05, £ = [1;1],
op = 8,0y =1,%; =9I, 0, = 8 4 major shifts in g occurred (including initial x;), whose
projections into x space, £u, are denoted as large circles. +: x|ux10, A: x|ux6, z: x|p=4, §:
x|p ~—4. Small Vv denotes y: projected into x space and fall along the line £y. (c) Same sequence
viewed in y space. o: major shifts in u, : u:, O: yt, *: x optimally projected into y space, ie
Bx = (¢72;'¢)7'¢7 x5 'x, where Bx is the mean of the posterior distribution of y given only the
observation x and flat priors. (d) Scatter plot of |§; — fi7| vS. |§: — Bxg|. o:V;® = 16, x:V;° = 0.04,
AV = 3.5, dashed line denotes parity. Larger V;° corresponds to greater reliance on x; rather than
i for inferring g, while the intermediate value of V;° = 3.5 exactly balances top-down uncertainty
with bottom-up uncertainty in the inference of ;.

we might expect small amounts of novelty, as models continually readjust, and we can
allow for this by modeling continual small changes in u;. However, in order to allow for
the possibility of macroscopic changes implied by substantial novelty (as reported by NE),
which are of evident importance in many experiments, we must add a specific component
to the model. The interaction between microscopic and macroscopic novelty is essentially
the interaction between ACh and NE. In all, assume that

x¢ ~ N€ys, 3] ye ~ N, U;] Mg = g1 + N + Q€4 @
ne ~ NT0,07] et ~N[0,02]  Play=1]=1-Pla;=0] =¢q 2

with the initial value o ~ N[0, 2] (see Figure 1). We will see later that the binary a; is
the key to the model of NE; it comes from an assumption that there can occasionally (¢ < 1)
be dramatic changes in a model that force its radical revision. & is another parameter; we
assume it is known and fixed. Figure 1(b) & (c) shows a sample sequence of a particular
setting of the model: the output x can be quite noisy, although there are clear underlying
regularities in y.

At time ¢, consider the case that we can make the approximation that ug ~ N[ag, V],
where 5 is the estimate of u; and V;° is its variance (uncertainty), which is reported by
ACh. Here, the open circles indicate that this estimate is made before x; is observed. We
first consider how the ACh term influences inference about y;; then go on to study learning.
For inference, it can easily be shown that y; ~ N[§;, 57], where

o t= (o + V)T HETEE ge=a7 ((op + V)T €75 %) ()
whence the effect of ACh is exactly as in our qualitative picture. The more uncertainty

(ie the larger V;°), the smaller the role of the top-down expectation f7 in determining g;.
Examples of just such effects can be found in Figure 1 (d).

For learning, start with the distribution of x; given x; and assume a; = 0. In this case,
writing ¥ =££% 07 + X, we get

plur|x1,a1 =0] = N[ETT 1%, /T B¢ 1/6TT71¢] x N[0,V + o7l



with the obvious semantics for the product of two Gaussian distributions. This is almost ex-
actly the standard form for a Kalman filter update for 4, and leads to standard results, such
as variance of the estimate going initially like 1/+/¢t, but ultimately reaching an asymptote
which balances the rate of change from ¢2 and the rate of new information from the x;.
Importantly, in this simple model, the uncertainty in u; does not depend on the prediction
errors x; — &ji;, but rather changes as a function only of time.

However, if one takes into account the possibility that a; =1, then the posterior distribution
for u, is the two-component mixture

plpi[x1] = Play =0]p[p[x1, a1 =0] + Play =1]p[p [x1, a1 =1] @)
o NETT %, /€T 71E,1/E7T71¢] x (1 — @) N0, Vo + 7] + N[0, Vo + o) + 07])

As t increases, the number of mixture components in the posterior distribution increases
exponentially as 2¢, since each setting of the t—length binary string a;as .. . a; is, barring
probability zero accidents, associated with a different component in the mixture. Thus, just
as for switching state-space models,’ exact inference is impractical.

One possibility would be to use a variational approximations.”2* From the neural perspec-
tive of the involvement of neuromodulators, we propose an approximate learning algorithm
in which signals reporting uncertainty, corresponding to our conceptual roles for ACh and
NE, control the interactions between the (approximate) distribution at ¢ — 1, plu¢—1|D—1],
where Dy 1 = {x1,X2,...,X;_1}, and bottom-up information relayed by the new obser-
vation, p[y:|x¢]. To control the exponential expansion in the hidden space, we approximate
the posterior p[u:—1|D;—1] as a single Gaussian, p—1 ~ N (fit—1, Vi—1). fiz—1 is our best
estimate of u;—1 after observing x;_1t, and V;_y, corresponding to the ACh level, is the
uncertainty in our estimate /i;—1. In general, we might consider the NE level 3, as reporting
the posterior responsibility of the a; =1 component of the equivalent mixture of equation 4.
Even more straightforwardly, we can measure a Z-score, namely prediction error scaled by
uncertainty in our estimates: §; = (%; — xt)Tlll,jl(fct — x¢), where X, = &ji;—; and
Uy = €67 (V1 + 0 +07) + %, assuming that a; = 0. Whenever 3, exceeds a threshold
value ~, ie x; is unlikely to have come from an unmodified version of the current com-
ponent, we assume a; = 1. Otherwise, a; = 0. Now the learning problem reduces to a
modified version of Kalman filter:

Vie=Viei + 03 +Q: prediction variance about iz (5)
K =VoeT (Ve + €670, +52) ! Kalman gain (6)
Vi =V — K 1€V correction variance (7)
fi = fp—1 + Ke(x¢ — Efig—1) estimated mean (8)

The difference from the conventional Kalman filter is the additional component of the tran-
sition noise variance, Q;, which dependson a;: Q; = 0ifa, = 0, Q¢ = o2 ifa; = 1.
Closer examination indicates that the ACh (V;) and NE (3;) signals have the desired se-
mantics. In the learning algorithm, large uncertainty about the mean estimate, V, results
in large Kalman gain, K;, which causes a large shift in us41. Large V; also weakens the
influence of top-down information in inference as in equation 3. High NE levels also leads
to faster learning: large 3; means a; = 1, which causes Q; = o, (rather than Q; = 0 had
a; been 0), ultimately resulting in a large Kalman gain and thus fast shifting of . High
NE levels also enhances the dominance of bottom-up information in inference via its in-
teractions with ACh: large 3; promotes large V;. Note that this system predicts interesting
reciprocal relationships between ACh and NE: higher ACh leads to smaller normalized pre-
diction errors and therefore less active NE signalling, whereas greater NE would generally
increase estimator uncertainty and thus ACh level.

Figure 2(a) shows an example sequence of 1, p2, - . . generated from a model (same pa-
rameters as in Figure 1), and the estimated means using our approximate learning algo-
rithm. The learning algorithm is clearly able to adjust to major changes in p;, although
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Figure2: Approximate learning algorithm. (a) x: x; projected into y space, e: actual p;, o: estimated
means ji;. General patterns of . are captured by i, though details may differ. v = 3. (b) — *
—: ACh, —: NE, ---: . ACh level rises whenver g, detected to be 1 (NE level exceeds «) and then
smoothly falls. NE level is constant monitor of prediction error. (c) Mean summed square error over
200-step sequences trials (3=, (7 — pt)?) , as a function of ~. Error bars show standard errors of
the means over 500 trials. Mean square error for optimal v = 3 is 473, compared to exact learning
error 313 (lower line). Model parameters were same as in Figure 1.

more subtle changes in p; can miss detection, such as the third large shift in . Figure 2(b)
shows higher ACh (V;) and NE (3;) levels both correspond to fast learning, ie fast shifting
of iz. However, whereas NE is a constant monitor of prediction errors and fluctuates ac-
cordingly with every data point, ACh falls smoothly and predictably, and only depends on
the observations when global changes in the environment have been detected. Figure 2(b)
shows ladle-shaped dependence of estimation error, | — p/, on the threshold value ~. For
the particular setting of model parameters used here, learning is optimal for v around 3.

4 Differential Effects of Disrupting ACh and NE Signalling

The different roles of the NE (3;) and ACh (V;) can be teased apart by disrupting each
and observing the subsequent effects on learning in our model. We will examine several
different manipulations of 3; and V; that disrupt normal learning, and relate the results to
impairments observed in experimental manipulation of ACh or NE levels in animals. Of
course, the complete experimental circumstances are far more complicated; we consider
the general nature of the effects.

First, we simulate depletion of cortical NE by setting 5; = 0. An example is shown in
Figure 3(a). By ruling out the possibility of a; = 1, the system is unable to cope with
abrupt, global changes in the world, ie when pu; shifts. Mean error over 500 trials (same
setting as in Figure 2(c)) without NE is 6027, more than an order of magnitude larger than
full approximate learning (473) and exact learning (313). This is consistent with the large
errors of similar magnitude in Figure 2(c) for very large -, which effectively blocks the
NE system from reporting global changes. However, as long as the underlying parameters
remain the same, ie u; does not change greatly, the inference process functions normally, as
we can see in the first 30 steps in Figure 3(a). These results are consistent with experimen-
tal observations: NE-lesioned animals are impaired in learning changes in reinforcement
contingencies,?®28 but have little difficulty doing previously learned discrimination tasks.?

We can also simulate depletion of cortical ACh by setting V; to a small constant value.
Figure 3(b) shows severe damage is caused the learning algorithm, but the inference symp-
toms are distinct from NE depletion. Permanently small V; corresponds to over-confidence
in estimates of ji;, thus making adaptation of that estimate slow, similar to NE depletion.
However, because the NE system is still intact, the system is able to detect when x, dramat-
ically differs from the prediction (which is often, since £ is slow to adapt and leaves little
room for variance), and thus to base inference of y; directly on the bottom-up information
plye|x¢]. Thus, inference is less impaired than learning, which has also been observed in



Figure 3: Disrupting NE and ACh signals. (a) NE signal set to 0. (b) ACh signal setto 0.16. —:mu.,
——:fi, V4, *:projection of x; into y space. Learning of niu; is poor in both manipulations, but
inference in ACh-depletion is less impaired.

ACh-lesioned animals.3* Moreover, the system exhibits a peculiar hesitancy in inference,
ie constantly switching back and forth between relying on top-down estimate of y,, based
on p; and bottom-up estimate, based on £€7¥~1x, /€7 T ~1¢. This tendency is particularly
severe when the new p. is similar to the previous one, which can be thought of as a form of
interference. Interestingly, hippocampal cholinergic deafferentation in animals also bring
about a stronger susceptibility to interference compared with controls.®

Saturation of ACh and NE are also easy to model, by setting V; and §; very high all the
time. The effect of these two manipulations are similar, both cause the estimation of y;
and inference of y, to base strongly on the observation x; (data not shown). The perfor-
mance decrements in the estimation of u; and inference about y; are functions of the output
noise, ¥, o2 in our model, and do not worsen when there are global changes in contin-
gencies. Unfortunately, directly relevant experimental data is scarce. Administration of
cholinergic agonists in the cortex has failed to induce impairments in tasks with changing
contingencies, consistent with our predictions. However, to our knowledge, cholinergic
and noradrenergic agonists have not yet been administered in combination with systematic
manipulation of variability in the predictive consequences of stimuli and so the validity of
our predictions remains to be tested.

5 Discussion

We have suggested that ACh and NE report expected and unexpected uncertainty in rep-
resentational learning and inference. As such, high levels of ACh and NE should both
correspond to faster learning about the environment and enhancement of bottom-up pro-
cessing in inference. However, whereas NE reports on dramatic changes, ACh has the
subtler role of reporting on uncertainties in internal estimates.

We formalized these ideas in an adaptive factor analysis model. The model is adaptive in
that the mean of the hidden variable is allowed to alter greatly from time to time, capturing
the idea of a generally stable context which occasionally undergoes large changes, leading
to substantial novelty in inputs. As exact learning is intractable, we proposed an approx-
imate learning algorithm in which the roles for ACh and NE are clear, and demonstrated
that it performs learning and inference competently. Moreover, by disrupting one or both
of ACh and NE signalling systems, we showed that the two systems have interacting but
distinct patterns of malfunctioning that qualitatively resemble experimental results in an-
imal studies. There is no single collection of definitive experimental studies, and teasing
apart the effects of NE and ACh is tricky, since they appear to share many properties. Our
model helps understand why, and should also help with the design of experiments to clarify
the relationship.



Of course, the adaptive factor analysis model is overly simple in many ways. In particular,
it only considers one particular context; and so refers all the uncertainty to the parameters
of that context. This is exactly the complement of our previous model,® 3 which referred
all the uncertainty to the choice of context rather than the parameters within each context.
The main conceptual difference is that the idea that ACh reports on the latter form of con-
textual uncertainty sits ill with the data on how uncertainty boosts learning; this fits better
within the present model. Given multiple contexts, which could formally be handled within
the framework of a mixture model, the tricky issue is to decide whether the parameters of
the current context have changed, or a new (or pre-existing) context has taken over. Ex-
ploring this is important work for the future. More generally, a thoroughly hierarchical and
non-linear model is clearly required as at a minimum as a way of addressing some of the
complexities of cortical inference.
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