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Abstract

We study the problem of statistically correct in-

ference in networks whose basic representations

are population codes. Population codes are

ubiquitous in the brain, and involve the simul-

taneous activity of many units coding for some

low dimensional quantity. A classic example

are place cells in the rat hippocampus: these

�re when the animal is at a particular place

in an environment, so the underlying quantity

has two dimensions of spatial location. We

show how to interpret the activity as encoding

whole probability distributions over the under-

lying variable rather then just single values, and

propose a method of inductively learning map-

pings between population codes that are com-

putationally tractable and yet o�er good ap-

proximations to statistically optimal inference.

We simulate the method on some simple exam-

ples to prove its competence.

In a population code, information about some low-

dimensional quantity (such as the position of a visual fea-

ture) is represented in the activity of a collection of units,

each responding to a limited range of stimuli within this

low-dimensional space. Strong evidence exists for this

form of coding at the sensory input areas of the brain

(eg retinotopic and tonotopic maps) as well as at the mo-

tor output level [Georgopoulos et al., 1986]. Evidence is

mounting that many other intermediate neural process-

ing areas also use population codes [Tanaka, 1996]. Cer-

tain important questions about population codes have

been extensively investigated, including how to extract

an optimal underlying value [Salinas and Abbott, 1994;

Snippe, 1996] and how to learn such representations [Ko-

honen, 1982]. However, two important issues have been

almost ignored (with the important exception of [Ander-

son, 1994]). One is the treatment of population codes

as encoding whole probability density functions (PDFs)

over the underlying quantities rather than just a single

value. PDFs can convey signi�cant additional informa-

tion, such as certainty (eg in the existence in an image

of the relevant object), as well as the mean and vari-

ance (eg in its position). The other issue is how to per-

form inference in networks whose basic representations

are population codes.

Zemel, Dayan, and Pouget [1997] have recently pre-

sented a general framework for the probabilistic inter-

pretation of population codes in terms of PDFs. In

this paper we apply this framework to all the popu-

lation codes in a processing hierarchy, and suggest an

inference method that approximates, in a quanti�able

manner, Bayesian optimal methods of representing and

combining the probability distributions.

We �rst discuss how to interpret PDFs from popula-

tion codes, and then introduce our framework for com-

bining these codes. We illustrate the techniques with an

example based on a form of cue combination.

1 An Example

Consider the case of a hunter attempting to shoot a

pheasant as it 
ies out of a tree. We'll assume that

the hunter uses two cues, a visual cue concerning mo-

tion in the tree and an auditory cue based on rustling of

the leaves, to estimate the pheasant's size and velocity.

Based on this estimate, he selects a time and place to

�re his shotgun.

The combination problem concerns how the two in-

puts should be combined to produce the output. In the

simplest version of the combination problem for this ex-

ample, visual motion is con�ned to one part of the tree,

and the auditory signal directly corresponds to this vi-

sual signal. Here these two single-valued inputs (which

we will term v and a) give rise to a single output, and

the hunter con�dently aims his shotgun (to location s).

Evidence exists that the two inputs and the output in-

formation in this example are each represented in neural

population codes in some animals. That is, a �xed col-

lection of neurons �re for each of the three variables of

interest. The relevant visual input is represented by the



activity of a population of motion detectors: in monkeys,

a particular cortical area (MT) contains cells that selec-

tively respond to motion of a particular velocity within

a small range of visual locations. Similarly, the relevant

auditory input is represented in a population of detec-

tors tuned to particular frequencies and spatial locations

in owl auditory cortex [Knudsen and Konishi, 1978]; the

frequency may contain important information about the

bird's size and speed. Directional motor output is also

represented in a population code in monkey motor cortex
[Georgopoulos et al., 1986].

Therefore even in the simple version of the problem,

the brain does not directly represent the values v, a,

and s, but instead represents each in a separate popu-

lation code. The most straightforward way to solve this

problem is to perform an intermediate step of extracting

separate single values from the input population codes,

combine these values, and then encode these into the

motor output population code. However, this seems not

to be the strategy actually implemented in the brain,

where new population codes appear to be generated di-

rectly from old ones.

Another level of complexity is introduced into the

problem when we consider that the inputs may be uncer-

tain or ambiguous. For example, if the wind is blowing,

then leaves may be moving all over the tree giving rise to

multiple plausible motion hypotheses, while at the same

time the auditory cues may be too faint to con�dently

estimate the motion. The experienced hunter may then

be able to narrow down the set of candidate motions

based on his knowledge of the combinations of auditory

and visual cues, but he might not be able to con�dently

select a single value. Two additional problems are intro-

duced in this more general case. First we must interpret

a population code as representing a whole probability

distribution over the underlying variable. And then the

combination method must preserve the probabilistic in-

formation in the inputs. Thus the aim of a combination

network is to infer a population code for the motor ac-

tion that preserves the statistical relationship between

the input and output probability distributions.

2 Theory

The basic theory underlying the combination of popula-

tion codes is extremely simple. Population codes use the

explicit activities r = frig of multiple cells (as in area

MT) to code information about the value of an implicit

underlying variable x (such as the direction and speed of

motion of the leaves). We are interested in the case that

the activities r code a whole probability distribution over

the underlying variable:

P [xjr]: (1)

Consider the example of the hunter. Activities frvi g

and fraj g represent probability distributions over the mo-

tion position and velocity based on the visual and audi-

tory signals respectively. We will assume that a�erent

information in the di�erent modalities is independent.

The activities frskg will represent a probability distribu-

tion over the corresponding required position s of the

shotgun according to the equivalent of Equation 1.

Two computational operations are required to produce

appropriate rs: information from the di�erent modal-

ities must be integrated and then expressed in appro-

priate coordinates. These operations have to respect

the statistical semantics of rv and r
a. We use an un-

derlying analysis-by-synthesis statistical model as in the

Helmholtz machine [Hinton et al., 1995]. In such a

model, inference is based on the analysis or recognition

inverse to a probabilistic synthetic or generative model

that speci�es probability distributions P [v; ajs] over the
visual motion signal v and auditory pattern a given the

shotgun location s.

Given true probability distributionsP [vj!] and P [aj!]
over the visual and auditory information (here ! repre-

sents the underlying information available to the hunter),

recognition requires calculating:

P[sj!] =

Z
v;a

P [vj!]P [aj!]P [sjv; a]dvda (2)

/ P [s]

Z
v;a

P[vj!]P [aj!]P [v; ajs]dvda (3)

where P[s] is the prior distribution over s. Equation 3

establishes the standard by which inferences about the

distribution over s should be judged.

We have therefore reduced the computational prob-

lem to one of mapping activities rv and ra into activities

r
s for which P [sjrs] from Equation 1 is a good approxi-

mation to the integration in Equation 3, where P [vj!] is
what rv represents (according to Equation 1) and P [aj!]
is what ra represents. Figure 1 illustrates the generative

and recognition operations, showing the activities, the

distributions that they represent, and the various prob-

abilistic relationships.

The remaining questions concern how activities r spec-

ify distributions as in Equation 1, and how r
v and r

a

are actually combined to produce rs. We describe two

models for Equation 1: a model based on a standard

form of function approximation, kernel density estima-

tion (KDE) [Anderson, 1994], and an extension to the

conventional statistical population coding model that is

designed to handle any form of PDF [Zemel et al., 1997].

Both models form estimates P̂
r

(x) of P [xj!] based on r.

2.1 The KDE Model

One way of treating population codes as distributions is

in terms of kernel density estimates (KDEs) [Anderson,

1994]. Here, activities r represent distribution P̂
r

(x)
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Figure 1: An example of a network formulated to com-

bine population code representations of PDFs. The bold-

face elements depict explicit network components.

through a linear combination of basis functions  i(x), ie

P̂
r

(x) =
P

i r
0

i i(x) where the fr
0

ig are normalized such

that P̂
r

(x) is a probability distribution. The kernel func-

tions  i(x) are not what are called tuning functions of

the cells (the tuning function fi(x) describes the rela-

tionship between the cell's �ring rate ri and the under-

lying variable x, where fi(x) could be Gaussian about

some preferred value xi). The kernel functions need have

no neural instantiation; instead, they form part of the

interpretive structure for the population code. If the

 i(x) are probability distributions, and so are positive,

then the range of spatial frequencies in P[xj!] that they

can reproduce in P̂
r

(x) is likely to be severely limited.

Evaluating the KDE model requires some method of

representing P [xj!] in a �ring rate vector r, which we

term encoding. One way to encode is to use the Kullback-

Leibler divergence as a measure of the discrepancy be-

tween P [xj!] and
P

i r
0

i i(x) and use the expectation-

maximization (EM) algorithm to �t the fr0ig, treating
them as mixing proportions in a mixture model [Demp-

ster et al., 1977]. This relies on f i(x)g being probability
distributions themselves. The projection method [Ander-

son, 1994] is a one-shot linear �ltering based alternative

using the L2 distance. Here the ri are computed as a

projection of P [xj!] onto tuning functions fi(x) that are
calculated from  j(x):

ri =

Z
x

P[xj!]fi(x)dx (4)

fi(x) =
X
j

A
�1
ij  j(x) Aij =

Z
x

 i(x) j(x)dx

An extremely attractive property of the KDE model

is that it makes combination of population codes very

simple [Anderson, 1994]. If P̂
r
v

(v) =
P

i r
v
i  i(v) is an

adequate model of P [vj!] and P̂
r
a

(a) =
P

j r
a
j j(a) is

an adequate model of P [aj!], then

Z
v;a

P[vj!]P [aj!]P[v; ajs]P [s]dvda

�

Z
v;a

P̂
r
v

(v)P̂
r
a

(a)P [v; ajs]P [s]dvda

=
X
ij

r
v
i r

a
jwij(s) (5)

where

wij(s) =

Z
v;a

 i(v) j(a)P [v; ajs]P [s]dvda:

This makes Equation 3 into a simple bilinear sum, even

when v and a are not independent given s.

Probabilistically correct combination is not so simple

in this model if the underlying multiplication in Equa-

tion 5 is not allowed. In the combination network de-

scribed below, we restricted the combination to the stan-

dard mechanism of linear summation followed by a non-

linear activation function.

2.2 The Extended Poisson Model

Unfortunately, the KDE model has signi�cant di�culties

representing probability distributions that involve higher

spatial frequencies than the kernel functions. This is a

natural, but signi�cant limitation of this method, since

the situation of nearly complete certainty in v or a or s is

particularly important. An alternative method has been

suggested that is based on the same probabilistic analysis

that underlies most standard applications of population

coding [Zemel et al., 1997].

For these applications the starting point is usually the

neurophysiological �nding, largely ignored by the KDE

model, that the relevant cells have unimodal tuning func-

tions fi(x). Standard accounts also assume that �r-

ing rates vary, even for a �xed input, eg the Poisson

model [Seung and Sompolinsky, 1993] for which

P[rijx] = e
�fi(x)(fi(x))

ri=ri! (6)

This is an encoding model, since it relates how x is

coded in r. The form of Equation 1 is then speci�ed

(in an operation referred to as decoding) as the statisti-

cal inverse to this encoding model P̂
r

(x) � P[xj frig] /
P [x]

Q
i P[rijx], where P [x] is the prior probability dis-

tribution over x. In these terms, the KDE model is spec-

i�ed by its method of decoding|Equation 4 automati-

cally follows as the method of encoding. Note that a

single value of x gives rise to an estimate P̂
r

(x) that is

a distribution over x due to the assumed variability.

Whereas the KDE model has problems representing

peaked distributions, the conventional Poissonmodel has

problems representing broad distributions, since Equa-

tion 6 assumes that there is a single underlying value of

x. If the information provided to the hunter is somewhat



unspeci�c with respect to the visual information, then it

does not make sense to assume that rv are all deter-

mined (stochastically) according to some single particu-

lar value. In the extended Poisson model, the recorded

activities r are allowed to depend on general P[xj!], hav-
ing Poisson statistics with mean:

hrii =

Z
x

P [xj!]fi(x)dx: (7)

This equation is identical to that for the KDE model

(Equation 4), except that variability is built into the

Poisson statistics, and decoding is now required to be

the Bayesian inverse of encoding. Note that since ri de-

pends stochastically on P [xj!], the full Bayesian inverse

will specify a distribution P[P [xj!]jr] over possible dis-
tributions. The distribution in Equation 1 can then be

generated as the maximum likelihood (or rather maxi-

mum a posteriori with respect to a smoothness prior)

distribution that P[P [xj!]jr] implies.

Decoding in this model may be performed by approxi-

mating P [xj!] as a piece-wise constant histogram which

takes the value �j in (xj ;xj+1], and fi(x) by a piece-wise

constant histogram that take the values fij in (xj ;xj+1].

The maximum a posteriori estimate for f�jg can be de-

rived by maximizing:

L(f�̂jg) =
X
i

ri log

2
4X

j

�̂jfij

3
5� �

X
j

�
�̂j � �̂j+1

�2

where � is the variance of an assumed smoothness prior.

A form of EM may be used to maximize the likelihood

L(f�̂jg. By comparison with the linear decoding of the

KDE method, the extended Poisson model o�ers a non-

linear way of combining a set of activities frig to give a

probability distribution P̂
r

(x) over the underlying vari-

able x. Figure 2 describes the full extended Poisson

model and illustrates the underlying probabilistic frame-

work for population codes.

Unfortunately, there are no short cuts like Equation 5

for combining these extended Poisson population codes.

Instead, we have adopted some particular functional

form for the combination and optimized its parameters

in order to satisfy Equation 3 as best as possible.

3 Experiments

The central question for both coding methods is whether

the combination network can form a set of activities frskg

that makes P̂
r
s

(s) a close approximation to the implicit

distribution P[sj!]. For the purpose of evaluating net-

work performance, and adapting its weights, several as-

pects need to be determined: 1). the implicit distribu-

tion P[sj!]. In the hunting example, this distribution

r
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Figure 2: The encoding-decoding framework in the ex-

tended Poisson model. Left: Activities r may be inter-

preted as encoding a PDF in implicit space. Top: The

output of the encoding process is the explicit activities

of units, assumed to have been generated by the inde-

pendent application of each cell's tuning function and

additive noise to the implicit representation (Bottom: an

implicit distribution P [xj!]). Right: Decoding the rates

into a distribution P̂
r

(x) involves an approximate form

of maximum likelihood in distributions over x.

describes the likely shotgun motions based on all infor-

mation available to the hunter, so multiple peaks corre-

spond to di�erent possible motions and entropy corre-

sponds to uncertainty about these motions. 2). the gen-

erative model P [v; ajs]. The implicit distributions for

the network inputs are produced by applying P[v; ajs]
to P [sj!]. In these simulations, we made the simplifying

assumption that the visual and auditory signals are in-

dependent given s. 3). the encoding model. The inputs

r
v and r

a are obtained from the input implicit distri-

butions via appropriate encoding model (Equation 4 for

KDE; Equation 7 for the extended Poisson method). 4).

a combination function. The network inputs produce an

output rs based on a weighted combination of rv and ra.

In these simulations we had both excitatory W and in-

hibitory weights U between each input and output unit,

and the combination function was:

r
s
k =

bk +
P

i r
v
iW

sv
ki +

P
j r

a
jW

sa
kj

ck +
P

i r
v
i U

sv
ki +

P
j r

a
jU

sa
kj

(8)

Note that this is not quite general enough to imple-

ment Equation 5 exactly.

We evaluate the networks' performances by comparing

the P̂
r
s

(s) obtained by decoding the explicit representa-

tion s in the network to the true implicit distribution
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Figure 3: Combination network performance for a bi-

modal target distribution of width � . The error measure

is E from Equation 9.

P [sj!]. The error function is the Kullback-Leibler diver-

gence:

E =

Z
s

P [sj!] log
P[sj!]

P̂
r
s

(s)
ds (9)

The network weights (excitatory and inhibitory) are

adapted to minimize this error function using the delta-

rule.

We examined the combination network performance

under several target distributions and generative mod-

els. Here we focus on a di�cult, important target dis-

tribution, a bimodal Gaussian distribution 1=2N (2; �)+

1=2N (�2; �) that contains both uncertainty in a given

position (�) and multiple possible values (x = f2;�2g).
The generative model is simple: P[vjs] and P [ajs] are
Gaussians with variance 0:5 and means at 1:0 and �1:0
respectively.

We compared the two methods of probabilistic in-

terpretation on this problem. For the kernel func-

tions (KDE) and the tuning functions (extended Pois-

son model), we used Gaussians N (xi; 0:3). To reduce

the number of units in the network, we considered a

simpli�ed situation where all signals are constrained to

one dimension. This reduction is only a matter of conve-

nience; the network can readily be extended to include

higher-dimensional implicit spaces. We used 50 units in

each population code, and the xi were spaced evenly in

the range x = [�10; 10].

Results are shown in Figures 3 and 4. At low values

of � , the target distribution approximates two spikes, at

x = 2 and x = �2. The KDE method is not as accurate

here, since it is unable to retain the high frequency in-

formation required for precise recovery of the these two
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Figure 4: Examples of a combination network's recon-

struction of a bimodal target distributionP [sj!] of width
� = 0:6. Results using the KDE coding method is shown

on the left, extended Poisson on the right.

location. As the target distribution contains more un-

certainty, both methods are able to recover the implicit

distribution with high �delity. Note that an error rate

of 0:7 bits for this target distribution would be obtained

if P̂
r
s

(s) has the correct peaks and is o� by a factor of

2 in � (see Equation 9).

We have also conducted a number of other experi-

ments with this combination method. In one set of ex-

periments, we modeled the task of combining monocular

and stereo cues to estimate depth in a particular visual il-

lusion. In the double-nail illusion, the task is to estimate

the depth of a nail aligned directly behind another nail in

the observer's line of sight. Here computational vision

systems based on binocular stereo produce a PDF for

depth estimates with two peaks, one at the correct value

and another at the illusory frontoparallel interpretation

(both nails side-by-side). A PDF based on monocular

cues will not have the same ambiguity, but it is typically

a much broader distribution [Yuille and B�ultho�, 1994].

These two PDFs must be combined multiplicatively to

produce the correct peak.

We simulated this problem by training a combina-

tion network identical to the network described above

except in the generative model. Here P [bjt] is a mul-

timodal Gaussian 1=3N [t; 1=2] + 2=3N [t+ 2; 1=2] (with

a frontoparallel bias) and P [mjt] is a broader unimodal

Gaussian N [t; 1], where b, m and t are the binocular,

monocular and true depth estimates, respectively. Af-

ter training on 300 cases in which the target distribution

was a narrow Gaussian N [t; :01], the network produced

output distributions on novel inputs that were within :1

bits of the true distributions.

Other experiments have examined the combination

network's ability to recover PDFs in which the certainty

as to the presence of the output (ie the integral under

the PDF) is < 1. Good performance on this task sug-

gests that the method can be useful for recognition (eg

recognizing an instance of an object based on the spatial

locations of its features).



4 Discussion

We have presented a general framework for mapping be-

tween population codes that approximates statistically

correct inference. The framework applies and extends

two recent methods for the probabilistic interpretation

of population codes to the problem of combining these

codes. This framework has a wide variety of applica-

tions, including any context in which probabilistic in-

formation from several sources, each represented in a

distributed manner, must be combined. The simulation

results demonstrate that a feedforward network can cap-

ture the appropriate probabilistic relationships between

some simple population-coded PDFs. Generally, several

population-coded inputs should be multiplied (to com-

pute a full joint PDF), but we found empirically that

they can be combined reasonably using a non-linearity.

A straightforward alternative to the proposed frame-

work would extract single values from the input pop-

ulation codes, combine these values, and then form a

new population code at the output. Aside from biolog-

ical realism, the computational advantage of construct-

ing direct mappings between population codes without

requiring an intermediate step of extracting single val-

ues is that information about whole distributions can

be brought to bear|including the ambiguity and uncer-

tainty in the underlying variables.

Integral to the framework is an interpretation of a pop-

ulation code as encoding a probability distribution over

the underlying quantity. The framework can thus be

seen as a generalization of [Salinas and Abbott, 1995],

in which a network is trained to map one population code

to another, where each code is interpreted as represent-

ing a single value. Our method extends this mapping to

probabilistic interpretations while maintaining the bio-

logically realistic representations.

There are many open issues, particularly understand-

ing the nature of encoding and decoding. Both op-

erations are only implicit in the system so some free-

dom exists in choosing ones appropriate for particular

tasks. Based on neurobiological and engineering consid-

erations, one expects a consistent interpretation across

levels; maintaining this interpretation should lead to a

simple learning rule. Noise is a second key issue. If

constructing one population code from others introduces

substantial extra noise, the system will be unable to con-

vey information accurately. Here the restriction of the

network to feedforward connections might be relaxed in

order to allow lateral connections between units within

a population, which may be useful in cleaning up the

codes.
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