Learning to act in noisy contexts using deep proxy learning

Arthur Gretton

Gatsby Computational Neuroscience Unit Google Deepmind

NeurIPS Workshop on Causal Representation Learning, 2024

Observation vs intervention

Conditioning from observation: $\mathbb{E}[Y|A = a] = \sum_{x} \mathbb{E}[Y|a, x]p(x|a)$

From our observations of historical hospital data:

- P(Y = cured|A = pills) = 0.85
- P(Y = cured|A = surgery) = 0.72

Observation vs intervention

Average causal effect (intervention): $\mathbb{E}[Y^{(a)}] = \sum_x \mathbb{E}[Y|a, x]p(x)$

From our *intervention* (making all patients take a treatment):

$$P(Y^{\text{(pills)}} = \text{cured}) = 0.64$$

$$P(Y^{(\text{surgery})} = \text{cured}) = 0.75$$

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the Counterfactual and Graphical Approaches to Causality

We record symptom W, not disease X

P(W = fever | X = mild) = 0.2
 P(W = fever | X = severe) = 0.8

We record symptom W, not disease X

P(W = fever | X = mild) = 0.2
P(W = fever | X = severe) = 0.8
Could we just write: $P(Y^{(a)}) \stackrel{?}{=} \sum_{w \in \{0,1\}} \mathbb{E}[Y|a, w] p(w)$

We record symptom W, not disease X

Wrong recommendation made:

- $\sum_{w \in \{0,1\}} \mathbb{E}[\text{cured}|\text{pills}, w] p(w) = 0.8 \quad (\neq 0.64)$
- $\sum_{w \in \{0,1\}} \mathbb{E}[\text{cured}|\text{surgery}, w] p(w) = 0.73 \quad (\neq 0.75)$

Correct answer impossible without observing X

Pearl (2010), On Measurement Bias in Causal Inference

Some core assumptions

Assume:

- Stable Unit Treatment Value Assumption (aka "no interference"),
- Conditional exchangeability $Y^{(a)} \perp \!\!\!\perp A | X$.
- Overlap.

Outline

Causal effect estimation, with hidden covariates X:

■ Use proxy variables (negative controls)

Applications: effect of actions under

- privacy constraints (email, ads, DMA)
- data gathering constraints (edge computing)
- fundamental limitations (preferences, state of mind)

Outline

Causal effect estimation, with hidden covariates X:

■ Use proxy variables (negative controls)

Applications: effect of actions under

- privacy constraints (email, ads, DMA)
- data gathering constraints (edge computing)
- fundamental limitations (preferences, state of mind)

What's new and why?

- Treatment A, proxy variables, etc can be multivariate, complicated...
- ...by using adaptive neural net feature representations
- Don't meet your heroes model your hidden variables!

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

- X: true physical status
- A: exercise regimes
- Y: fitness goal

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

- X: true physical status
- A: exercise regimes
- Y: fitness goal
- W: health readings before A

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

- X: true physical status
- A: exercise regimes
- Y: fitness goal
- W: health readings before A
- Z: health readings after A

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

- **\overline{X}:** true physical status
- A: exercise regimes
- Y: fitness goal
- W: health readings before A
- Z: health readings after A

 \implies Can recover $\mathbb{E}(Y^{(a)})$ from observational data

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

- **\overline{X}:** true physical status
- A: exercise regimes
- Y: fitness goal
- W: health readings before A
- Z: health readings after A

 \implies Can recover $\mathbb{E}(Y^{(a)})$ from observational data

 \implies More usefully: evaluate novel policy.

Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y The definitions are:

- \mathbf{X} : unobserved confounder.
- A: treatment
- \bullet Y: outcome
- Z: treatment proxy
- W outcome proxy

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured confounder

Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y The definitions are:

- X: unobserved confounder.
- A: treatment
- Y: outcome
- Z: treatment proxy
- W outcome proxy

Structural assumptions:

 $W \perp (Z, A) | X$ $Y \perp Z | (A, X)$

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured confounder. 7/26

Why proxy variables? A simple proof

The definitions are:

- X: unobserved confounder.
- A: treatment
- Y: outcome

If X were observed,

$$\underbrace{P(Y^{(a)})}_{d_y imes 1} := \sum_{i=1}^{d_x} P(Y|x_i, a) P(x_i)$$

Why proxy variables? A simple proof

The definitions are:

- X: unobserved confounder.
- A: treatment
- Y: outcome

If X were observed,

$$\underbrace{P(Y^{(a)})}_{d_y \times 1} := \sum_{i=1}^{d_x} P(Y|\boldsymbol{x}_i, a) P(\boldsymbol{x}_i) = \underbrace{P(Y|X, a) P(X)}_{d_y \times d_x} \underbrace{P(Y|X, a) P(X)}_{d_x \times 1}$$

Why proxy variables? A simple proof

The definitions are:

- X: unobserved confounder.
- A: treatment
- Y: outcome

If X were observed,

$$\underbrace{P(Y^{(a)})}_{d_y imes 1} := \sum_{i=1}^{d_x} P(Y|\pmb{x}_i, a) P(\pmb{x}_i) = \underbrace{P(Y|X, a) P(X)}_{d_y imes d_x} \underbrace{P(Y|X, a) P(X)}_{d_x imes 1}$$

Goal: "get rid of the blue" X

The definitions are:

- X: unobserved confounder.
- A: treatment
- Y: outcome
- W: outcome proxy

For each a, if we could solve:

$$\underbrace{P(Y|X,a)}_{d_y imes d_x} = \underbrace{H_{w,a}}_{d_y imes d_w} \underbrace{P(W|X)}_{d_w imes d_x}$$

The definitions are:

- X: unobserved confounder.
- A: treatment
- Y: outcome
- W: outcome proxy

For each a, if we could solve:

$$\underbrace{P(|YX,a)}_{d_y imes d_x} = \underbrace{H_{w,a}}_{d_y imes d_w} \underbrace{P(|WX)}_{d_w imes d_x}$$

.....then

$$P(Y^{(a)}) = P(Y|X, a)P(X)$$

The definitions are:

- X: unobserved confounder.
- A: treatment
- Y: outcome
- W: outcome proxy

For each a, if we could solve:

$$\underbrace{P(Y|oldsymbol{X}, a)}_{d_y imes d_x} = \underbrace{H_{w,a}}_{d_y imes d_w} \underbrace{P(W|oldsymbol{X})}_{d_w imes d_x}$$

.....then

$$egin{aligned} P(\,Y^{(a)}) &= P(\,Y|X,\,a)P(X) \ &= H_{w,a}P(\,W|X)P(X) \end{aligned}$$

The definitions are:

- X: unobserved confounder.
- A: treatment
- Y: outcome
- W: outcome proxy

9/26

For each a, if we could solve:

$$\underbrace{P(Y|X,a)}_{d_y imes d_x} = \underbrace{H_{w,a}}_{d_y imes d_w} \underbrace{P(W|X)}_{d_w imes d_x}$$

.....then

$$egin{aligned} P(Y^{(a)}) &= P(Y|X,a)P(X) \ &= H_{w,a}P(W|X)P(X) \ &= H_{w,a}P(W) \end{aligned}$$

From last slide,

$$P(Y|X,a) = H_{w,a}P(W|X)$$

From last slide,

$$P(Y|X,a) \underbrace{p(X|Z,a)}_{d_x imes d_x} = H_{w,a} P(W|X) \underbrace{p(X|Z,a)}_{d_x imes d_z}$$

From last slide,

$$P(Y|X,a)\underbrace{p(X|Z,a)}_{d_x imes d_z} = H_{w,a}P(W|X)\underbrace{p(X|Z,a)}_{d_x imes d_z}$$

Because $W \perp (Z, A) | X$,

P(W|X)p(X|Z,a) = P(W|Z,a)

From last slide,

$$P(Y|X,a)\underbrace{p(X|Z,a)}_{d_x imes d_z} = H_{w,a}P(W|X)\underbrace{p(X|Z,a)}_{d_x imes d_z}$$

Because $W \perp (Z, A) \mid X$, $P(W \mid X) p(X \mid Z, a) = P(W \mid Z, a)$ Because $Y \perp Z \mid (A, X)$,

P(Y|X, a)p(X|Z, a) = P(Y|Z, a)

From last slide,

$$P(Y|X,a)\underbrace{p(X|Z,a)}_{d_x imes d_z} = H_{w,a}P(W|X)\underbrace{p(X|Z,a)}_{d_x imes d_z}$$

Because $W \perp (Z, A) \mid X$, $P(W \mid X) p(X \mid Z, a) = P(W \mid Z, a)$ Because $Y \perp Z \mid (A, X)$, $P(X \mid X, a) p(X \mid Z, a) = P(X \mid Z, a)$

P(Y|X, a)p(X|Z, a) = P(Y|Z, a)

Solve for $H_{w,a}$:

$$P(Y|Z,a) = H_{w,a}P(W|Z,a)$$

Everything observed!

Proxy/Negative Control Methods in the Real World

Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544

Computer Science > Machine Learning

(Submitted on 10 May 2021 (v1), last revised 9 Oct 2021 (this version, v4))

Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner, Arthur Gretton, Krikamol Muandet

Search.

Help | Ad

NN features (NeurIPS 2021):

arXiv.org > cs > arXiv:2106.03907

Computer Science > Machine Learning

(Submitted on 7 Jun 2021 (v1), last revised 7 Dec 2021 (this version, v2))

Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

Help | Adv

12/26

Code for NN and kernel proxy methods: https://github.com/liyuan9988/DeepFeatureProxyVariable/

Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544

Search... Help I Ad

Computer Science > Machine Learning

(Submitted on 10 May 2021 (v1), last revised 9 Oct 2021 (this version, v4))

Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner, Arthur Gretton, Krikamol Muandet

NN features (NeurIPS 2021):

arXiv.org > cs > arXiv:2106.03907

Computer Science > Machine Learning

[Submitted on 7 Jun 2021 (v1), last revised 7 Dec 2021 (this version, v2)]

Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

ialm I Ari

13/26

Code for NN and kernel proxy methods: https://github.com/liyuan9988/DeepFeatureProxyVariable/

We'll proceed as follows:

- Proxy relation for continuous variables
- Loss function for deep proxy learning
- Define primary (ridge) regression with this loss
- Define secondary (ridge) regression as input to primary

If X were observed, we would write (dose-response curve)

$$\mathbb{E}(Y^{(a)}) = \int_x \mathbb{E}(Y|a,x)p(x)dx.$$

....but we do not observe X.

If X were observed, we would write (dose-response curve)

$$\mathbb{E}(Y^{(a)}) = \int_x \mathbb{E}(Y|a,x)p(x)dx.$$

....but we do not observe X.

Main theorem: Assume we solved for link function:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

"Primary" E(Y|a, z), "secondary" E_{W|a,z} linked by h_y
All variables observed, X not seen or modeled.

Fredholm equation of first kind. Link existence requires \Diamond , identification of ATE requires \triangle (and further technical assumptions) [XKG: Asspumption 2, Prop. 1, Corr. 1; Deaner]

$$\mathbb{E}[f(X)|A = a, Z = z] = 0, \ \forall (z, a) \iff f(X) = 0, \ \mathbb{P}_X ext{ a.s. } \Delta \ \mathbb{E}[f(X)|A = a, W = w] = 0, \ \forall (w, a) \iff f(X) = 0, \ \mathbb{P}_X ext{ a.s. } \diamond$$

If X were observed, we would write (dose-response curve)

$$\mathbb{E}(Y^{(a)}) = \int_x \mathbb{E}(Y|a,x)p(x)dx.$$

....but we do not observe X.

Main theorem: Assume we solved for link function:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

"Primary" E(Y|a, z), "secondary" E_{W|a,z} linked by h_y
All variables observed, X not seen or modeled.

Dose-response curve via p(w):

$$\mathbb{E}(Y^{(a)})=\int_w h_y(a,w)p(w)dw$$

If X were observed, we would write (dose-response curve)

$$\mathbb{E}(Y^{(a)}) = \int_x \mathbb{E}(Y|a,x)p(x)dx.$$

....but we do not observe X.

Main theorem: Assume we solved for link function:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

"Primary" 𝔅(Y|a, z), "secondary" 𝔅_{W|a,z} linked by h_y
All variables observed, X not seen or modeled.

Dose-response curve via p(w):

$$\mathbb{E}(Y^{(a)}) = \int_w h_y(a,w) p(w) dw$$

Challenge: need a loss function for h_y
Primary loss function for $h_y(w, a)$

Goal:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

Primary loss function:

$$\hat{h}_y = rg\min_{h_y} \mathbb{E}_{Y,A,Z} \left(\left. Y - \mathbb{E}_{\left. W
ight| A,Z} h_y(\left. W,A
ight)
ight)^2$$

Why?

Primary loss function for $h_y(w, a)$

Goal:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

Primary loss function:

$$\hat{h}_y = rg\min_{h_y} \mathbb{E}_{Y,A,Z} \left(Y - \mathbb{E}_{W|A,Z} h_y(W,A)
ight)^2$$

Why?

 $f^*(a,z) = \mathbb{E}(|Y|a,z) ext{ solves} rgmin_{f} \mathbb{E}_{|Y,A,Z|} (|Y|-f(A,Z))^2$

Primary loss function for $h_y(w, a)$

Goal:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

Primary loss function:

$$\hat{h}_y = rg\min_{h_y} \mathbb{E}_{Y,A,Z} \left(\left. Y - \mathbb{E}_{\left. W
ight| A,Z} \, h_y(\left. W,A
ight)
ight)^2$$

Why?

$$f^*(a,z) = \mathbb{E}(Y|a,z) ext{ solves} \ rgmin_f \mathbb{E}_{Y,A,Z} (Y - f(A,Z))^2$$

...and by the proxy model above,

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

NN for link $h_y(a, w)$

The link function is a function of two arguments

$$h_y(a,w) = \gamma^ op [arphi_ heta(w)\otimes arphi_{\xi}(a)] = \gamma^ op egin{bmatrix}arphi_{ heta,1}(w)arphi_{\xi,1}(a)\arphi_{ heta,2}(a)\end{bmatrix} \arphi_{ heta,1}(w)arphi_{\xi,2}(a)\arphi_{ heta,2}(w)arphi_{\xi,1}(a)\arphi_{ heta,2}(w)arphi_{\xi,1}(a)arphi_{ heta,1}(a)arphi_{ heta,2}(w)arphi_{ heta,1}(a)arphi_{ heta,2}(w)arphi_{ heta,1}(a)arphi_{ heta,2}(w)arphi_{ heta,2}(w)arphi_{ heta,2}(a)arphi_{ heta,2}(a)arphi_{ heta,2}(w)arphi_{ heta,2}(a)arphi_{ heta,2}(a)arphi_{ heta,2}(a)arphi_{ heta,2}(w)arphi_{ heta,2}(a)arphi_{ heta,2}(a)arphi_{ heta,2}(a)arphi_{ heta,2}(w)arphi_{ heta,2}(a)arphi_{ heta,2}(a)arpho_{ heta,2}(a)arphi_{ heta,2}(a)arphi_{ heta,2}(a)arphi$$

Assume we have:

- output proxy NN features $\varphi_{\theta}(w)$
- **u** treatment NN features $\varphi_{\xi}(a)$
- linear final layer γ

(argument of feature map indicates feature space)

NN for link $h_y(a, w)$

The link function is a function of two arguments

$$h_y(a,w) = \gamma^ op \left[arphi_ heta(w) \otimes arphi_\xi(a)
ight]$$

Assume we have:

- output proxy NN features $\varphi_{\theta}(w)$
- treatment NN features $\varphi_{\xi}(a)$
- linear final layer γ

(argument of feature map indicates feature space)

Questions:

- Why feature map $\varphi_{\theta}(w) \otimes \varphi_{\xi}(a)$?
- Why final linear layer γ ?

Both are necessary (next slide)!

Goal:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

Primary regression:

$$\hat{h}_y = rg\min_{h_y} \mathbb{E}_{Y,A,Z} \left(\left. Y - \mathbb{E}_{\left. W
ight| A,Z} h_y(\left. W,A
ight)
ight)^2 + \lambda_2 \| \gamma \|^2$$

Goal:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

Primary regression:

$$\hat{h}_y = rg\min_{h_y} \mathbb{E}_{Y,A,Z} \left(Y - \mathbb{E}_{W|A,Z} h_y(W,A)
ight)^2 + \lambda_2 \|\gamma\|^2$$

How to get conditional expectation $\mathbb{E}_{W|a,z} h_y(W, a)$? Density estimation for p(W|a, z)? Sample from p(W|a, z)?

Goal:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

Primary regression:

$$\hat{h}_y = rg\min_{h_y} \mathbb{E}_{Y,A,Z} \left(\left. Y - \mathbb{E}_{\left. W \mid A,Z \right.} h_y(\left. W,A
ight)
ight)^2 + \lambda_2 \| \gamma \|^2$$

Recall link function

$$h_y(\,W,\,a) = egin{bmatrix} \gamma^ op (arphi_ heta(\,W)\otimes arphi_\xi(\,a)) \end{bmatrix}$$

Goal:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

Primary regression:

$$\hat{h}_y = rg\min_{h_y} \mathbb{E}_{Y,A,Z} \left(Y - \mathbb{E}_{W|A,Z} h_y(W,A)
ight)^2 + \lambda_2 \|\gamma\|^2$$

Recall link function

$$\mathbb{E}_{W|a,z} \; h_y(\,W,\,a) = \; \mathbb{E}_{W|a,z} \; \left[\gamma^ op \left(arphi_ heta(W) \otimes arphi_\xi(a)
ight)
ight]$$

Goal:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

Primary regression:

$$\hat{h}_y = rg\min_{h_y} \mathbb{E}_{Y,A,Z} \left(\left. Y - \mathbb{E}_{\left. W \mid A,Z \right.} h_y(\left. W,A
ight)
ight)^2 + \lambda_2 \| \gamma \|^2$$

Recall link function

$$\mathbb{E}_{W|a,z} \ h_y(W,a) = \mathbb{E}_{W|a,z} \left[\gamma^{ op} \left(arphi_{ heta}(W) \otimes arphi_{\xi}(a)
ight)
ight] \ = \gamma^{ op} igg(\underbrace{\mathbb{E}_{W|a,z} \left[arphi_{ heta}(W)
ight]}_{ ext{cond. feat. mean}} \otimes arphi_{\xi}(a) igg)$$

(this is why linear γ and feature map $arphi_{ heta}(w)\otimes arphi_{\xi}(a))$

Goal:

$$\mathbb{E}(Y|a,z) = \mathbb{E}_{W|a,z}h_y(W,a)$$

Primary regression:

$$\hat{h}_y = rg\min_{h_y} \mathbb{E}_{Y,A,Z} \left(\left. Y - \mathbb{E}_{\left. W \mid A,Z \right.} h_y(\left. W,A
ight)
ight)^2 + \lambda_2 \| \gamma \|^2$$

Recall link function

$$\mathbb{E}_{W|a,z} \ h_y(W,a) = \mathbb{E}_{W|a,z} \ \left[\gamma^{ op} \left(arphi_{ heta}(W) \otimes arphi_{\xi}(a)
ight)
ight] \ = \gamma^{ op} igg(\underbrace{\mathbb{E}_{W|a,z} \left[arphi_{ heta}(W)
ight]}_{ ext{cond. feat. mean}} \otimes arphi_{\xi}(a) igg)$$

Ridge regression (again!)

$$\mathbb{E}_{W|a,z} arphi_{ heta}(W) = \hat{F}_{ heta,\zeta} arphi_{\zeta}(a,z)$$

Experiments

Synthetic experiment, adaptive neural net features

dSprite example:

- **X = \{ scale, rotation, posX, posY \}**
- Treatment A is the image generated (with Gaussian noise)
- Outcome Y is quadratic function of A with multiplicative confounding by posY.
- Z = {scale, rotation, posX}, W = noisy image sharing posY
- Comparison with CEVAE (Louzios et al. 2017)

Louizos, Shalit, Mooij, Sontag, Zemel, Welling, Causal Effect Inference with Deep Latent-Variable_{20/26} Models (2017)

Confounded offline policy evaluation

Synthetic dataset, demand prediction for flight purchase.

- Treatment A is ticket price.
- Policy A ~ π(Z) depends on fuel price.

Conclusion

Causal effect estimation with unobserved X, (possibly) complex nonlinear effects on A, Y

We need to observe:

- Treatment proxy Z (interacts with A, but not directly with Y)
- Outcome proxy W (no direct interaction with A, can affect Y)

Conclusion

Causal effect estimation with unobserved X, (possibly) complex nonlinear effects on A, Y

We need to observe:

- Treatment proxy Z (interacts with A, but not directly with Y)
- Outcome proxy W (no direct interaction with A, can affect Y)

Key messages:

- Don't meet your heroes model/sample latents X
- Don't model all of W, only relevant features for Y
- "Ridge regression is all you need"

Code available:

https://github.com/liyuan9988/DeepFeatureProxyVariable/

Research support

Work supported by:

The Gatsby Charitable Foundation

Google Deepmind

Google DeepMind

Questions?

Failures of completeness assumptions (1)

Recall (one of the) completeness assumptions:

$$\mathbb{E}[f(X)|A=a,Z=z]=0,orall(a,z)\iff f(X)=0,\,\mathbb{P}_X\, ext{a.s.}$$
 $(riangle)$

For conciseness, assume conditioning on some a. Failure 1: $Z \perp \perp X$ (no information about X in proxy)

$$egin{aligned} g(X|) &= ilde{g}(X) - \mathbb{E}_X ilde{g}(X) \ \mathbb{E}(g(X)|Z,a) &= \mathbb{E}g(X) = 0. \end{aligned}$$

Failures of identifiability assumptions (2)

Failure 2: "exploitable invariance" of p(X|z)

$$egin{aligned} X &\sim \mathcal{N}(0,1), \ Z &= |oldsymbol{X}| + \mathcal{N}(0,1), \end{aligned}$$

where $p(X|z) \propto p(z|X)p(X)$ symmetric in X. Consider square integrable *antisymmetric* function $g(X) = -g(-X) \neq 0$. Then

$$egin{aligned} \mathbb{E}[g(X)|Z=z]&=\int_{-\infty}^{\infty}g(X)p(X|z)dX\ &=\int_{-\infty}^{0}g(X)p(X|z)dX+\int_{0}^{\infty}g(X)p(X|z)dX\ &=0. \end{aligned}$$

If distribution of X|Z retains the same "symmetry class" over a set of Z with nonzero measure, then the assumption is violated by g(X) with zero mean on this class.