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A motivation: comparing two samples

m Given: Samples from unknown distributions P and Q.
m Goal: do P and @ differ?
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A real-life example: two-sample tests

m Have: Two collections of samples X, Y from unknown distributions
P and Q.
m Goal: do P and @ differ?
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MNIST samples Samples from a GAN
Significant difference in GAN and MNIST?

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NIPS 2016 3/75
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.



Training generative models
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A portrait created by Al just sold for
$432,000. But is it really art?

Animage of Edmond de Belamy, created by a computer, has
just been sold at Christie’s. But no algorithm can capture our
complex human consciousness

< m
1,085 455

A Portrait of Edmond Bellamy at Christie’s in New York. Photograph: Timothy A Clary/AFP/Getty Images
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Training generative models

m Have: One collection of samples X from unknown distribution P.
m Goal: generate samples @ that look like P

L . |

LSUN bedroom samples P Generated @@, MMD GAN
Using MMD to train a GAN
(Binkowski, Sutherland, Arbel, G., ICLR 20181, 5/75

(Arbel, Sutherland, Binkowski, G., arXiv 2018)



Part 2: testing goodness of fit

m Given: A model P and samples and Q).
m Goal: is P a good fit for Q7

Chicago crime data
Model is Gaussian mixture with two components.
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Part 2: testing independence

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?

X Y

A large animal who slings slobber,
exudes a distinctive houndy odor,
and wants nothing more than to
follow his nose.

Their noses guide them
through life, and they're
never happier than when
following an interesting scent.

A responsive, interactive
pet, one that will blow in
your ear and follow you
everywhere.

Text from dogtime.com and petfinder.com
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Outline

m Maximum Mean Discrepancy (MMD)...

...as a difference in feature means
...as an integral probability metric (not just a technicality!)

m A statistical test based on the MMD

m Training generative adversarial networks with MMD

Gradient regularisation and data adaptivity

Evaluating GAN performance? Problems with Inception and FID.
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Maximum Mean Discrepancy
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Feature mean difference

m Simple example: 2 Gaussians with different means

m Answer: t-test

Two Gaussians with different means

Prob. density
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Feature mean difference

Prob. density

Two Gaussians with same means, different variance

In Gaussian case: second order features of form ¢(z) = z

Two Gaussians with different variances

Idea: look at difference in means of features of the RVs

2
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Feature mean difference

Prob. density

Two Gaussians with different variances

Two Gaussians with same means, different variance

Densities of feature X2

In Gaussian case: second order features of form ¢(z) = z

Idea: look at difference in means of features of the RVs

2

Prob. density
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Feature mean difference

m Gaussian and Laplace distributions
®m Same mean and same variance

m Difference in means using higher order features.. RKHS

Gaussian and Laplace densities

0.7

Prob. density
o o o o
L £ 9 9

o
)

0.1F

12/75



Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

olz)=1[..0i(z)..] €L

For positive definite k,

k(z,2") = (p(z), o(z'))

Infinitely many features
@(z), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

p(z)=[..0iz).. ] €L

For positive definite k&,

k(z,2') = (p(z), o(z'))

Infinitely many features
¢(z), dot product in
closed form!

Exponentiated quadratic kernel

k(z,a') = exp (—v ||z — 2'||%)

_901(517) /\
RN RGAVAN
pa(z) |~
—

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 13,75




Feature space construction: details

Consider (truncated) Gaussian density on X C R,
p(z) o exp (—2?) Ix(z)

Define the eigenexpansion of k(z, z') wrt this density:
1 =3

Aeeg(z) = /Xk(:z,:v’)eg(:c’)p(z’)dx’ /Xei(a:)ej(:c)p(a:)da: = {0 i
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Feature space construction: details

Consider (truncated) Gaussian density on X C R,
p(z) o exp (—2?) Ix(z)

Define the eigenexpansion of k(z, z') wrt this density:

Aeey(z) = /Xk(w»fc')ez(x')p(ﬂv')dx' /X ei(z)e;(z)p(z)de = {; :;j

We can write

k(z,z') = i)\geg(:v)eg(m') = i (Vaced@)) (Vaced("))
=1 -~

=1

pe(z) pe(z’)

which converges in Ly(p).
Warning: for RKHS, need absolute and uniform convregence, eg via Mercer’s theorem for
compact X.
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Infinitely many features of distributions

Given P a Borel probability measure on X, define feature map of
probability P,
up=[...Eplpi()]..]
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Infinitely many features of distributions

Given P a Borel probability measure on X, define feature map of
probability P,
up=[...Eplpi()]..]

For positive definite k(z, z'),

(up,po)F = Ep ok(z,y)

forz ~ Pand y ~ Q.

Fine print: is this allowed for infinite feature spaces?
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Does the feature space mean exist?

Does there exist an element yup € F such that

Epf(z) = (f,up)r VfEF
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Does the feature space mean exist?

Does there exist an element yup € F such that

Epf(z) = (f,up)r VfEF

We recall the concept of a bounded operator: a linear operator
A : F — R is bounded when

|Af| < Aallfllz VfeF.
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Does the feature space mean exist?

Does there exist an element yup € F such that

Epf(z) = (f,up)r VfEF

We recall the concept of a bounded operator: a linear operator
A : F — R is bounded when

|Af| < Aallfllz VfeF.

Riesz representation theorem: In a Hilbert space F, all bounded linear
operators A can be written (-, g4) , for some g4 € F,

Af ={f(-), 9a()) 7

16/75



Does the feature space mean exist?

Existence of mean embedding: If Ep\/k(z,z) = Ep [[¢(z)]| < o0
then dup € F.
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Does the feature space mean exist?

Existence of mean embedding: If Ep\/k(z,z) = Ep [[¢(z)]| < o0
then dup € F.

Proof:
The linear operator Tpf := Epf(z) for all f € F is bounded under
the assumption, since
| Trf| = |Epf(z)|.
<Ep|f(z)|
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Does the feature space mean exist?

Existence of mean embedding: If Ep\/k(z,z) = Ep [[¢(z)]| < o0
then dup € F.

Proof:
The linear operator Tpf := Epf(z) for all f € F is bounded under
the assumption, since
| Trf| = |Epf(z)|.
<Ep|f(z)|
=Ep [(f, p(z)) #|
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Does the feature space mean exist?

Existence of mean embedding: If Ep\/k(z,z) = Ep [[¢(z)]| < o0
then dup € F.

Proof:
The linear operator Tpf := Epf(z) for all f € F is bounded under
the assumption, since
| Trf| = |Epf(z)|.
<Ep|f(z)|
=Ep [(f, p(z)) #|

< Br (1/k(2,2) 715
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Does the feature space mean exist?

Existence of mean embedding: If Ep\/k(z,z) = Ep [[¢(z)]| < o0
then dup € F.

Proof:
The linear operator Tpf := Epf(z) for all f € F is bounded under
the assumption, since
| Trf| = |Epf(z)|.
<Ep|f(z)|
=Ep [(f, p(z)) #|

< Br (1/k(2,2) 715

Hence by Riesz (with Ap, = Ep+/k(z,z)), 3up € F such that
TPf = (f:#P)]—"
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD?*(P, Q) = |lup — poll>
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = |lup — pollx
= (up, uP) r + (L) Q) — 2 (1P, HO) £
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = ||up — poll>

= (up,ur)r+ (Lo, ko) — 2(kP, LQ) £
= Epk(X, XY+ Egk(Y, Y') — 2Ep ok(X, Y)

(a) (2) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

18/75



[Mustration of MMD

m Dogs (= P) and fish (= Q) example revisited
m Each entry is one of k(dog,,dog;), k(dog;, fish;), or k(fish;, fish;)

VR
P -~

>

»?

-
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[Mustration of MMD

The maximum mean discrepancy:

—2
MMD =n(n—_ > k(dog,, dog;) + n(n— > k(fish,, fish, )
z;éj 1#]
- E > k(dog;, fish;)
LR

*

g

dog;, dog;; )

k(fish;, dog;) ‘ fish;, fish; )

)

k(dog;, fish

.:
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MMD as an integral probability metric

Are P and @ different?

051

-0.5

Samples from P and Q

L 4

AR A 4

0.2

0.4

0.6

0.8 1
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MMD as an integral probability metric

Are P and @ different?

051

-0.5

BRAR

Samples from P and Q

00 ¢ 00000 © 06 -

0.2

0.4

0.6

0.8
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function

0.5

-05 1
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MMD as an integral probability metric

What if the function is not smooth?

Epf(X) - Eqf(Y)

Bounded continuous function

0.5¢

0 0.2 0.4 0.6 0.8
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MMD as an integral probability metric

What if the function is not smooth?

Epf(X) - Eqf(Y)

Bounded continuous function

0.5¢

0 0.2 0.4 0.6 0.8 1
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := s [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := u?h”% [Epf(X) —Eqf(Y)]

(F' = unit ball in RKHS F)
Functions are linear combinations of features:

N ECHAN
fi —~J
}' = Z fewe(T) = f3 y\/%

p3() A~
N o

f(x) =[],z

IFll% =22, f2 <1
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) i= sup [Epf(X) - Eof(Y)]

Prob. density and f

1111
(F' = unit ball in RKHS F)

Witness f for Gauss and Laplace densities
0.8 : : : : ‘

s

Gauss ]

0.6

m— |_aplace

06 ‘
6 -4 2

Xor
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := s [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)

For characteristic RKHS 7, MMD(P,Q; F)=0iff P = Q

Other choices for witness function class:

m Bounded continuous [pudiey, 2002]
m Bounded varation 1 (Kolmogorov metric) puiter, 1997)

m Bounded Lipschitz (Wasserstein distances) [pudiey, 2002]

27/75



MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := e [Epf(X) —Eqf(Y)]
(F = unit ba_ill in RKHS F)

Reminder for next slide: expectations of
functions are linear combinations of expected
features

Ep(f(X)) =(firr)x

(always true if kernel is bounded) 27/75



Integral prob. metric vs feature difference

The MMD:
Witness f for Gauss and Laplace densities
0.8

MMD(P, Q; F) : |
— = |_aplace

=sup [Epf(X) — Eqf(Y)] g

fer z
085 -4 2 0 2 4 6
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Integral prob. metric vs feature difference

The MMD:
use

MMD(P, Q; F)

=sup[Epf(X) — Eqf(Y)]
fEF

EPf(X) = </~‘(’P7f>]-'

=sup(f, up — 1Q)
fEF
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Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

=sup[Epf(X) — Eqf(Y)]
fEF

=sup(f, up — 1o) r
fEF
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Integral prob. metric vs feature difference

The MMD: Q
\ g >
2\ S
MMD(P, Q; F) aé\‘b ¥
= sup [Bpf(X) ~ Eof (¥) f
feF

=sup(f, up — 1o) r
fEF
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Integral prob. metric vs feature difference

The MMD:

Q
\ g )
<92 s
MMD(P, Q; F) Do\‘ v
=sup [Epf(X) - Eqf(V)]
feF f*
= ?161113 (frpp — 1) r
. MP = Q

lwp =l



Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

=sup [Epf(X) — Eqf(Y)]
feF

=sup(f, kP — 1Q) £
feF

= llup — poll

Function view and feature view equivalent
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = {xy,...,X,} ~ P

S Ynt~ Q
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

o @®o — — VvV
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

witness(v)
~———

29/75



Derivation of empirical witness function

Recall the witness function expression

frocpup —po

30/75



Derivation of empirical witness function

Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\I—‘
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\l—‘

The empirical witness function at v

FH(v) = e(v)z
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘

Z (zi,v nzk Vis V)

Don’t need explicit feature coefficients f* := [ TS } 30,75



Interlude: divergence measures
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Divergences
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Divergences

tesr! prob. Metrig,,

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH

33,75



Divergences

tesr! prob. Metrig,,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

sesr prob. Metrig,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

¢tesra| pI'Ob. met’.'-q’

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (EJS, 2012, Theorem A.1)

36,75



Two-Sample Testing with MMD



A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

How does this help decide whether P = Q7
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A statistical test using MMD
The empirical MMD:

—_—2
MMD™ =———— Zk (z:, 7;)
z;ﬁj

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

Zk (vi,¥5)

z;ﬁj
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A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

———— 2
Want Threshold ¢, for MMD to get false positive rate o

38/75



—_—2
Behaviour of MMD when P # Q

Draw n = 200 i.i.d samples from P and @
Laplace with different y-variance.

/\2
nx MMD =1.2

—— 9
Vn x MMD™ =1.2

10

39/75



%?QaVIO%OO 1f i Msamples WomI}D anc?é QQ

m Laplace with different y-variance.
—— 2
B /nXxMMD =12

o

Number of MMDs: 1

~
T

2
o
T

Prob. of /it x MMD’
N w IS (6}

40/75




%??v&a ‘7’7,12%00 rfle]v\vjé\almplesv‘from P]zn% 652

m Laplace with different y-variance.
——2
m/nXxMMD =15

Number of MMDS

| | 41/75

N

2
©
© o

Prob. of /it x MMD’
S

'cn

e
o




—_— 2
Behaviour of MMD when P # @

Repeat this 150 times ...

Number of MMDs: 150

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 42/75



—_— 2
Behaviour of MMD when P # @

Repeat this 300 times ...

Number of MMDs: 300

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 42/75



—_— 2
Behaviour of MMD when P # @

Repeat this 3000 times ...
Number of MMDs: 3000

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 42/75



— 2
Asymptotics of MMD when P # Q
When P # @, statistic is asymptotically normal,
MMD~ — MMD?(P, Q) »p

— N(0,1),
where variance V,(P, Q)= O (n™1) .
MMD density U_nder Hl Two Laplace distributions with different variances
1 -
15 T T . T T T —Px
I Erpirical PDF —%
e Giaussian fit =
S g
= o
(= .| :
= @ 05
X
% 6 -4 2 0 2 4 6
. 05¢ X
k5
s}
0

0 0.5 1 15 2 2.5 3 3.5
—_— 2
Vi x MMD a3/75



— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)

Number of MMDs: 10

0.7

0.6

2

051

—

Prob. of n x MMD

0.4r

031

0.2r

0.1r
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 20

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 50

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 100

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs:

1000

—

Prob. of n x MM D

44/75



—_— 2
Asymptotics of MMD when P = Q)

Where P = @, statistic has asymptotic distribution

77,1\—/I’1\HD2 ~ i)‘l {zf — 2]

=1
) where
MMD density under H,
T e | )= [ He @
™ : -Empirical PDF centred

Prob. of n x MM D
o
~

2~ N(0,2) iid.

o
o

n x MMD’

45/75



A statistical test

A summary of the asymptotics:

0.7 T

0.6

2
o
o
T

Prob. of n x MMD
a 5

o
o
T

0.1+

46/75



A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

0.7 T
—_—P =
0.6} ' —_—P # Q|
a2l
(E: 0.5 J
= ]
X
<
3 03 8
,g' ¢, = 1 — a quantile when P = @
=02 .
R~ false negatives
0.1
0
-2 1 0 1 2 3 4 5 6

46/75



How do we get test threshold c,?

Original empirical MMD for dogs and fish:

X =[P ™ P ... ]

Y =2, M ... |

MMD = ln =) ;k(zﬂzj)
n(nl ) > k()
i
S DIICED




How do we get test threshold c,?

Permuted dog and fish samples (merdogs):
K= (4 e ]
Y

[ Pat. H...]

48/75



How do we get test threshold c,?
Permuted dog and fish samples (merdogs):

X [\'Q—%\') " W e ]
Y

MMD” —(n_lgk %)

+7n(n_1);k(s7 %)

2 o i .
—ﬁzk(@ﬁj) ! | I!
1,7
rlI_ll

. . 'f'l 1" L=
Permutation simulates Al mmin il

P:Q | II_II _I-l-




How to choose the best kernel:
optimising the kernel parameters



Graphical illustration

B Maximising test power same as minimizing false negatives

07 :
—_—P =
0.6 - —_—P £ Q|

[a\)

(C: 05 ]
= oal ]
X
IS
5 03F ]
,;C:; ¢o =1 — a quantile when P = @
02t B
R~ false negatives

0.1
0 T
-2 1 0 1 2 3 4 5 6
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Optimizing kernel for test power
The power of our test (Pr; denotes probability under P # Q):

/\2
Prq (nMMD > &a)

51/75



Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Pr; (nMMD > &a)

s <MMD2(P, Q) Ca >
VVn(P,Q) 1y Va(P,Q)

where

m & is the CDF of the standard normal distribution.

m C, 1s an estimate of ¢, test threshold.

51/75



Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

—2
Pr; (nMMD > ?:a)

(MMD2(P, Q) Ca
vV Vn(P, Q)J ny/ Vo(P, Q)
O(n1/2) O(nfl/z)

Variance under H; decreases as v/ V,(P, Q) ~ O(n~1/?)

For large n, second term negligible!
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Prq (nMMD > &a)

s (MMDZ(P, Q) Ca )

VVa(P,Q) 1/ Vu(P, Q)

To maximize test power, maximize
MMD?(P, Q)
Vn(P, Q)

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017)
Code: github.com/dougalsutherland /opt-mmd
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Troubleshooting for generative adversarial networks

13450/ > 07|57 4[7
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MNIST samples Samples from a GAN



Troubleshooting for generative adversarial networks

1345|105
5197|548

3017|5419
5130|578

SEICICIENE
01y1118.81/

9185078
4240095

MNIST samples Samples from a GAN

m Power for optimzed ARD
kernel: 1.00 at « = 0.01

m Power for optimized RBF
kernel: 0.57 at o = 0.01

52/75
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Troubleshooting generative adversarial networks

108

[ dataset images
770 GAN samples

-
Jw-
| |

more like dataset —
MMD? = 0. 0001 53/75




Training GANs with MMD



What is a Generative Adversarial Network (GAN)?

* Generator (student) * Critic (teacher)

* Task: critic must teach generator
to draw images (here dogs)

K e
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What is a Generative Adversarial Network (GAN)?

.
e 4
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What is a Generative Adversarial Network (GAN)?
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What is a Generative Adversarial Network (GAN)?
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Why is classification not enough?

Definitely
a dog

Classification not enough!
Need to compare sets

(otherwise student can just produce the same dog over and over)
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MMD for GAN critic

Can you use MMD as a critic to train GANs?
From ICML 2015:

Generative Moment Matching Networks

Yujia Li' YUJIALI@CS.TORONTO.EDU
Kevin Swersky' KSWERSKY @CS.TORONTO.EDU
Richard Zemel'? ZEMEL@CS.TORONTO.EDU

! Department of Computer Science, University of Toronto, Toronto, ON, CANADA
2Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy

optimization
Gintare Karolina Dziugaite Daniel M. Roy Zoubin Ghahramani
University of Cambridge University of Toronto University of Cambridge
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MMD for GAN critic

Can you use MMD as a critic to train GANs?

7107124/

HEFICIFEIR
6 4/723

Need better image features.
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How to improve the critic witness

m Add convolutional features!
m The critic (teacher) also needs to be trained.

m How to regularise?

o B @ i A
fi=, e

MMD GAN Li et al., [NIPS 2017]
Coulomb GAN Unterthiner et al., [[CLR 2018]
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017
WGAN-GP Gukrajani et al. [NeurIPS 2017

Gradient close to 1 here

Real
points
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017
WGAN-GP Gukrajani et al. [NeurIPS 2017

Given a generator Gy with parameters 8 to be trained.
Samples Y ~ Gg(Z) where Z ~ R

22
m Given critic features hy with parameters 9 to be trained. f;

a linear function of hy.
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017
WGAN-GP Gukrajani et al. [NeurIPS 2017]

L Given a generator Gy with parameters 8 to be trained.
Samples Y ~ Gyp(Z) where Z ~ R

L] Given critic features hy with parameters ¢ to be trained. f;

a linear function of hy.

WGAN-GP gradient penalty:
— 2
max Expfy(X) — Ezwrfy(Go(2)) + ABx (vaﬁp(X)H -1)

where

—_~

X =7z + (1 —7)Ge(2)
v~ U(01]) @€ {zd], 7 € {udp, P



The (W)MMD

Train MMD critic features with the witness function gradient penalty
Binkowski, Sutherland, Arbel, G. [ICLR 2018], Bellemare et al. [2017] for energy distance:

max 11110 (hy (X), ha( Go(2))) + ABg (V%) - 1)’
where

m n

Fol) = = 3" Flg(), ) = = 3 F(hg(Ga(), )

=1 71=1
New

X =7z, + (1 —7)Ge(2)
v~U0,1]) o€ {m}, 2z € {a},

Remark by Bottou et al. (2017): gradient penalty modifies the function class. So criéfy/#s
not an MMD in RKHS F.



MMD for GAN critic: revisited

From ICLR 2018:
DEMYSTIFYING MMD GANS

Mikotaj Birikowski*
Department of Mathematics
Imperial College London
mikbinkowskiBgmail.com

Dougal J. Sutherland; Michael Arbel & Arthur Gretton
Gatsby Computational Neuroscience Unit
University College London

{dougal, michael .n.arbel,arthur.gretton}@gmail.com
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MMD for GAN critic: re
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MMD for GAN critic: revisited

Samples are better!

Can we do better still?



Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution

Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al.
[ICML 2018]

The Dirac-GAN

Figure from Mescheder et al. [[CML 2018] 62/75



Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution
Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al.
[ICML 2018]

The Dirac-GAN

P =4 Q=06 fy(z)=9v% -z
2 7 -
VRN
1//,,”-:\‘
y or 4 \\\
ARy e NENR
= 0 “,
\i‘u
R -
-2 __._.-r//'/‘//
-2 -1 0 1 2
;]

Figure from Mescheder et al. [[CML 2018]
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A Dbetter gradient penalty

m New MMD GAN witness regulariser (NeurIPS 2018)

Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS

2004]
m Related to Sobolev GAN Mroueh et al. [ICLR 2018

arXiv.org > stat > arXiv:1805.11565

Statistics > Machine Learning

On gradient regularizers for MMD GANs

Michael Arbel, Dougal J. Sutherland, Mikotaj Bifikowski, Arthur Gretton

(Submitted on 29 May 2018)
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A Dbetter gradient penalty

m New MMD GAN witness regulariser (NeurIPS 2018)
Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

m Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS

2004]
m Related to Sobolev GAN Mroueh et al. [ICLR 2018

I Should be flat here I

| Can be steep here |

Real
points
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A Dbetter gradient penalty

m New MMD GAN witness regulariser (NeurIPS 2018)

Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS

2004]

m Related to Sobolev GAN Mroueh et al. [ICLR 2018

Modified witness function:

where

MMD :=_sup [Epf(X)—Eqf(Y)]

llflls<1

A2 = 1£13, ) + IV 13,0y + MIFIE
&

2N

PN

L, norm
control

Gradient
control

RKHS
smoothness
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A Dbetter gradient penalty

m New MMD GAN witness regulariser (NeurIPS 2018)

Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS

2004]

m Related to Sobolev GAN Mroueh et al. [ICLR 2018

Modified witness function:

MMD :=_sup [Epf(X)—Eqf(Y)]

£lls<1

where

A = 112, cp) + IV ATy + A
&

2N

PN

L, norm
control

Gradient
control

RKHS
smoothness

Problem: not computationally feasible: O(n?®) per iteration.
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A Dbetter gradient penalty

m New MMD GAN witness regulariser (NeurIPS 2018)

Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

m Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS
2004]

m Related to Sobolev GAN WMroueh et al. [ICLR 2018

The scaled MMD:
SMMD = Ok,P,\ MMD

where

d -1/2
Ok,Ppy = < }\+/k:(:z:,m)dP(:1:) +Z/3¢8,—+dk(z,x) dP(:z:))

i=1
Replace expensive constraint with cheap upper bound:

2 _ 1 2
IS < ogpa 171
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A Dbetter gradient penalty

m New MMD GAN witness regulariser (NeurIPS 2018)

Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

m Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS
2004]

m Related to Sobolev GAN Mroueh et al. [ICLR 2018

The scaled MMD:
SMMD = Ok,P ) MMD

where

p ~1/2
Ok,Ppy = ( }\+/k(:z:,m)dP(:c)+Z/8¢8¢+dk(w,x) dP(:c))

1=1

Replace expensive constraint with cheap upper bound:

2 ~1 2
1715 < orpa 171

Idea: rather than regularise the critic or witness function, regularise

features directly 63/75



Evaluation and experiments
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Evaluation of GANs

The inception score? satimans et al. [NeurIPS 2016]

Based on the classification output p(y|z) of the inception model s:ezeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)[|P(y))-
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).
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Evaluation of GANs

The lnceptlon SCOI'e? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|z) of the inception model s:czeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)[|P(y)).
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new
categories (celeb, bedroom...)
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Evaluation of GANs

The P‘rechet 1ncept10n dlStance7 Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = [|lur — pol > + tr(Zp) + tr(So) — 2t (Zp50)?)

where up and X p are the feature mean and covariance of P

66,75



Evaluation of GANs

The P‘rechet lnceptlon dlStance7 Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = [|lur — pol > + tr(Zp) + tr(So) — 2t (Zp50)?)

where up and X p are the feature mean and covariance of P

50

Problem: bias. For
finite samples can 0

consistently give 30

FID

incorrect answer. 2

m Bias demo,
CIFAR-10 train vs

0
test 0 2000 4000 6000 8000 10000
n
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Evaluation of GANs

The FID can give the wrong answer in practice.
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, 1)) Ps =relu(N(1,.88+.214)) Q =relu(WN(1, 1))

where X = %CCT, with C a d x d matrix with iid standard normal
entries.
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, 1)) Ps =relu(N(1,.88+.214)) Q =relu(WN(1, 1))

where X = %CCT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(P;, Q) ~ 1123.0 > 1114.8 ~ FID(P,, Q)
With m = 50000 samples,
FID(P;, Q) ~ 1133.7 < 1136.2 & FID(P,, Q)
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, 1)) Ps =relu(N(1,.88+.214)) Q =relu(WN(1, 1))

where X = %CCT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(P;, Q) ~ 1123.0 > 1114.8 ~ FID(P,, Q)
With m = 50000 samples,
FID(Py, Q) ~ 1133.7 < 1136.2 & FID(P,, Q)

At m = 100000 samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C. 67/75



The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [[CLR 2018]
Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)

MMD with kernel 0.004

0.003
0.002

1 3
k(z,y) = (d:cTy + 1) . oo

0.000

m Checks match for feature
means, variances, skewness

-0.001
-0.002

m Unbiased : eg CIFAR-10 -0.003
train /test 0 250 500 750 1000 1250 1500 1750 2000
n
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [I[CLR 2018]
Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)

MMD with kernel 0.004

0.003
0.002

1 3
k(z,y) = (dwTy + 1) . oo

0.000

m Checks match for feature
means, variances, skewness

-0.001
-0.002

m Unbiased : eg CIFAR-10 -0.003

traln/test 0 250 500 750 1(1:)0 1250 1500 1750 2000

.but isn’t KID is computationally costly?”
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel 0.004

0.003
0.002

1 3
k(z,y) = (d:cTy + 1) . o0

0.000

m Checks match for feature
means, variances, skewness

-0.001

-0.002

m Unbiased : eg CIFAR-10 -0.003

tra]_n/test 0 250 500 750 12;)0 1250 1500 1750 2000

...“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper

(or use Tensorflow implementation)!
68/75



The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel 0.004

0.003
0.002

1 3
k(z,y) = (d:cTy + 1) . o0

0.000

m Checks match for feature
means, variances, skewness

-0.001

-0.002

m Unbiased : eg CIFAR-10 -0.003

tra]_n/test 0 250 500 750 12;)0 1250 1500 1750 2000

Also used for automatic learning rate adjustment: if KID(]BH_l, Q)
not significantly better than KID(]Bt, @) then reduce learning rate.
[Bounliphone et al. ICLR 2016]

8/75
Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al.ﬁa[xiv,
June 2018]



Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION
FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato', Toshiki Kataoka', Masanori Koyama®, Yuichi Yoshida®
{miyato, katauka]ﬁgreferred.jp

orks, Inc. *Ritsumeikan University *National Institute of Informatics

DEMYSTIFYING MMD GANS

Mikolaj Biikowski®
Department of Mathematics
Imperial College London
mikbinkowskifgmal

om

Dougal J. smmn;w Arhel & Arthur Gretton

rbel,arthur.grett:

SOBOLEV GAN

Youssef Mroueh', ,Chan-Lisng L *, Tom Sercu’*, Anant Raj°* & Yu Cheng'

+ IBM Rescarch A

o Camnegie Mellon U

© Max Planck Institute for Imauigem Systems

+ denotes Equal Contribution

{mroueh, chengyu}@us.ibm.com, chunlial@cs.cmu.edu,
tom.sercul@ibm.com, anant.rajltuebingen. mpg. de

BOUNDARY-SEEKING
GENERATIVE ADVERSARIAL NETWORKS
R Devan H

MILA, University of Montréal, IVADO
erroneusdgrall.com

Athul Paul Jacab-
MILA, MSR, University of Waterloo
apjacobledu. uwaterloo.ca

Tong Che
MILA, University of Moatréal
tong.chefunontreal.ca
Kv\mgmm Cho Yoshua Bengio
York Uni MILA, Univessity of Monteéal, CIFAR, IVADO
AR Al Gk Schola yoshua.bengiofumontreal .ca

kyunghyun. chollayu. edu
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Results: what does MMD buy you?

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

MMD GAN samples, f = 64, WGAN samples, f = 64,
KID=3 KID=4 To/Ts



Results: what does MMD buy you?

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

MMD GAN samples, f = 16, WGAN samples, f = 16,
KID=9 f =64, KID=37 7/



Results: celebrity faces 160x 160

KID scores:

m Sobolev GAN:
14

m SN-GAN:
18

m Old MMD
GAN:
13

m SMMD GAN:
6

202 599 face images, re-
sized and cropped to 160
X 160




Results: unconditional imagenet 64 x 64

KID scores:

= BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 im-
ages, resized to 64 X 64.
Around 20 000 classes.
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Results: unconditional imagenet 64 x 64

KID scores:

= BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 im-
ages, resized to 64 X 64.
Around 20 000 classes.




Summary

m MMD critic gives state-of-the-art performance for GAN training
(FID and )

use convolutional input features
train with new gradient regulariser

m Faster training, simpler critic network

m Reasons for good performance:
Unlike WGAN-GP, MMD loss still a valid critic when features not
optimal
Kernel features do some of the “work”, so simpler hy features possible.
Better gradient/feature regulariser gives better critic

“Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy,”
ICLR 2017 https://github.com/dougalsutherland/opt-mmd

“Demystifying MMD GANSs,” including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

“On gradient regularizers for MMD GANSs”, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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Co-authors

From Gatsby:
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Heiko Strathmann
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External
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Questions?
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