The Maximum Mean Discrepancy for Training Generative Adversarial Networks

Arthur Gretton

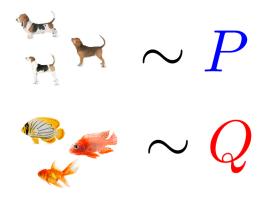
Gatsby Computational Neuroscience Unit, University College London

Paris, 2019

A motivation: comparing two samples

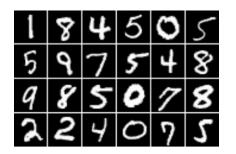
■ Given: Samples from unknown distributions P and Q.

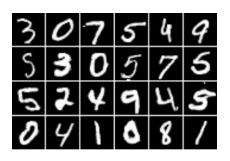
■ Goal: do P and Q differ?



A real-life example: two-sample tests

- Have: Two collections of samples X, Y from unknown distributions P and Q.
- Goal: do P and Q differ?





MNIST samples

Samples from a GAN

Significant difference in GAN and MNIST?

Training generative models

A portrait created by AI just sold for \$432,000. But is it really art?

An image of Edmond de Belamy, created by a computer, has just been sold at Christie's. But no algorithm can capture our complex human consciousness

1.085 455

▲ Portrait of Edmond Bellamy at Christie's in New York. Photograph: Timothy A Clary/AFP/Getty Images

Training generative models

- Have: One collection of samples X from unknown distribution P.
- Goal: generate samples Q that look like P

LSUN bedroom samples P

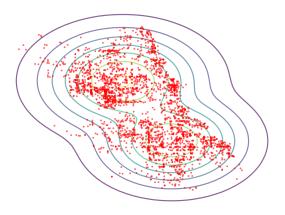
Generated Q, MMD GAN

Using MMD to train a GAN

Part 2: testing goodness of fit

■ Given: A model P and samples and Q.

■ Goal: is P a good fit for Q?



Chicago crime data

Model is Gaussian mixture with two components.

Part 2: testing independence

■ Given: Samples from a distribution P_{XY}

■ Goal: Are X and Y independent?

X	Υ
	A large animal who slings slobber, exudes a distinctive houndy odor, and wants nothing more than to follow his nose.
	Their noses guide them through life, and they're never happier than when following an interesting scent.
	A responsive, interactive pet, one that will blow in your ear and follow you everywhere.
Text from dogtime.com and petfinder.com	

Outline

- Maximum Mean Discrepancy (MMD)...
 - ...as a difference in feature means
 - ...as an integral probability metric (not just a technicality!)

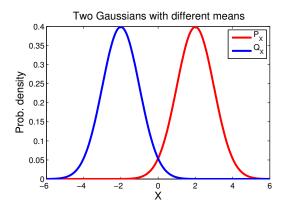
A statistical test based on the MMD

- Training generative adversarial networks with MMD
 - Gradient regularisation and data adaptivity
 - Evaluating GAN performance? Problems with Inception and FID.

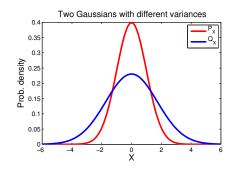
Maximum Mean Discrepancy

■ Simple example: 2 Gaussians with different means

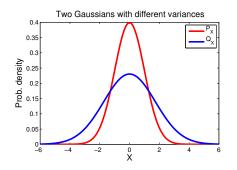
Answer: t-test

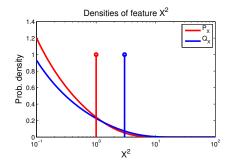


- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $\varphi(x) = x^2$

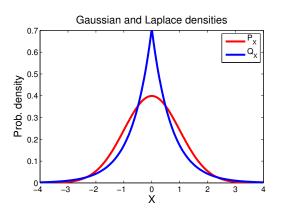


- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $\varphi(x) = x^2$





- Gaussian and Laplace distributions
- Same mean and same variance
- Difference in means using higher order features...RKHS



Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$oldsymbol{arphi}(x) = [\dots arphi_i(x) \dots] \in oldsymbol{\ell}_2$$

For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$oldsymbol{arphi}(oldsymbol{x}) = [\dots arphi_i(oldsymbol{x}) \dots] \in oldsymbol{\ell}_2$$

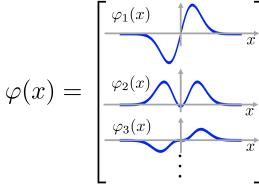
For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$k(x,x') = \exp\left(-\gamma \left\|x-x'
ight\|^2
ight)$$



Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4. 13/75

Feature space construction: details

Consider (truncated) Gaussian density on $\mathcal{X} \subset \mathbb{R}$,

$$p(x) \propto \exp\left(-x^2\right) \mathbb{I}_{\mathcal{X}}(x)$$

Define the eigenexpansion of k(x, x') wrt this density:

$$\lambda_{\ell} rac{oldsymbol{e}_{\ell}(oldsymbol{x})}{oldsymbol{e}_{\mathcal{X}}} k(x,x') rac{oldsymbol{e}_{\ell}(oldsymbol{x}')}{oldsymbol{e}_{\ell}(oldsymbol{x}')} dx' \qquad \int_{\mathcal{X}} e_i(x) e_j(x) p(x) dx = egin{cases} 1 & i=j \ 0 & i
eq j. \end{cases}$$

We can write

$$k(x,x') = \sum_{\ell=1}^\infty \lambda_\ell e_\ell(x) e_\ell(x') = \sum_{\ell=1}^\infty \underbrace{\left(\sqrt{\lambda_\ell} e_\ell(x)
ight)\left(\sqrt{\lambda_\ell} e_\ell(x')
ight)}_{arphi_\ell(x')}$$

which converges in $L_2(p)$.

Warning: for RKHS, need absolute and uniform convregence, eg via Mercer's theorem for compact \mathcal{X} .

Feature space construction: details

Consider (truncated) Gaussian density on $\mathcal{X} \subset \mathbb{R}$,

$$p(x) \propto \exp\left(-x^2\right) \mathbb{I}_{\mathcal{X}}(x)$$

Define the eigenexpansion of k(x, x') wrt this density:

$$\lambda_{\ell} e_{\ell}(x) = \int_{\mathcal{X}} k(x, x') e_{\ell}(x') p(x') dx' \qquad \int_{\mathcal{X}} e_{i}(x) e_{j}(x) p(x) dx = egin{cases} 1 & i = j \ 0 & i
eq j. \end{cases}$$

We can write

$$k(x,x') = \sum_{\ell=1}^\infty \lambda_\ell e_\ell(x) e_\ell(x') = \sum_{\ell=1}^\infty \underbrace{\left(\sqrt{\lambda_\ell} e_\ell(x)
ight)}_{arphi_\ell(x)} \underbrace{\left(\sqrt{\lambda_\ell} e_\ell(x')
ight)}_{arphi_\ell(x')}$$

which converges in $L_2(p)$.

Warning: for RKHS, need absolute and uniform convregence, eg via Mercer's theorem for compact \mathcal{X} .

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

$$\mu_P = [\dots \mathbf{E}_P \left[\varphi_i(\mathbf{x}) \right] \dots]$$

For positive definite k(x, x'),

$$\langle \mu_P, \mu_{m{\mathcal{Q}}}
angle_{\mathcal{F}} = \mathbf{E}_{P,\,m{\mathcal{Q}}} k(\pmb{x},\,\pmb{y})$$

for $x \sim P$ and $y \sim Q$.

Fine print: is this allowed for infinite feature spaces?

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

$$\mu_P = [\dots \mathbf{E}_P \left[arphi_i(oldsymbol{x})
ight] \dots]$$

For positive definite k(x, x'),

$$\langle \mu_{I\!\!P}, \mu_{I\!\!Q}
angle_{\mathcal{F}} = \mathbf{E}_{I\!\!P},_{I\!\!Q} k(m{x}, m{y})$$

for $x \sim P$ and $y \sim Q$.

Fine print: is this allowed for infinite feature spaces?

Does there exist an element $\mu_P \in \mathcal{F}$ such that

$$\mathbf{E}_{P}f(x) = \langle f, \pmb{\mu}_{P}
angle_{\mathcal{F}} \qquad orall f \in \mathcal{F}$$

We recall the concept of a bounded operator: a linear operator $A:\mathcal{F} \to \mathbb{R}$ is bounded when

$$|Af| \leq \lambda_A ||f||_{\mathcal{F}} \quad \forall f \in \mathcal{F}.$$

Riesz representation theorem: In a Hilbert space \mathcal{F} , all bounded linear operators A can be written $\langle \cdot, g_A \rangle_{\mathcal{F}}$, for some $g_A \in \mathcal{F}$,

$$Af = \langle f(\cdot), g_A(\cdot) \rangle_{\mathcal{F}}$$

Does there exist an element $\mu_P \in \mathcal{F}$ such that

$$\mathbf{E}_{P}f(x) = \langle f, \pmb{\mu}_{P}
angle_{\mathcal{F}} \qquad orall f \in \mathcal{F}$$

We recall the concept of a bounded operator: a linear operator $A: \mathcal{F} \to \mathbb{R}$ is bounded when

$$|Af| \leq \lambda_A ||f||_{\mathcal{F}} \quad \forall f \in \mathcal{F}.$$

Riesz representation theorem: In a Hilbert space \mathcal{F} , all bounded linear operators A can be written $\langle \cdot, g_A \rangle_{\mathcal{F}}$, for some $g_A \in \mathcal{F}$,

$$Af = \langle f(\cdot), g_A(\cdot) \rangle_{\mathcal{F}}$$

Does there exist an element $\mu_P \in \mathcal{F}$ such that

$$\mathbf{E}_{P}f(x) = \langle f, \pmb{\mu}_{P}
angle_{\mathcal{F}} \qquad orall f \in \mathcal{F}$$

We recall the concept of a bounded operator: a linear operator $A: \mathcal{F} \to \mathbb{R}$ is bounded when

$$|Af| \leq \lambda_A ||f||_{\mathcal{F}} \quad \forall f \in \mathcal{F}.$$

Riesz representation theorem: In a Hilbert space \mathcal{F} , all bounded linear operators A can be written $\langle \cdot, g_A \rangle_{\mathcal{F}}$, for some $g_A \in \mathcal{F}$,

$$Af = \langle f(\cdot), g_A(\cdot) \rangle_{\mathcal{F}}$$

Existence of mean embedding: If $\mathbf{E}_P\sqrt{k(x,x)}=\mathbf{E}_P\left\|\varphi(x)\right\|_{\mathcal{F}}<\infty$ then $\exists \mu_P \in \mathcal{F}.$

Proof:

The linear operator $T_P f := \mathbf{E}_P f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$egin{aligned} \left| \left. T_P f
ight| &= \left| \mathbf{E}_P f(x)
ight|. \ &\leq \mathbf{E}_P \left| f(x)
ight| \ &= \mathbf{E}_P \left| \left\langle f, arphi(x)
ight
angle_{\mathcal{F}}
ight| \ &\leq \mathbf{E}_P \left(\sqrt{k(x,x)} \left\| f
ight\|_{\mathcal{F}}
ight) \end{aligned}$$

Hence by Riesz (with $\lambda_{T_P}=\mathbf{E}_P\sqrt{k(x,x)}$), $\exists \mu_P\in\mathcal{F}$ such that $T_Pf=\langle f,\mu_P\rangle_{\mathcal{F}}$.

Existence of mean embedding: If $\mathbf{E}_P\sqrt{k(x,x)}=\mathbf{E}_P\left\|\varphi(x)\right\|_{\mathcal{F}}<\infty$ then $\exists \mu_P\in\mathcal{F}.$

Proof:

The linear operator $T_P f := \mathbf{E}_P f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$egin{aligned} \left| \left. T_{P} f
ight| &= \left| \mathbf{E}_{P} f(x)
ight|. \ &\leq \mathbf{E}_{P} \left| f(x)
ight| \ &= \mathbf{E}_{P} \left| \left\langle f, arphi(x)
ight
angle_{\mathcal{F}}
ight| \ &\leq \mathbf{E}_{P} \left(\sqrt{k(x,x)} \left\| f
ight\|_{\mathcal{F}}
ight) \end{aligned}$$

Hence by Riesz (with $\lambda_{T_P}=\mathbf{E}_P\sqrt{k(x,x)}),\ \exists \mu_P\in\mathcal{F}$ such that $T_Pf=\langle f,\mu_P
angle_{\mathcal{F}}\,.$

Existence of mean embedding: If $\mathbf{E}_P\sqrt{k(x,x)}=\mathbf{E}_P\left\|\varphi(x)\right\|_{\mathcal{F}}<\infty$ then $\exists \mu_P\in\mathcal{F}.$

Proof:

The linear operator $T_P f := \mathbf{E}_P f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$egin{aligned} \left| \left. T_P f
ight| &= \left| \mathbf{E}_P f(x)
ight|. \ &\leq \mathbf{E}_P \left| f(x)
ight| \ &= \mathbf{E}_P \left| \left\langle f, arphi(x)
ight
angle_{\mathcal{F}}
ight| \ &\leq \mathbb{E}_P \left(\sqrt{k(x,x)} \left\| f
ight\|_{\mathcal{F}}
ight) \end{aligned}$$

Hence by Riesz (with $\lambda_{T_P}=\mathbf{E}_P\sqrt{k(x,x)}),\ \exists \mu_P\in\mathcal{F}$ such that $T_Pf=\langle f,\mu_P
angle_{\mathcal{F}}\,.$

Existence of mean embedding: If $\mathbf{E}_P\sqrt{k(x,x)}=\mathbf{E}_P\left\|\varphi(x)\right\|_{\mathcal{F}}<\infty$ then $\exists \mu_P\in\mathcal{F}.$

Proof:

The linear operator $T_P f := \mathbf{E}_P f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$egin{aligned} \left| \left. T_P f
ight| &= \left| \mathbf{E}_P f(x)
ight|. \ &\leq \mathbf{E}_P \left| f(x)
ight| \ &= \mathbf{E}_P \left| \left\langle f, arphi(x)
ight
angle_{\mathcal{F}}
ight| \ &\leq \mathbf{E}_P \left(\sqrt{k(x,x)} \left\| f
ight\|_{\mathcal{F}}
ight) \end{aligned}$$

Hence by Riesz (with $\lambda_{T_P}=\mathbf{E}_P\sqrt{k(x,x)}),\ \exists \mu_P\in\mathcal{F}$ such that $T_Pf=\langle f,\mu_P
angle_{\mathcal{F}}\,.$

Existence of mean embedding: If $\mathbf{E}_P\sqrt{k(x,x)}=\mathbf{E}_P\left\|\varphi(x)\right\|_{\mathcal{F}}<\infty$ then $\exists \mu_P \in \mathcal{F}.$

Proof:

The linear operator $T_P f := \mathbf{E}_P f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$egin{aligned} \left| \left. T_P f
ight| &= \left| \mathbf{E}_P f(oldsymbol{x})
ight|. \ &\leq \mathbf{E}_P \left| f(oldsymbol{x})
ight| \ &= \mathbf{E}_P \left| \left\langle f, oldsymbol{arphi}(oldsymbol{x})
ight
angle_{\mathcal{F}}
ight| \ &\leq \mathbf{E}_P \left(\sqrt{k(oldsymbol{x}, oldsymbol{x})} \left\| f
ight\|_{\mathcal{F}}
ight) \end{aligned}$$

Hence by Riesz (with $\lambda_{T_P}=\mathbf{E}_P\sqrt{k(x,x)}$), $\exists \mu_P\in\mathcal{F}$ such that $T_Pf=\langle f,\mu_P\rangle_{\mathcal{F}}$.

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$\begin{split} MMD^{2}(P,Q) &= \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2} \\ &= \langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}} \\ &= \underbrace{\mathbf{E}_{P}k(X,X')}_{\text{(a)}} + \underbrace{\mathbf{E}_{Q}k(Y,Y')}_{\text{(a)}} - 2\underbrace{\mathbf{E}_{P,Q}k(X,Y)}_{\text{(b)}} \end{split}$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$\begin{split} MMD^{2}(P,Q) &= \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2} \\ &= \langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}} \\ &= \underbrace{\mathbb{E}_{P}k(X,X')}_{\text{(a)}} + \underbrace{\mathbb{E}_{Q}k(Y,Y')}_{\text{(b)}} - 2\underbrace{\mathbb{E}_{P,Q}k(X,Y)}_{\text{(b)}} \end{split}$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between **feature** means:

$$\begin{split} MMD^{2}(P,Q) &= \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2} \\ &= \langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}} \\ &= \underbrace{\mathbf{E}_{P} k(X, X')}_{\text{(a)}} + \underbrace{\mathbf{E}_{Q} k(Y, Y')}_{\text{(a)}} - 2 \underbrace{\mathbf{E}_{P,Q} k(X, Y)}_{\text{(b)}} \end{split}$$

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

Illustration of MMD

- Dogs (= P) and fish (= Q) example revisited
- Each entry is one of $k(dog_i, dog_j)$, $k(dog_i, fish_j)$, or $k(fish_i, fish_j)$

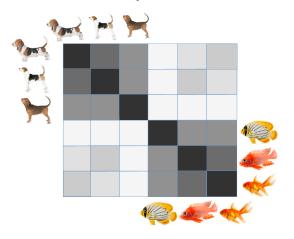
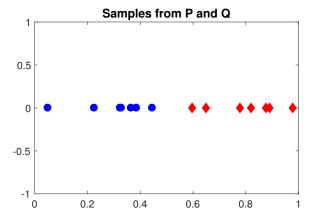


Illustration of MMD

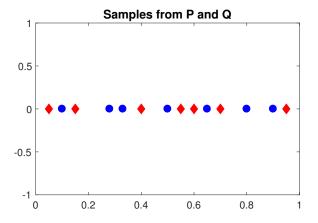
The maximum mean discrepancy:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\mathsf{dog}_i, \mathsf{dog}_j) + rac{1}{n(n-1)} \sum_{i
eq j} k(\mathsf{fish}_i, \mathsf{fish}_j) \\ & - rac{2}{n^2} \sum_{i,j} k(\mathsf{dog}_i, \mathsf{fish}_j) \\ & k(\mathsf{dog}_i, \mathsf{dog}_j) \quad k(\mathsf{dog}_i, \mathsf{fish}_j) \end{aligned}$$

Are P and Q different?



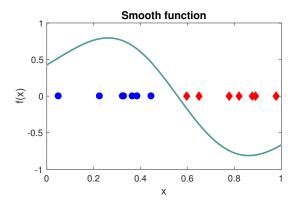
Are P and Q different?



Integral probability metric:

Find a "well behaved function" f(x) to maximize

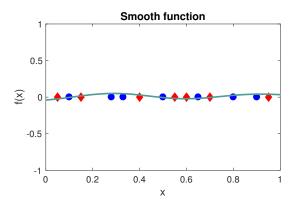
$$\mathbf{E}_{P}f(X) - \mathbf{E}_{Q}f(Y)$$



Integral probability metric:

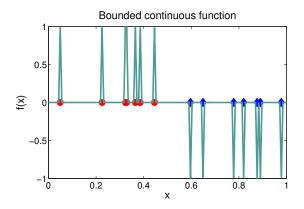
Find a "well behaved function" f(x) to maximize

$$\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)$$



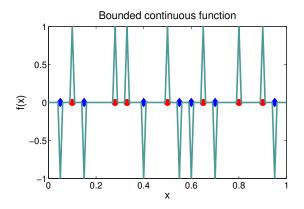
What if the function is not smooth?

$$\mathbf{E}_{P}f(X) - \mathbf{E}_{Q}f(Y)$$



What if the function is not smooth?

$$\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)$$



Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} \mathit{MMD}(P, \column{Q}{Q}; F) &:= \sup_{\|f\| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{\column{Q}} f(\column{Y}{Y})
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Maximum mean discrepancy: smooth function for P vs Q

$$MMD(P, \begin{subarray}{l} oldsymbol{\mathcal{Q}}; F) := \sup_{\|f\| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{\mathcal{Q}}} f(\begin{subarray}{l} oldsymbol{Y} \end{array}
ight) \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{array}$$

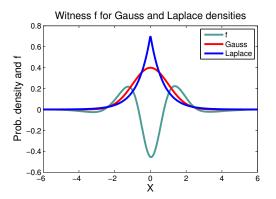
Functions are linear combinations of features:

$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\top} \begin{bmatrix} \varphi_{1}(x) \\ \varphi_{2}(x) \\ \vdots \\ \vdots \end{bmatrix}^{\top}$$

$$\|f\|_{\mathcal{F}}^{2} := \sum_{i=1}^{\infty} f_{i}^{2} \leq 1$$

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} \mathit{MMD}(P, \column{Q}{Q}; F) &:= \sup_{\|f\| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{\column{Q}} f(\column{Y}{Y})
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$



Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} \mathit{MMD}(P, \column{Q}{Q}; F) &:= \sup_{\|f\| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{\column{Q}} f(\column{Y}{Y})
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

For characteristic RKHS
$$\mathcal{F}$$
, $MMD(P, Q; F) = 0$ iff $P = Q$

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded varation 1 (Kolmogorov metric) [Müller, 1997]
- Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

Maximum mean discrepancy: smooth function for P vs Q

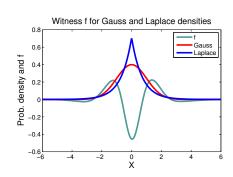
$$egin{aligned} \mathit{MMD}(P, \column{Q}{Q}; F) &:= \sup_{\|f\| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{\column{Q}} f(\column{Y}{Y})
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Reminder for next slide: expectations of functions are linear combinations of expected features

$$\mathbf{E}_{P}(f(X)) = \langle f, \mu_{P} \rangle_{\mathcal{F}}$$

$$MMD(P, Q; F)$$

$$= \sup_{f \in F} [\mathbf{E}_{P}f(X) - \mathbf{E}_{Q}f(Y)]$$



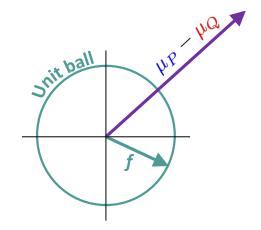
The MMD:

$$\begin{aligned} &MMD(P, Q; F) \\ &= \sup_{f \in F} \left[\mathbf{E}_{P} f(X) - \mathbf{E}_{Q} f(Y) \right] \\ &= \sup_{f \in F} \langle f, \mu_{P} - \mu_{Q} \rangle_{\mathcal{F}} \end{aligned}$$

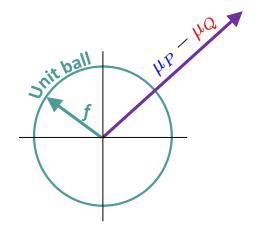
use

$$\mathbf{E}_P f(X) = \left\langle oldsymbol{\mu}_P, f
ight
angle_{\mathcal{F}}$$

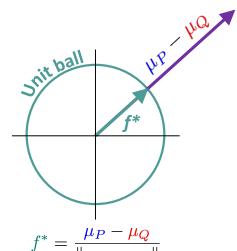
$$egin{aligned} & MMD(P, \column{2}{c}Q; F) \ &= \sup_{f \in F} \left[\mathbf{E}_P f(X) - \mathbf{E}_Q f(\column{2}{c}Y)
ight] \ &= \sup_{f \in F} \left\langle f, \mu_P - \mu_Q \right\rangle_{\mathcal{F}} \end{aligned}$$



$$egin{aligned} & MMD(P, \ \ \ Q; F) \ &= \sup_{f \in F} \left[\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)
ight] \ &= \sup_{f \in F} \left\langle f, \mu_P - \mu_Q \right\rangle_{\mathcal{F}} \end{aligned}$$



$$egin{aligned} & MMD(P, \column{Q}; F) \ &= \sup_{f \in F} \left[\mathbf{E}_P f(X) - \mathbf{E}_{\column{Q}} f(\column{Y})
ight] \ &= \sup_{f \in F} \left\langle f, \mu_P - \mu_{\column{Q}} \right\rangle_{\column{F}} \end{aligned}$$

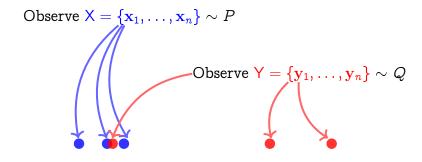


The MMD:

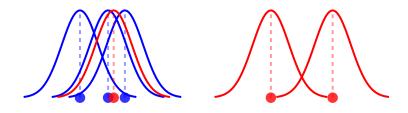
$$egin{aligned} & MMD(P, \column{Q}; F) \ &= \sup_{f \in F} \left[\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y) \right] \ &= \sup_{f \in F} \langle f, \mu_P - \mu_Q \rangle_{\mathcal{F}} \ &= \|\mu_P - \mu_Q\| \end{aligned}$$

Function view and feature view equivalent

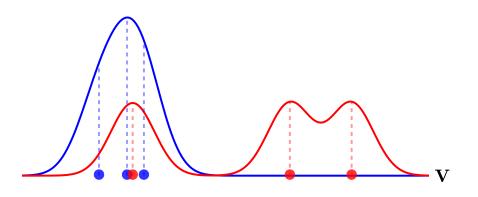
Construction of empirical witness function (proof: next slide!)



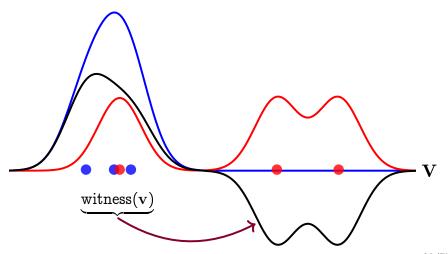
Construction of empirical witness function (proof: next slide!)



Construction of empirical witness function (proof: next slide!)



Construction of empirical witness function (proof: next slide!)



29/75

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{\pmb{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{\pmb{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$f^*(v) = \langle f^*, arphi(v)
angle_{\mathcal{F}}$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{\pmb{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$f^*(v) = \langle f^*, \varphi(v) \rangle_{\mathcal{F}} \ \propto \langle \widehat{\mu}_P - \widehat{\mu}_Q, \varphi(v) \rangle_{\mathcal{F}}$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{\pmb{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

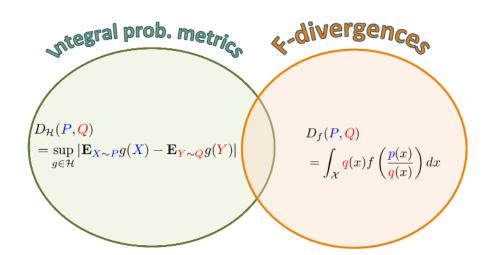
The empirical witness function at v

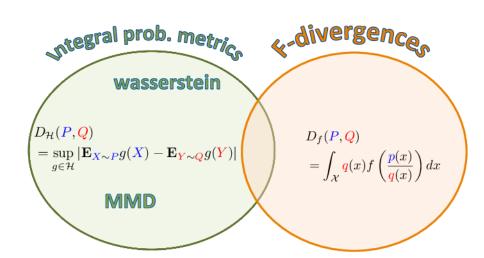
$$egin{aligned} f^*(v) &= \langle f^*, arphi(v)
angle_{\mathcal{F}} \ &\propto \langle \widehat{\pmb{\mu}}_P - \widehat{\pmb{\mu}}_{m{\mathcal{Q}}}, arphi(v)
angle_{m{\mathcal{F}}} \ &= rac{1}{n} \sum_{i=1}^n k(\pmb{x}_i, v) - rac{1}{n} \sum_{i=1}^n k(\pmb{ extbf{y}}_i, v) \end{aligned}$$

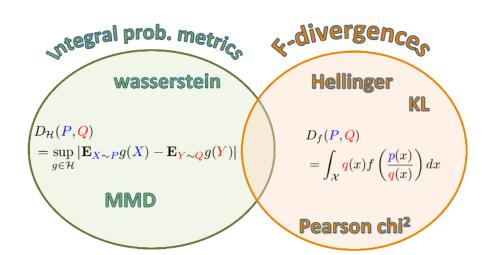
Don't need explicit feature coefficients $f^* := \begin{bmatrix} f_1^* & f_2^* & \dots \end{bmatrix}$

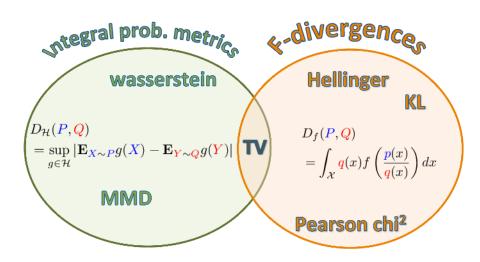
Interlude: divergence measures











Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (EJS, 2012, Theorem A.1)

Two-Sample Testing with MMD

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}}_i, \pmb{ extbf{y}}_j) \ & - rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{ extbf{y}}_j) \end{aligned}$$

How does this help decide whether P = Q?

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}}_i, \pmb{ extbf{y}}_j) \ & - rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{ extbf{y}}_j) \end{aligned}$$

Perspective from statistical hypothesis testing:

- Null hypothesis \mathcal{H}_{0} when P=Q
 - should see \widehat{MMD}^2 "close to zero".
- Alternative hypothesis \mathcal{H}_1 when $P \neq Q$
 - should see \widehat{MMD}^2 "far from zero"

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}}_i, \pmb{ extbf{y}}_j) \ & - rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{ extbf{y}}_j) \end{aligned}$$

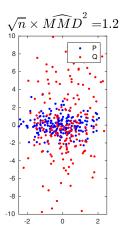
Perspective from statistical hypothesis testing:

- Null hypothesis \mathcal{H}_0 when P = Q
 - should see \widehat{MMD}^2 "close to zero".
- Alternative hypothesis \mathcal{H}_1 when $P \neq Q$
 - should see \widehat{MMD}^2 "far from zero"

Behaviour of \widehat{MMD}^2 when $P \neq Q$

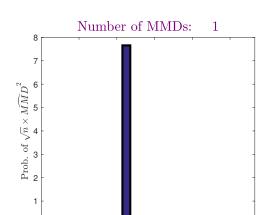
Draw n = 200 i.i.d samples from P and Q

- Laplace with different y-variance.
- $\sqrt{n} \times \widehat{MMD}^2 = 1.2$



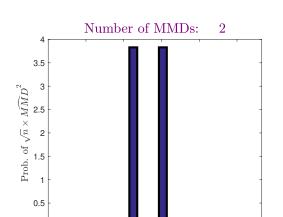
Behaviour of \widehat{MMD}^2 when $P \neq Q$ and P = 200 i.i.d samples from P = 200

- Laplace with different y-variance.
- $\sqrt{n} \times \widehat{MMD}^2 = 1.2$



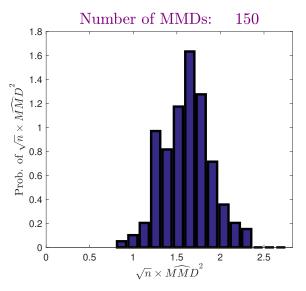
Behaviour of \widehat{MMD}^2 when $P \neq Q$

- Laplace with different y-variance.
- $\sqrt{n} \times \widehat{MMD}^2 = 1.5$

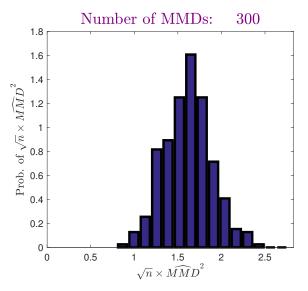


Behaviour of \widehat{MMD}^2 when $P \neq Q$

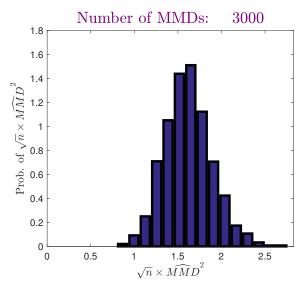
Repeat this 150 times ...



Repeat this 300 times ...



Repeat this 3000 times ...

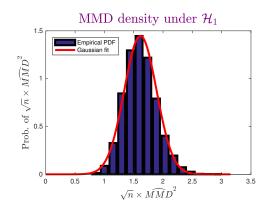


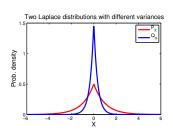
Asymptotics of \widehat{MMD}^2 when $P \neq Q$

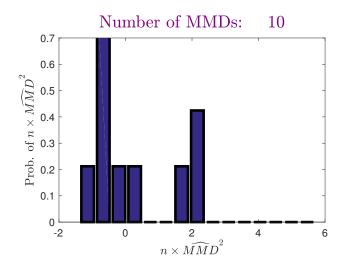
When $P \neq Q$, statistic is asymptotically normal,

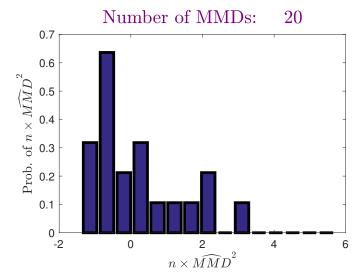
$$rac{\widehat{ ext{MMD}}^2 - ext{MMD}^2(extit{P}, extit{Q})}{\sqrt{V_n(extit{P}, extit{Q})}} \stackrel{D}{\longrightarrow} \mathcal{N}(0, 1),$$

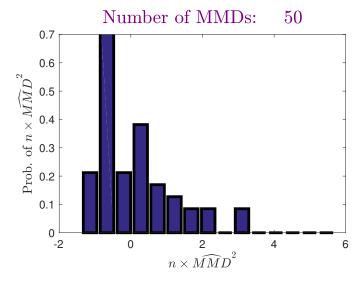
where variance $V_n(P,Q) = O(n^{-1})$.

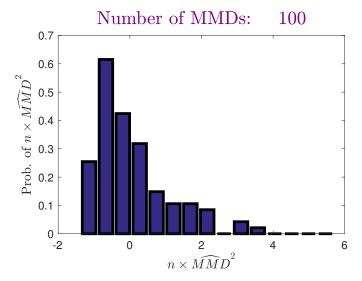


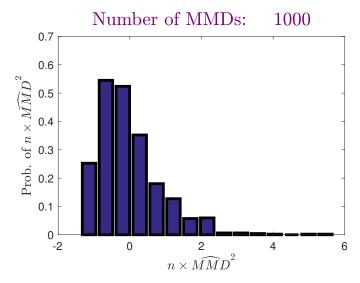








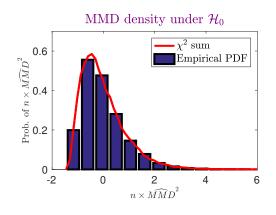




Asymptotics of \widehat{MMD}^2 when P = Q

Where P = Q, statistic has asymptotic distribution

$$n\widehat{ ext{MMD}}^2 \sim \sum_{l=1}^\infty \lambda_l \left[z_l^2 - 2
ight]$$



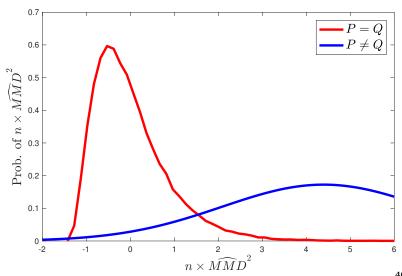
where

$$\lambda_i \psi_i(x') = \int_{\mathcal{X}} \underbrace{ ilde{k}(x,x')}_{ ext{centred}} \psi_i(x) dP(x)$$

$$z_l \sim \mathcal{N}(0, 2)$$
 i.i.d.

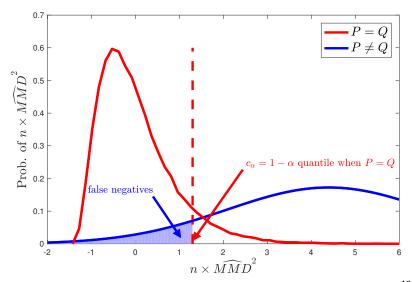
A statistical test

A summary of the asymptotics:



A statistical test

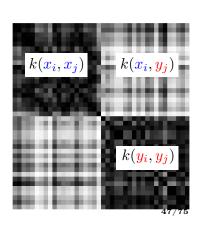
Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)



How do we get test threshold c_{α} ?

Original empirical MMD for dogs and fish:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) \ &+ rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{y_i}, \pmb{y_j}) \ &- rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{y_j}) \end{aligned}$$



How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$\widetilde{X} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$$

$$\widetilde{Y} = [$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

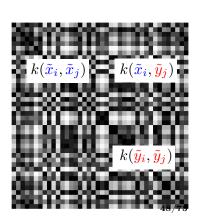
$$\widetilde{X} = [$$

$$\widetilde{Y} = [$$

$$egin{aligned} \widehat{MMD}^2 = &rac{1}{n(n-1)} \sum_{i
eq j} k(ilde{m{x}}_i, ilde{m{x}}_j) \ &+ rac{1}{n(n-1)} \sum_{i
eq j} k(ilde{m{y}}_i, ilde{m{y}}_j) \ &- rac{2}{n^2} \sum_{i
eq i} k(ilde{m{x}}_i, ilde{m{y}}_j) \end{aligned}$$

Permutation simulates

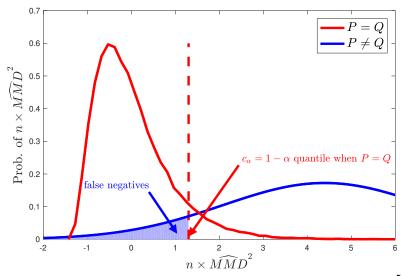
$$P = Q$$



How to choose the best kernel: optimising the kernel parameters

Graphical illustration

■ Maximising test power same as minimizing false negatives



The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$ext{Pr}_1\left(\widehat{n ext{MMD}}^2>\widehat{c}_lpha
ight)$$

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{split} & \Pr_1\left(\widehat{n ext{MMD}}^2 > \hat{c}_{lpha}
ight) \ & o \Phi\left(rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_{lpha}}{n\sqrt{V_n(P,Q)}}
ight) \end{split}$$

where

- \blacksquare Φ is the CDF of the standard normal distribution.
- \bullet \hat{c}_{α} is an estimate of c_{α} test threshold.

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$ext{Pr}_1\left(n\widehat{ ext{MMD}}^2>\hat{c}_{lpha}
ight) \ o \Phi\left(\underbrace{rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}}}_{O(n^{1/2})} - \underbrace{rac{c_{lpha}}{n\sqrt{V_n(P,Q)}}}_{O(n^{-1/2})}
ight)$$

Variance under \mathcal{H}_1 decreases as $\sqrt{V_n(P,Q)} \sim O(n^{-1/2})$ For large n, second term negligible!

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{split} & \Pr_1\left(n\widehat{ ext{MMD}}^2 > \hat{c}_lpha
ight) \ & o \Phi\left(rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_lpha}{n\sqrt{V_n(P,Q)}}
ight) \end{split}$$

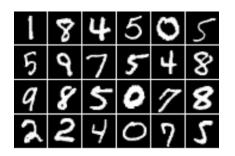
To maximize test power, maximize

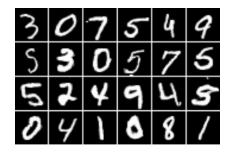
$$\frac{\text{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}}$$

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017)

Code: github.com/dougalsutherland/opt-mmd

Troubleshooting for generative adversarial networks

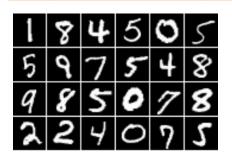


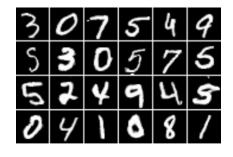


MNIST samples

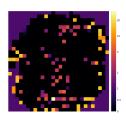
Samples from a GAN

Troubleshooting for generative adversarial networks





MNIST samples



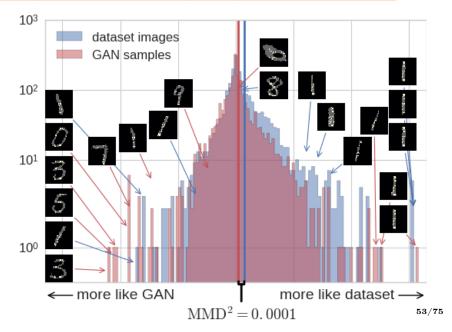
ARD map

Samples from a GAN

- Power for optimzed ARD kernel: 1.00 at $\alpha = 0.01$
- Power for optimized RBF kernel: 0.57 at α = 0.01

52/75

Troubleshooting generative adversarial networks

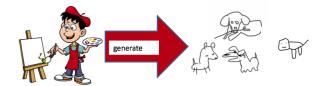


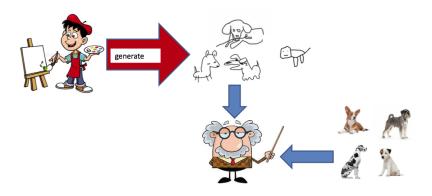
Training GANs with MMD

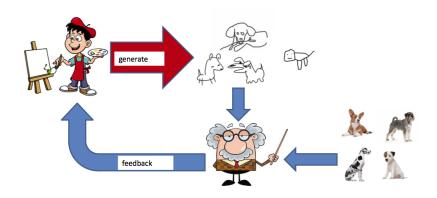
Generator (student)

• Task: critic must teach generator to draw images (here dogs)

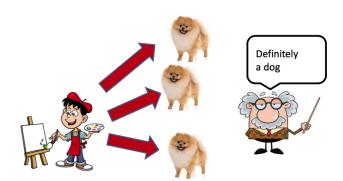
Critic (teacher)







Why is classification not enough?



Classification **not** enough! Need to compare **sets**

(otherwise student can just produce the same dog over and over)

MMD for GAN critic

Can you use MMD as a critic to train GANs? From ICML 2015:

Generative Moment Matching Networks

Yujia Li¹ Kevin Swersky¹ Richard Zemel^{1,2} YUJIALI@CS.TORONTO.EDU KSWERSKY@CS.TORONTO.EDU ZEMEL@CS.TORONTO.EDU

From UAI 2015:

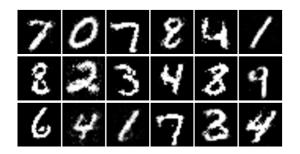
Training generative neural networks via Maximum Mean Discrepancy optimization

Gintare Karolina Dziugaite University of Cambridge Daniel M. Roy University of Toronto Zoubin Ghahramani University of Cambridge

¹Department of Computer Science, University of Toronto, Toronto, ON, CANADA
²Canadian Institute for Advanced Research, Toronto, ON, CANADA

MMD for GAN critic

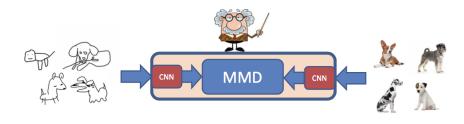
Can you use MMD as a critic to train GANs?



Need better image features.

How to improve the critic witness

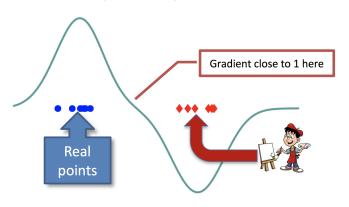
- Add convolutional features!
- The critic (teacher) also needs to be trained.
- How to regularise?



MMD GAN Li et al., [NIPS 2017] Coulomb GAN Unterthiner et al., [ICLR 2018]

WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017] WGAN-GP Gukrajani et al. [NeurIPS 2017]



WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017] WGAN-GP Gukrajani et al. [NeurIPS 2017]

• Kalanda Given a generator G_{θ} with parameters θ to be trained.

Samples $Y \sim G_{\theta}(Z)$ where $Z \sim R$

Given critic features h_{ψ} with parameters ψ to be trained. f_{ψ} a linear function of h_{ψ} .

WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017] WGAN-GP Gukrajani et al. [NeurIPS 2017]

Given a generator G_{θ} with parameters θ to be trained. Samples $Y \sim G_{\theta}(Z)$ where $Z \sim R$

Given critic features h_{ψ} with parameters ψ to be trained. f_{ψ} a linear function of h_{ψ} .

WGAN-GP gradient penalty:

$$\max_{m{\psi}} \mathbf{E}_{X \sim P} f_{m{\psi}}(m{X}) - \mathbf{E}_{Z \sim m{R}} f_{m{\psi}}(G_{m{ heta}}(m{Z})) + \lambda \mathbf{E}_{\widetilde{X}} \left(\left\|
abla_{\widetilde{X}} f_{m{\psi}}(\widetilde{X})
ight\| - 1
ight)^2$$

where

$$egin{aligned} \widetilde{X} &= oldsymbol{\gamma} x_i + (1-oldsymbol{\gamma}) G_{oldsymbol{ heta}}(oldsymbol{z_j}) \ oldsymbol{\gamma} &\sim \mathcal{U}([0,1]) \quad x_i \in \{x_\ell\}_{\ell=1}^m \quad z_j \in \{z_\ell\}_{\ell=1}^n \end{aligned}$$

59/75

The (W)MMD

Train MMD critic features with the witness function gradient penalty

Binkowski, Sutherland, Arbel, G. [ICLR 2018], Bellemare et al. [2017] for energy distance:

$$\max_{m{\psi}} rac{MMD^2}{MMD^2}(h_{m{\psi}}(X),h_{m{\psi}}(G_{m{ heta}}(m{Z}))) + \lambda \mathbf{E}_{\widetilde{X}} \left(\left\|
abla_{\widetilde{X}} f_{m{\psi}}(\widetilde{X})
ight\| - 1
ight)^2$$

where

$$f_{\psi}(\cdot) = \frac{1}{m} \sum_{i=1}^{m} \frac{k(h_{\psi}(\boldsymbol{x_i}), \cdot) - \frac{1}{n} \sum_{j=1}^{n} \frac{k(h_{\psi}(G_{\theta}(\boldsymbol{z_j})), \cdot)}{\text{New}}$$

$$egin{aligned} \widetilde{X} &= \gamma x_i + (1-\gamma) G_{ heta}(oldsymbol{z_j}) \ \gamma \sim \mathcal{U}([0,1]) \quad x_i \in \{x_\ell\}_{\ell=1}^m \quad z_j \in \{z_\ell\}_{\ell=1}^n \end{aligned}$$

Remark by Bottou et al. (2017): gradient penalty modifies the function class. So cri**69/75** not an MMD in RKHS F.

MMD for GAN critic: revisited

From ICLR 2018:

DEMYSTIFYING MMD GANS

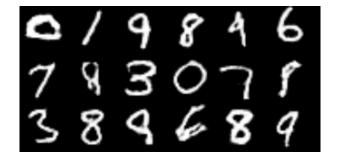
Mikołaj Bińkowski*

Department of Mathematics Imperial College London mikbinkowski@gmail.com

Dougal J. Sutherland, Michael Arbel & Arthur Gretton

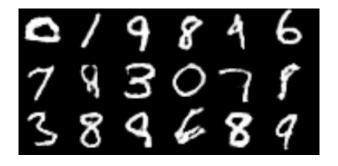
Gatsby Computational Neuroscience Unit
University College London
{dougal,michael.n.arbel,arthur.gretton}@gmail.com

MMD for GAN critic: revisited



Samples are better!

MMD for GAN critic: revisited



Samples are better!

Can we do better still?

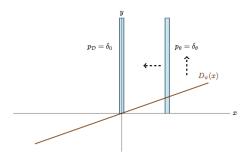
Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution

Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al. [ICML 2018]

The Dirac-GAN

$$P=\delta_0 \qquad {Q\over Q}=\delta_ heta \qquad f_\psi(x)=\psi\cdot x$$



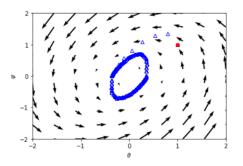
Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution

Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al. [ICML 2018]

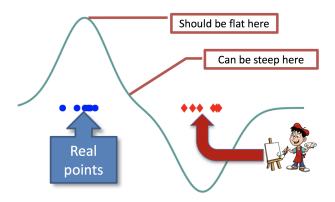
The Dirac-GAN

$$P = \delta_0 \qquad {m Q} = \delta_ heta \qquad f_\psi(x) = \psi \cdot x$$



- New MMD GAN witness regulariser (NeurIPS 2018)
 - Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]
- Related to Sobolev GAN Mroueh et al. [ICLR 2018]

- New MMD GAN witness regulariser (NeurIPS 2018)
 - Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]
- Related to Sobolev GAN Mroueh et al. [ICLR 2018]



- New MMD GAN witness regulariser (NeurIPS 2018)
 - Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]
- Related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness function:

$$\widetilde{MMD} := \sup_{\|f\|_{S} \le 1} \left[\mathbb{E}_{P} f(X) - \mathbb{E}_{Q} f(Y) \right]$$

where

- New MMD GAN witness regulariser (NeurIPS 2018)
 - Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]
- Related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness function:

$$\widetilde{MMD} := \sup_{\|f\|_{\mathcal{S}} \le 1} \left[\mathbb{E}_{P} f(X) - \mathbb{E}_{Q} f(Y) \right]$$

where

$$\|f\|_{\mathcal{S}}^2 = \|f\|_{L_2(P)}^2 + \|\nabla f\|_{L_2(P)}^2 + \lambda \|f\|_k^2$$

$$\downarrow_{\text{L}_2 \, \text{norm}}$$

$$\downarrow_{\text{control}}$$
Gradient
$$\downarrow_{\text{control}}$$
RKHS
$$\downarrow_{\text{smoothness}}$$

Problem: not computationally feasible: $O(n^3)$ per iteration.

- New MMD GAN witness regulariser (NeurIPS 2018)
 - Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]
- Related to Sobolev GAN Mroueh et al. [ICLR 2018]

The scaled MMD:

$$SMMD = \sigma_{k,P,\lambda} MMD$$

where

$$oldsymbol{\sigma}_{k,P,\lambda} \; = \left(\; \; \lambda + \int k(x,x) dP(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(x,x) \; dP(x) \;
ight)^{-1/2}$$

Replace expensive constraint with cheap upper bound:

$$||f||_{S}^{2} \leq \frac{\sigma_{k,P,\lambda}^{-1}}{\sigma_{k,P,\lambda}} ||f||_{k}^{2}$$

- New MMD GAN witness regulariser (NeurIPS 2018)
 - Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]
- Related to Sobolev GAN Mroueh et al. [ICLR 2018]

The scaled MMD:

$$SMMD = \sigma_{k,P,\lambda} \ MMD$$

where

$$egin{array}{ll} oldsymbol{\sigma}_{k,P,\lambda} &= \left(& \lambda + \int k(x,x) dP(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(x,x) \; dP(x) \;
ight)^{-1/2} \end{array}$$

Replace expensive constraint with cheap upper bound:

$$||f||_{S}^{2} \leq \sigma_{k,P,\lambda}^{-1} ||f||_{k}^{2}$$

Idea: rather than regularise the critic or witness function, regularise features directly

63/75

Evaluation and experiments

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|x) of the inception model Szegedy et al. [ICLR 2014],

$$E_X \exp KL(P(y|X)||P(y)).$$

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|x) of the inception model szegedy et al. [ICLR 2014],

$$E_X \exp KL(P(y|X)||P(y)).$$

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can't be used on new categories (celeb, bedroom...)

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, Q) = \|\mu_P - \mu_Q\|^2 + \operatorname{tr}(\Sigma_P) + \operatorname{tr}(\Sigma_Q) - 2\operatorname{tr}\left((\Sigma_P \Sigma_Q)^{\frac{1}{2}}\right)$$

where μ_P and Σ_P are the feature mean and covariance of P

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

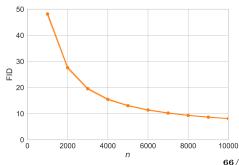
Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, Q) = \|\mu_P - \mu_Q\|^2 + \operatorname{tr}(\Sigma_P) + \operatorname{tr}(\Sigma_Q) - 2\operatorname{tr}\left((\Sigma_P\Sigma_Q)^{\frac{1}{2}}\right)$$

where μ_P and Σ_P are the feature mean and covariance of P

Problem: bias. For finite samples can consistently give incorrect answer.

■ Bias demo, CIFAR-10 train vs test



The FID can give the wrong answer in practice.

Let d = 2048, and define

$$P_1 = \text{relu}(\mathcal{N}(\mathbf{0}, I_d))$$
 $P_2 = \text{relu}(\mathcal{N}(\mathbf{1}, .8\Sigma + .2I_d))$ $Q = \text{relu}(\mathcal{N}(\mathbf{1}, I_d))$ where $\Sigma = \frac{4}{d}CC^T$, with C a $d \times d$ matrix with iid standard normal entries

For a random draw of C

$$FID(P_1, \ {\color{red}Q}) pprox 1123.0 > 1114.8 pprox FID(P_2, \ {\color{red}Q})$$

With m = 50000 samples,

$$FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$$

67/75

At m = 100000 samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C.

The FID can give the wrong answer in practice.

Let d = 2048, and define

$$P_1 = \text{relu}(\mathcal{N}(\mathbf{0}, I_d))$$
 $P_2 = \text{relu}(\mathcal{N}(\mathbf{1}, .8\Sigma + .2I_d))$ $Q = \text{relu}(\mathcal{N}(\mathbf{1}, I_d))$ where $\Sigma = \frac{4}{d}CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

$$FID(P_1, \mathcal{Q}) pprox 1123.0 > 1114.8 pprox FID(P_2, \mathcal{Q})$$
 N ith $m=50\,000$ samples, $FID(\widehat{P_1}, \mathcal{Q}) pprox 1133.7 < 1136.2 pprox FID(\widehat{P_2}, \mathcal{Q})$

At $m = 100\,000$ samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C67/75

The FID can give the wrong answer in practice.

Let d = 2048, and define

$$P_1 = \text{relu}(\mathcal{N}(0, I_d))$$
 $P_2 = \text{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \text{relu}(\mathcal{N}(1, I_d))$

where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

With m = 50000 samples,

At $m = 100\,000$ samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C67/75

The FID can give the wrong answer in practice.

Let d = 2048, and define

$$P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$$
 $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$

where $\Sigma = \frac{4}{d}CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

$$FID(P_1, \c Q) \approx 1123.0 > 1114.8 \approx FID(P_2, \c Q)$$

With m = 50000 samples,

$$FID(\widehat{P}_1, \mathbb{Q}) \approx 1133.7 < 1136.2 \approx FID(\widehat{P}_2, \mathbb{Q})$$

At $m = 100\,000$ samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C.

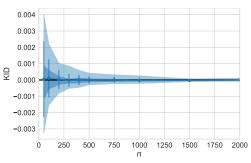
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

- Checks match for feature means, variances, skewness
- Unbiased: eg CIFAR-10 train/test



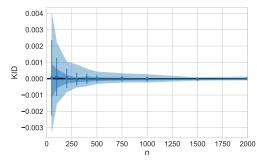
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

- Checks match for feature means, variances, skewness
- Unbiased : eg CIFAR-10 train/test



..."but isn't KID is computationally costly?"

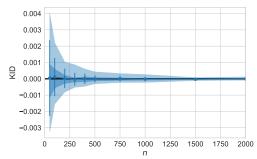
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

- Checks match for feature means, variances, skewness
- Unbiased : eg CIFAR-10 train/test



..."but isn't KID is computationally costly?"

"Block" KID implementation is cheaper than FID: see paper (or use Tensorflow implementation)!

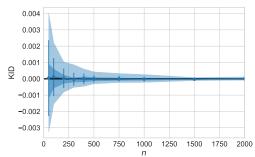
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

- Checks match for feature means, variances, skewness
- Unbiased : eg CIFAR-10 train/test



Also used for automatic learning rate adjustment: if $KID(\widehat{P}_{t+1}, \mathbb{Q})$ not significantly better than $KID(\widehat{P}_t, \mathbb{Q})$ then reduce learning rate.

[Bounliphone et al. ICLR 2016]

Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato¹, Toshiki Kataoka¹, Masanori Koyama², Yuichi Yoshida³ {miyato, kataoka}@preferred.jp

oyama masanori@gmail.com

works, Inc. 2Ritsumeikan University 3National Institute of Informatics

DEMYSTIFYING MMD GANS

Mikołaj Bińkowski*

Department of Mathematics Imperial College London

mikbinkowski@gmail.com

Dougal J. Sutherland, Michael Arbel & Arthur Gretton

Gatsby Computational Neuroscience Unit College London ,michael.n.arbel,arthur.gretton}@gmail.com

SOBOLEV GAN

Youssef Mroueh[†], Chun-Liang Li^{◦, ⋆}, Tom Sercu^{†, ⋆}, Anant Raj^{⋄, ⋆} & Yu Cheng[†] † IBM Research AI

o Carnegie Mellon University

O Max Planck Institute for Intelligent Systems

* denotes Equal Contribution

{mroueh,chengyu}@us.ibm.com, chunlial@cs.cmu.edu, tom.sercul@ibm.com,anant.raj@tuebingen.mpg.de

BOUNDARY-SEEKING GENERATIVE ADVERSARIAL NETWORKS

R Devon Hielm*

MILA, University of Montréal, IVADO erroneus@gmail.com

Tong Che

MILA. University of Montréal tong.che@umontreal.ca

Kyunghyun Cho New York University, CIFAR Azrieli Global Scholar kyunghyun.cho@nyu.edu

Athul Paul Jacob* apjacob@edu.uwaterloo.ca

Adam Trischler

adam.trischler@microsoft.com

MILA, MSR, University of Waterloo

Yoshua Bengio MILA, University of Montréal, CIFAR, IVADO yoshua.bengio@umontreal.ca

Results: what does MMD buy you?

■ Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f convolutional filters in layers 1-4. LSUN 64×64 .

MMD GAN samples, f = 64, KID=3

WGAN samples,
$$f = 64$$
,
KID=4

Results: what does MMD buy you?

■ Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f convolutional filters in layers 1-4. LSUN 64×64 .

MMD GAN samples, f = 16, KID=9

WGAN samples,
$$f = 16$$
,
 $f = 64$, KID=37

Results: celebrity faces 160×160

KID scores:

- Sobolev GAN: 14
- SN-GAN:
- Old MMD GAN:

13

■ SMMD GAN:

6

202 599 face images, resized and cropped to 160 \times 160

Results: unconditional imagenet 64×64

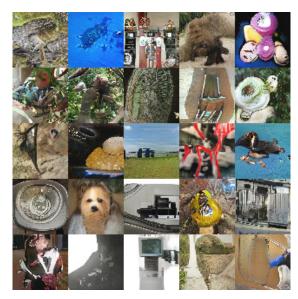
KID scores:

- BGAN:
 - 47
- SN-GAN:

44

■ SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64×64 . Around 20 000 classes.



Results: unconditional imagenet 64×64

KID scores:

- BGAN:
 - 47
- SN-GAN:
 - 44
- SMMD GAN:

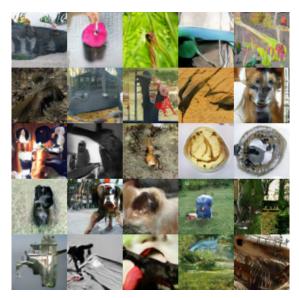
ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64 × 64. Around 20 000 classes.

Results: unconditional imagenet 64×64

KID scores:

- BGAN:
 - 47
- SN-GAN:
 - 44
- SMMD GAN:

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64 × 64. Around 20 000 classes.



Summary

- MMD critic gives state-of-the-art performance for GAN training (FID and KID)
 - use convolutional input features
 - train with new gradient regulariser
- Faster training, simpler critic network
- Reasons for good performance:
 - Unlike WGAN-GP, MMD loss still a valid critic when features not optimal
 - Kernel features do some of the "work", so simpler h_{ψ} features possible.
 - Better gradient/feature regulariser gives better critic

"Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy," ICLR 2017 https://github.com/dougalsutherland/opt-mmd

"Demystifying MMD GANs," including KID score, ICLR 2018: https://github.com/mbinkowski/MMD-GAN

"On gradient regularizers for MMD GANs", NeurIPS 2018: https://github.com/MichaelArbel/Scaled-MMD-GAN

Co-authors

From Gatsby:

- Michael Arbel
- Mikolaj Binkowski
- Heiko Strathmann
- Dougal Sutherland

External collaborators:

- Soumyajit De
- Aaditya Ramdas
- Alex Smola
- Hsiao-Yu Tung

Questions?

