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Observation vs intervention

Conditioning from observation: E[Y|A = a] =}, E[Y|a, z]p(z|a)

From our observations of historical hospital data:
m P(Y = cured|A = pills) = 0.85
m P(Y = cured|A = surgery) = 0.72
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Observation vs intervention

Average causal effect/dose response curve (intervention):
E[Y(¥)] = 5, E[Y]a, z]p(z)

From our wntervention (making all patients take a treatment):
m P(Y(®ls) = cyred) = 0.64
m P(Y(sureery) — cured) = 0.75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the

Connterfactiial and Ciranhical Annroachese +0 Clatliealityv
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We record symptom W, not disease X

m P(W = fever|X = mild) =0.2
m P(W = fever|X = severe) = 0.8
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We record symptom W, not disease X

m P(W = fever|X = mild) =0.2
m P(W = fever| X = severe) = 0.8

Could we just write: P(Y (%) < > wego,13 E[Y|a, w]p(w)
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We record symptom W, not disease X

Wrong recommendation made:

B > ueqo,1} Elcured|pills, w]p(w) = 0.8 (# 0.64)

B > ueqo,1} Elcured|surgery, w]p(w) = 0.73  (# 0.75)
Correct answer impossible without observing X

3/31
Pearl (2010), On Measurement Bias in Causal Inference /



Some core assumptions

Assume:

m Stable Unit Treatment Value Assumption (aka “no interference”),
m Conditional exchangeability Y(#) 1 AlX.
m Overlap.
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Outline

Causal effect estimation, with hidden covariates X:

m Use proxy variables (negative controls)

Applications: effect of actions under

® privacy constraints (email, ads, DMA)
m data gathering constraints (edge computing)

m fundamental limitations (preferences, state of mind)
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Outline

Causal effect estimation, with hidden covariates X:

m Use proxy variables (negative controls)

Applications: effect of actions under

® privacy constraints (email, ads, DMA)
m data gathering constraints (edge computing)

m fundamental limitations (preferences, state of mind)

What'’s new and why?

m Treatment A, proxy variables, etc can be multivariate, complicated...

m ...by using feature representations
m Don't meet—rour-herees model your hidden variables!
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What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example: P
m X: true physical status ey
m A: exercise regimes R

m Y: fitness goal s
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What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:
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What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

Q
m X: true physical status fep e Jan
. . " -~ "
. < RS
m A: exercise regimes .‘.ﬁi@ Cx - ._m
m Y: fitness goal ~-
m W: health readings

before A ‘83

%
. = 3
B Z: health readings or (A @ A
after A %’_

— Can recover E( Y (%) from observational data
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What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example: ¥
m X: true physical status fep - Jan
. . oan -~ on
. Vg 'v “
m A: exercise regimes rﬂ@ Cx - ._m
m Y: fitness goal ~-

W health readings R
before A ‘83

%
. = 3

B Z: health readings or (A @
e J \

after A

— Can recover E( Y (%) from observational data

— More usefully: evaluate novel policy.
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What are proxies, and when are they useful (2)7?

Unobserved X with (possibly) complex nonlinear effects on A, ¥

In this example:
m X: email inbox o o5
m A: prioritize important <

® Y: outcome

(efﬁciency) /~ -
m W: anonymized inbox a

before action A

®m Z: anonymized inbox
after action A
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Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:

m X: unobserved confounder.

m A: treatment -
m Y: outcome 4—(}_()4----->

B Z: treatment proxy ”“

m W outcome proxy “‘

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder. 8/31



Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:
m X: unobserved confounder.
m A: treatment -~
m Y: outcome ~— H"""
m Z: treatment proxy \

m W outcome proxy

Ve

Structural assumptions:

Y 1L Z|(4, X)

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder. 8/31



Why proxy variables? A simple proof

The definitions are:

m X: unobserved confounder.

1
1

m A: treatment

-~
e
“m?

® Y: outcome

If X were observed,
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Why proxy variables? A simple proof

The definitions are:

m X: unobserved confounder.

1
1

m A: treatment

-~
e
“m?

® Y: outcome

®

If X were observed,

dz
P( y(a)) = ZP(Y|.’E¢, a)P(zi;) = P(Y|X, a)P(X)
— 1=1
dy><1 ddez dz><1
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Why proxy variables? A simple proof

The definitions are:

m X: unobserved confounder.

1
1

m A: treatment

-~
e
“m?

® Y: outcome

®

If X were observed,

dz
P( y(a)) = ZP(Y|$i’ a)P(zi;) = P(Y|X, a)P(X)
— 1=1
dy><1 ddez d:c><1

Goal: “get rid of the blue” X
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...add the outcome proxy W

The definitions are: ' X u —m-
m X: unobserved confounder.
m A: treatment

® Y: outcome

m W: outcome proxy

For each a, if we could solve:
P(Y|X,a) = Hy,o P(W|X)
———

——
dy X dg dyxdy duwxdg
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...add the outcome proxy W
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...add the outcome proxy W

The definitions are: ' X u —m-

m X: unobserved confounder.
m A: treatment
® Y: outcome

m W: outcome proxy

For each a, if we could solve:

P(Y|X,a) = Hy,o P(W|X)
N——— N ——
dy X dg dy X dy dy X dg

P(Y(®)) = P(Y|X,a)P(X)
= Hw,aP(W|X)P(X)
- Hw,aP( W) 10/31



...now project onto p(X|Z, a)

From last slide,

P(Y|X,a) = Hy, P(W|X)
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dg;Xdz dedz
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...now project onto p(X|Z, a)

From last slide,
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Because ,

P(W|X)p(X|Z,a) =
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dg;Xdz dedz

Because ,
P(W|X)p(X|Z,a) =
Because Y 1L Z|(A4, X),
P(Y|X,a)p(X|Z,a) = P(Y|Z,a)
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dLXdz dedz

Because ,
P(W|X)p(X|Z,a) =
Because Y 1L Z|(A4, X),
P(Y|X,a)p(X|Z,a) = P(Y|Z,a)

Solve for Hy 4:
P(Y|Z,a) = Hy,
Everything observed!
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Proxy/Negative Control Methods
in the Real World
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Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544

Help | Advan|
Computer Science > Machine Learning

[submitted on 10 May 2021 (v1), ast revised 9 Oct 2021 (his version, vA)]

Proximal Causal Learning with Kernels: Two-Stage
Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet

Code for NN and kernel proxy methods:

NN features (NeurIPS 2021):

arXiv.org > ¢s > arXiv:2106.03907

Computer Science > Machine Learning

2]

i d its Application to
Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

https://github.com/1iyuan9988/DeepFeatureProxyVariable/ 33
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Unobserved confounders: proxy methods

Kernel features (ICML 2021):
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Computer Science > Machine Learning
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Proximal Causal Learning with Kernels: Two-Stage
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NN features (NeurIPS 2021):

arXiv.org > ¢s > arXiv:2106.03907

Computer Science > Machine Learning

earning and its Application to
Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton
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https://github.com/liyuan9988/DeepFeatureProxyVariable/

One model: linear functions of features

All learned functions will take the form:

v(z) =7 po()

NN approach: Finite dictionaries of learned neural net features ¢y(z)
(linear final layer 7y)

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment. (ICLR 23)

Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental Variable
Regression. (ICLR 21)

Xu, Kanagawa, G. “Deep Proxy Causal Learning and its Application to Confounded Bandit Policy
Evaluation”. (NeurIPS 21)
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Model fitting: neural ridge regression

Learn 7o(z) := E[Y|X = z] from features gy(z;) with outcomes y;:

7 = argmip (i( — T xz))zuufyw) (1)

1=1
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Model fitting: neural ridge regression
Learn 7o(z) := E[Y|X = z] from features gy(z;) with outcomes y;:

n
~ _ . L T . 2 2
7 = argmin (; (v =7 @o())” + Al ) (1)
Solution for linear final layer +:
= e+ x
(0 _ 15 T
Cyx = n Z[% po(zi) |
=1
(6 _ 1 E
Cxx = Z[‘Pe(fﬂi) po(z:) "]

ﬂ
Il
—
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Model fitting: neural ridge regression
Learn 7o(z) := E[Y|X = z] from features gy(z;) with outcomes y;:

n
~ _ . L T . 2 2
7 = argmin (; (v =7 @o())” + Al ) (1)
Solution for linear final layer +:
= e+ x
(0 _ 15 T
Cyx = n Z[% po(zi) |
=1
(6 _ 1 E
Cxx = Z[‘Pe(fﬂi) po(z:) "]

Il
—

7

How to solve for 6:
Substitute 4 into (1), backprop through Cholesky for 6.
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Road map: NN proxy learning

We'll proceed as follows:
m Proxy relation for continuous variables
m Loss function for deep proxy learning
m Define primary (ridge) regression with this loss

m Define (ridge) regression as input to primary

17/31



Proxy relation, general domains

If X were observed, we would write (dose-response curve)

E(Y(®) = /ZJE(Y|a,:c)p(m)dm.

....but we do not observe X.
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Proxy relation, general domains

If X were observed, we would write (dose-response curve)

E(Y(@) :/E(Y|a,x)p(m)dm.
x
....but we do not observe X.

Main theorem: Assume we solved for link function:

E(Y|a7‘z): hy( 1a)

m “Primary” E(Y|a, 2), “secondary” linked by h,
m All variables observed, X not seen or modeled.

Fredholm equation of first kind. Link existence requires <>, identification of ATE requires
A (and further technical assumptions) [XKG: Asspumption 2, Prop. 1,Corr. 1; Deaner]

Ef(X)JA=a,Z =2]=0, ¥(z,a) < f(X)=0,Pxas. A

E[f(X)|A=a, W =uw] =0, ¥(w,a) = f(X)=0,Pxas. & 18/31
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Main theorem: Assume we solved for link function:
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m “Primary” E(Y|a, 2), “secondary” linked by h,
m All variables observed, X not seen or modeled.

Dose-response curve via p(w):

E(Y(“)):/ hy (@, w)p(w) duw
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Proxy relation, general domains

If X were observed, we would write (dose-response curve)

E(Y(@) :/E(Y|a,x)p(m)dm.
x
....but we do not observe X.

Main theorem: Assume we solved for link function:

E(Y|a7‘z): hy( 1a)

m “Primary” E(Y|a, 2), “secondary” linked by h,
m All variables observed, X not seen or modeled.

Dose-response curve via p(w):

E(Y(“)):/ hy (@, w)p(w) duw

w

Challenge: need a loss function for A,
18/31



Primary loss function for h,(w, a)

Goal:
E(Y|a,z) = EW‘G’Zhy(W, a)

Primary loss function:
. . 2
hy = argminEy 47 (Y = Ewiazhy(7, 4))
Y

Why?

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

Xu, Kanagawa, G. (2021). 10/31



Primary loss function for h,(w, a)

Goal:
E(Y|a: Z) = EDV\a,zhy( W; a)

Primary loss function:
fzy = argn}lliynEy,A,Z (Y — Ewja,zhy(W, A))2
Why?
f*(a,z) =E(Y|a, z) solves
arg;nin Ey az(Y —f(4,Z2))

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
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Primary loss function for h,(w, a)

Goal:
E(Y|a: Z) = EDV\a,zhy( W; a)

Primary loss function:

~

. 2
hy = argn}lllnEy,A,Z (Y — EWM,Zhy(W,A))
Y
Why?
f*(a,z) =E(Y|a, z) solves
argmin Ey 4 7 (Y — f(4, Z))2
f

...and by the proxy model above,
E( Y|a: Z) = EDV\a,zhy( W; a)

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

Xu, Kanagawa, G. (2021). 10/31



NN for link hy(a, w)

The link function is a function of two arguments

[ po,1(w)pe,1(a) ]
po,1(w)pe2(a)

hy(a, w) = 7" [ps(w) ® pe(a)] ="

05.2(w)pe1(a)

Assume we have:

m output proxy NN features pg(w) Rt
. X -4 ———e
m treatment NN features p¢(a) 2
m linear final layer
(argument of feature map indicates feature space)

A
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NN for link hy(a, w)

The link function is a function of two arguments

hy(a,w) =" [pe(w) ® pe(a)]

Assume we have:

m output proxy NN features pg(w) RARE
- X 14 -
m treatment NN features p¢(a) 2
m linear final layer
(argument of feature map indicates feature space)

Questions:

m Why feature map pg(w) ® p¢(a)?
m Why final linear layer 7

Both are necessary (next slide)!
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NN ridge regression for h,(w, a)

Goal:
E(Y|a,z) = EW‘G’Zhy(W, a)

Primary regression:

~

) 2
hy :argn}LlnEy,A,Z (Y—EW‘A,Zhy(W,A)) +)\2||'y||2
Y

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

21/31
Xu, Kanagawa, G. (2021).



NN ridge regression for h,(w, a)

Goal:
E(Y|a: Z) = E‘/V\a,zhy( W; a)

Primary regression:

~

X 2
hy = arg II}ILIHEY,A,Z (Y — EDV\A,Zhy( W, A)) + )\2||’)’||2
Yy

How to get conditional expectation .y, . hy( 1/, a)?
Density estimation for p( 1V |a, 2)? Sample from p( 1V |a, 2)?

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021). 21/31
Xu, Kanagawa, G. (2021).



NN ridge regression for h,(w, a)

Goal:
E(Y|a: Z) = E‘/V\a,zhy( W; a)

Primary regression:

~

. 2

hy = arg II}ILIHEY,A,Z (Y — EDV\A,Zhy( W, A)) + )\2||’)’||2
Y

Recall link function

Ry (17, @) = (77 (pe(17) ® 9 (a))]

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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NN ridge regression for h,(w, a)

Goal:
E(Yla,z)=Ew..hy(W,a)
Primary regression:

~

) 2

hy = argn}lllnEy,A,Z (Y — EW‘A,Zhy(W, A)) + )\2||'y||2
Y

Recall link function

Ea: hy(W,0) = By [17 (0s() @ pe(a))]

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

21/31
Xu, Kanagawa, G. (2021).



NN ridge regression for h,(w, a)

Goal:
E( Y| a, Z) = EW’\a,z hy( W, a)
Primary regression:

~

. 2
h, = arg II}ILIIIEY,A,Z (Y — Ew|a,zhy( W, A)) + Aa|7|I?
Y
Recall link function
EI/V|a,z hy( W: a‘) = EVV|a,z I:’YT (‘PG( W) ® (pf(a‘))]

=" (Be- [pa(17)]) ® 92 (a))

cond. feat. mean

(this is why linear 7y and feature map ps(w) ® @s(a))

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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NN ridge regression for h,(w, a)

Goal:
E(Yla,z)=Ew..hy(W,a)
Primary regression:
- . 2
h, = arg II}ILIIIEY,A,Z (Y — EW‘A,Zhy( W, A)) + )\2||'y||2
Y
Recall link function

Ea: hy(W,0) = By [17 (0s() @ pe(a))]
=7 (B lpa(1)] ® pe(a))

cond. feat. mean

Ridge regression (again!)
EV[/‘a,z(pe( W) = FG,C‘PQ(G: Z)
Deaner (2021).

Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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NN ridge regression for =, . pa( V)

Secondary regression: learn NN features ¢.(Z) and linear layer /:
Fyyapa(WV) = Forpc(a, 2)
with RR loss
Ew,az |0s(W) = Foc (4, Z)|° + M| 7|

ﬁ'g’c in closed form wrt ¢g, ¢..

Xu, Kanagawa, G. (2021).
22/31



NN ridge regression for wo( V)

learn NN features ¢/(Z) and linear layer

wo( W) = Forpc(a,z)
with RR loss

Ew az |les(W) — Foc (A, Z)|? + M| 7|2

9, in closed form wrt ¢g, ¢..

Plug /4, into S1 loss, backprop through Cholesky for
(...not 4...why not?)

Xu, Kanagawa, G. (2021).
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Final algorithm
Solve for 6, ¢, ¢:

Repeat until convergence:

] Solve for /g, then gradient steps on ¢ (backprop
through Cholesky)

Xu, Kanagawa, G. (2021). 23/31
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Final algorithm
Solve for 6, ¢, ¢:

Repeat until convergence:

] Solve for /g, then gradient steps on ¢ (backprop
through Cholesky)

m Primary: Solve for 4 in terms of /' ¢:(A, Z) and ¢¢(A)
m Primary: Gradient steps on 6, ¢ (backprop through Cholesky)

¢, remains optimal wrt current 5.

Iterate between updates of 4, ¢ and

Xu, Kanagawa, G. (2021).
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Final algorithm
Solve for 6, ¢, ¢:

Repeat until convergence:

] Solve for /g, then gradient steps on ¢ (backprop
through Cholesky)

m Primary: Solve for 4 in terms of /' ¢:(A, Z) and ¢¢(A)
m Primary: Gradient steps on 6, ¢ (backprop through Cholesky)

¢, remains optimal wrt current 5.

Iterate between updates of 4, ¢ and

Key point: features ¢s( W) learned specially for:

E(Y]a,z) = hy (W, a)

Contrast with autoencoders/sampling: must reconstruct/sample all of W.

Xu, Kanagawa, G. (2021). 23/31



Experiments
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Synthetic experiment, adaptive neural net features

dSprite example:

B X = {scale,rotation, posX,posY}

Treatment A is the image generated (with
Gaussian noise)

Outcome Y is quadratic function of A with
multiplicative confounding by posY.

Z = {scale,rotation, posX},
W = noisy image sharing posY

Comparison with CEVAE (Louzios et al.

2017)

0

20

40

60
0 25 50

Out-of-Sample MSE

50

30

20

dSprite

= -

t

?w

1000 5000
Data Size

Algorithm
KPV

£ PMMR
CEVAE

£ DFPV

Louizos, Shalit, Mooij, Sontag, Zemel, Welling, Causal Effect Inference with Deep Latent-Variab1e25/31
Models (2017)



Confounded offline policy evaluation

Synthetic dataset, demand prediction
for flight purchase.

10
m Treatment A is ticket price. _
o
m Policy A ~ 7(Z) depends on fuel 5
price. g 1
©
3
Q
<
0.1

=
1500 7500
Data Size

Algorithm
KPV

= PMMR

= DFPV
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Conclusion

Causal effect estimation with unobserved X, (possibly) complex
nonlinear effects on A, Y
We need to observe:

m Treatment proxy Z (interacts s

with A, but not directly with Y o
Wi Y) g @i

m Outcome proxy W (no direct
interaction with A, can affect V) ‘g /

27/31
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Conclusion

Causal effect estimation with unobserved X, (possibly) complex
nonlinear effects on A, Y
We need to observe:

m Treatment proxy Z (interacts s

with A, but not directly with Y") o O I

b il

m Outcome proxy W (no direct I
interaction with A, can affect V) \g /

Key messages:

m Don'’t meet-your-herees model/sample latents X

® Don’t model all of W, only relevant features for Y
m “Ridge regression is all you need”

https://github.com/1iyuan9988/DeepFeatureProxyVariable/
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Questions?
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Failures of completeness assumptions (1)

Recall (one of the) completeness assumptions:
E[f(X)|JA=a,Z =2]=0,V(a,z) < f(X)=0,Pxas. (4)

For conciseness, assume conditioning on some a.

Failure 1: Z 1l X (no information about X in proxy)

9(X]) = 3(X) - Ex3(X)
E(9(X)|Z,a) = Eg(X) = 0.
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Failures of identifiability assumptions (2)
Failure 2: “exploitable invariance” of p(X|z)

X ~ N(0,1),
= |X]+N(0,1),

where p(X|z) o« p(z]|X)p(X) symmetric in X. Consider square
integrable antisymmetric function g(X) = —g(—X) # 0. Then

Elg(X)|Z =21 = [ g(X)p(X|z)dxX

0

/ 9(X)p(X|2) dX+/ 9(X)p(X|2)dX
0.

o0

If distribution of X |Z retains the same “symmetry class” over a set of
Z with nonzero measure, then the assumption is violated by g(X)
with zero mean on this class.

31/31



