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Outline
MMD and MMD flow
Introduction to MMD as an integral probability metric
Connection with neural net training
Wasserstein-2 Gradient Flow on the MMD
Convergence: noise injection, adaptive kernel

Main motivation: gradient flow when the target distribution
represented by samples
MMD (and related IPMs) are GAN critics
Understand dynamics of GAN training
Neural network training dynamics

Arbel, Korba, Salim, G., Maximum Mean Discrepancy Gradient Flow
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Galashov, De Bortoli, G., Deep MMD Gradient Flow without adversarial
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The MMD, and MMD flow

3/50



The MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q
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The MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD P Q F
f 1

EPf X EQf Y

f x f x
x x k x x

For characteristic RKHS , MMD P Q F 0 iff P Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]
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The MMD and witness in closed form

The MMD:

MMD P Q F
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The MMD and witness in closed form

The MMD:

MMD P Q F
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The MMD and witness in closed form

The MMD:

MMD P Q F

f 1
EPf X EQf Y

f 1
f P Q

P Q

In terms of kernels:

MMD2 P Q P Q
2

EPk x x
a

EQk y y

a

2EP Qk x y

b

(a)= within distrib. similarity, (b)= cross-distrib. similarity. 5/50



MMD Flow (NeurIPS 19)
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Motivation: Neural Net training

Z1 ZN
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Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Motivation: Neural Net training

From previous slide:

x y y Z Z x 2

Connection to the MMD:

Assume well-specified setting, y x U U x
Random feature formulation,

x U U x Z Z x 2 MMD2

The kernel is: k U Z x U x Z x .

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Intuition: MMD as “force field” on
Assume henceforth

2
d d x 2d x

MMD as free energy: target , current distribution
1
2
MMD2 1

2
E k x x
interaction

1
2

E k y y
constant

E k x y
confinement

Consider yi
n
i 1

i i d and xi
n
i 1

i i d .
Force on a particle z :

j
z k z xj

j
z k z yj z f t z

Can we formalize this?

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Wasserstein gradient flows
Tangent space of 2

d W2 is h L2 where h d d .
Define W2 of at using Taylor expansion

Id h W2 h o (1)

Under reasonable assumptions [A. Theorem 10.4.13]

W2

where first variation in direction :

x d x o 2
d (2)

The gradient flow is then:

t t div t W2 t

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Wasserstein gradient flow on MMD
First variation of 1

2MMD2

z f z 2 U k U z U k U z

The W2 gradient flow of the MMD:

t t div t W2 t div t f t

McKean-Vlasov dynamics for particles (existence and uniqueness
under Assumption A):

dZt Zt f t Zt dt Z0 0

Assumption A: k x x K , for all x d , d
i 1 i k x 2 K1d and

d
i j 1 i j k x 2 K2d , d indicates scaling with dimension.

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008, Ch. 10)
Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019)
Arbel, Korba, Salim, G. (NeurIPS 2019)
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Wasserstein gradient flow on the MMD
Forward Euler scheme [A, Section 2.2]:

n 1 I f t n

Zn 1 Zn Zn f n Zn Z0 0 Zn n

Under Assumption A, n approaches t as 0

Consistency? Does t converge to as t ?

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Consistency
Can we use geodesic (displacement) convexity?
A geodesic t between 1 and 2 is given by the transport map
T 2

1
d d :

t 1 t Id tT 2
1 1

A functional is displacement convex if:

t 1 t 1 t 2

MMD is not displace-
ment convex in general
(it is always mixture
convex1).

Figure from Korba, Salim, ICML 2022 Tutorial, “Sampling as
First-Order Optimization over a space of probability measures”

1. t 1 1 t 2 t 1 1 t 2 t 0 1 ).
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Noise injection for convergence
Noise injection: Evaluate f t outside of the support of t to get a
better signal!

Sample ut 0 1 and t is the noise level:

Zt 1 Zt f t Zt tut Zt t

Similar to continuation methods,1 but extended to interacting particles.

Different from entropic regularization:

Zt 1 Zt f t Zt tut

1Chaudhari, Oberman, Osher, Soatto, Carlier. Deep relaxation: partial differential equations for

optimizing deep neural networks. Research in the Mathematical Sciences (2017)

Hazan, Levy, Shalev-Shwartz. On graduated optimization for stochastic non-convex problems. ICML

(2016).
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Noise injection: consistency
Recall: Zt 1 Zt f t Zt tut Zt t

Tradeoff for t

Large t : t 1 t not a descent direction any more:
t 1 t

Small t : does not converge

Need t such that:

t 1 t C Xt t
ut 0 1

f t Xt tut
2

t

i

2
i t

Then [A, Proposition 8]

t 0 e C t
i

2
i

[A] Arbel, Korba, Salim, G. (NeurIPS 2019) 16/50
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Noise injected MMD flow in practice
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Noise injected MMD flow in practice

\
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Noise injection: neural net setting
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Noise injection: neural net setting
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Noise injection: neural net setting

KSD is Kernel Sobolev Discrepancy. Y. Mroueh, T. Sercu, and A. Raj. “Sobolev Descent.”
In: AISTATS. 2019.
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Adaptive MMD Flow (ICLR 25)
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Will an adaptive kernel help?
Define the two measures:

0 2Id t t
2Id

Consider the family of MMDs:

MMD2
t with k x y d x y 2 2 2
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Will an adaptive kernel help?
Choose kernel such that:

0 t MMD2
t

Then
ReLU t

2 d 2 2 2 1 2

Value of mean t Kernel width
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How to train an adaptive MMD (1)
Diffusion:

Generate forward path t t 0 1 , such that 0 , and
1 N 0 Id is a Gaussian noise.

Given samples x0 0, the samples xt x0 are given by

xt tx0 t N 0 Id

with 0 1 1 and 1 0 0.
low t : xt close to the original data x0,
high t : xt close to a unit Gaussian

Schedule t t is the variance-preserving one of Song, Sohl-Dickstein, Kingma, Kumar,
Ermon, Poole. Score-based generative modeling through stochastic differential equations
(ICLR 2021)
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How to train an adaptive MMD (2)
Time-dependent MMD training loss:

t
1
2
E t k t xt xt E t k t xt y

with kernel
k t x y x t y t

and witness f t
t
.

Train by minimizing noise-conditional loss on forward path:

tot t t 2 2 t t

tot t U 0 1 tot t

where

2 t is a “variance”-style penalty
t 1

N
N
i 1 f t

t
xt i 2 1 2 is a gradient penalty

Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville, Improved Training of Wasserstein GANs (NeurIPS
2017)
Binkowski, Sutherland, Arbel, G. (NeurIPS 2018) 24/50
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Sample generation

Algorithm Noise-adaptive MMD gradient flow
Sample initial particles Z N 0 Id
Set t tmax tmin T
for i T to 0 do

Set the noise level t i t
Set Z 0

t Z
for n 0 to Ns 1 do

Zn 1
t Z n

t f t
t Z n

t
end for
Set Z ZN

t
end for
Output Z

25/50



Results
Table: Unconditional generation, CIFAR-10. MMD GAN (orig.), used
mixed-RQ kernel. "Orig." – original paper, "impl." – our implementation.

Method FID IS NFE

MMD GAN (orig.) 39.90 6.51 -
MMD GAN (impl.) 13.62 8.93 -
DDPM (orig.) 3.17 9.46 1000
DDPM (impl.) 5.19 8.90 100

Discriminator flows

DGGF-KL 28.80 - 110
JKO-Flow 23.10 7.48 150
GS-MMD-RK 55.00 - 86

DMMD (ours) 8.31 9.09 100
DMMD (ours) 7.74 9.12 250

DDPM from (Ho et al., 2020). Discriminator flows include two KL gradient flows trained adversarially:
JKO-Flow (Fan et al., 2022) and Deep Generative Wasserstein Gradient Flows (DGGF-KL) (Heng et al.,
2023). GS-MMD-RK is Generative Sliced MMD Flows with Riesz Kernels (Hertrich et al., 2024) 26/50
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Summary
Gradient flows based on kernel dependence measures:

MMD flow is simpler, KALE flow is mode-seeking
Noise injection can improve convergence

NeurIPS 2019, ICLR 2025

NeurIPS 2019:

NeurIPS 2021:

Adaptive MMD (ICLR 25):

(De)regularized MMD
(JMLR, submitted):
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Questions?
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