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Outline
MMD and MMD flow

m Introduction to MMD as an integral probability metric
m Connection with neural net training

m Wasserstein-2 Gradient Flow on the MMD
m Convergence: noise injection, adaptive kernel

Arbel, Korba, Salim, G., Maximum Mean Discrepancy Gradient Flow
(NeurIPS 2019)

Galashov, De Bortoli, G., Deep MMD Gradient Flow without adversarial
training (ICLR 2025) 2/50



Outline
MMD and MMD flow

m Introduction to MMD as an integral probability metric
m Connection with neural net training
m Wasserstein-2 Gradient Flow on the MMD

m Convergence: noise injection, adaptive kernel

Main motivation: gradient flow when the target distribution
represented by samples

m MMD (and related IPMs) are GAN critics
m Understand dynamics of GAN training
m Neural network training dynamics

Arbel, Korba, Salim, G., Maximum Mean Discrepancy Gradient Flow
(NeurIPS 2019)

Galashov, De Bortoli, G., Deep MMD Gradient Flow without adversarial
training (ICLR 2025) 2/50



The MMD, and MMD flow



The MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := SUP, Epf(X)—Eqf(Y)]

flz) = {f,e(z)) £
(o(2), 0(2)) x = k(z,2)
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The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, i F) = sup [Epf(X) ~ Eof(¥)]

flz) = {f,e(z)) £
(o(2), 0(2)) x = k(z,2)

For characteristic RKHS F, MMD(P, Q; F)=01iff P = Q

Other choices for witness function class:

m Bounded continuous pudiey, 2002]
m Bounded varation 1 (Kolmogorov metric) paitter, 1997]

m Bounded Lipschitz (Wasserstein distances) [pudiey, 2002
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The MMD and witness in closed form

The MMD:
Witness f for Gauss and Laplace densities
MMD(P, Q; F) —— Gauss |
= sup [Epf(X)—-Eqf(Y)]
1f]lF7<1

Prob. density and f

0
X
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The MMD and witness in closed form

The MMD:
MMD(P, Q; F) e
= sup [Epf(X)—Eqf(Y)] Epf(X) =Ep{p(X),f)r
I7ll==1 = (Bp[p(X)],f) 5

= ||fS||1;1:p§1 (frbp — Q) £ = (up, f)F
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The MMD and witness in closed form

The MMD:
MMD(P, Q; F')

— sup [Epf(X)—Eof(Y)
If]l7<1

= sup (f,pp —Lo)r
I1fllF<1

= lup — poll 5
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The MMD and witness in closed form

The MMD:

MMD(P, Q; F')

= sup [Epf(X)—Eqf(Y)]
Ifll=<1

— Sup <f),u'P - IU’Q>}“
1flF<1

= ||lup — /LCQ|‘]:

fr(z) o< (up — o, p(z)) 5
=Epk(X,z) —Egk(Y,z)
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The MMD and witness in closed form

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—-Eqf(Y)]
IfllF<1

= sup (f,pup — KO)r
If]|F<1

= ||up — ,U'QH]:

In terms of kernels:

MMD?*(P, Q) = ||pp — koll%
— iE)pk(a:, :z:')J—I—iE}Qk(y, y'z — 21E)p,Qk(a:, y)}

(a) (a) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity. 5/50



MMD Flow (NeurIPS 19)

= rtXlV > stat > arXiv:1906.04370

Statistics > Machine Learning

[Submitted on 11 Jun 2019 (v1), last revised 3 Dec 2019 (this version, v2)]

Maximum Mean Discrepancy Gradient Flow

Michael Arbel, Anna Korba, Adil Salim, Arthur Gretton
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Motivation: Neural Net training

1M
min L[| — 0z
1,.., ANEZ <’n, ; ZZ>

Optimization using gradient de-
scent:

1 n
1 & Z;" =2V gL (n Z(SZ.t)
: g, . v
min g, [l —Ngfﬁzi(x)" ] i=1

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Motivation: Neural Net training

1« .
min Egllly = — 3 #2001 ————p min Egyl1ly = Ez,[4,(0111)
Zy N ' N — o vVES

i=1

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized

models using optimal transport”, NeurIPS (2018) 8/50



Motivation: Neural Net training

From previous slide:

IVIé17IDl E(V) L= E(a;,y)[Hy - EZmu[gbZ(x)]Hz]

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Motivation: Neural Net training

From previous slide:

min £(v) := E(zy)[lly - Ezw(dz(2)]l?)

Connection to the MMD:
m Assume well-specified setting, y(z) = Ey~.«[¢pv(z)]

m Random feature formulation,

L) = By |[[Evnsspu(@)] — Ezan[bz(2)]’| = MMD? (v, ")

m The kernel is: k(U, Z) = E;[¢v(z) ¢z(z)].

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Intuition: MMD as “force field” on v

Assume henceforth
" € PoRY) = {u e PRY) : [ lal*du(e) < oo}

MMD as free energy: target v*, current distribution v

1 1 1
F(v):= ;MMD*(v*,v) = - Bok(z,2') + S Buek(v, ') — By e k(2, )

v

interaction constant confinement

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Intuition: MMD as “force field” on v

Assume henceforth
" € PoRY) = {u e PRY) : [ lal*du(e) < oo}

MMD as free energy: target v*, current distribution v

1 1 1
F(v) := §MMD2(V*’ V) = 5 B k(z,z') + 5 Ek(y,v') — By o k(z, v)
interazgion cons?a?nt conﬁ;gment
i.1.d. i.1.d.

Consider {y;};~; ~ v* and {z;}' ; "~ v.
Force on a particle z:

— Z V.k(z,z;) + Z V.k(z,7;) = =V.fue0,(2)
7 J

Can we formalize this?

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Wasserstein gradient flows

Tangent space of (Pg(Rd), W2> is h € L?(u) where h : R% — R9,
Define Vyy, F(u) of F at u using Taylor expansion

F((Ad + eh)yu) = F(u) + e (Vw, F (), R), + o(e) (1)

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of

probability measures. (2008)
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Wasserstein gradient flows

Tangent space of (Pg(Rd), Wz) is h € L?(u) where h : R% — R9,
Define Vyy, F(u) of F at u using Taylor expansion

F((Ad + eh)yu) = F(u) + e (Vw, F (), R), + o(e) (1)

Under reasonable assumptions [A. Theorem 10.4.13]

Vi, F(p) = VF (k).

where in direction &:

Flu+e€) = F(u)+e [ 7(u)(@)dé(e)+ole)  u-+e€ € Po(RY) (2

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of

probability measures. (2008)
11/50



Wasserstein gradient flows

Tangent space of (Pg(Rd), Wz) is h € L?(u) where h : R% — R9,
Define Vyy, F(u) of F at u using Taylor expansion

F((Ad + eh)yu) = F(u) + e (Vw, F (), R), + o(e) (1)

Under reasonable assumptions [A. Theorem 10.4.13]

Vi, F(p) = VF (k).

where in direction &:

Flu+e€) = F(u)+e [ 7(u)(@)dé(e)+ole)  u-+e€ € Po(RY) (2
The gradient flow is then:
3t7/t = div(utV Wg}_(Vt))

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of

probability measures. (2008)
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Wasserstein gradient flow on MMD

First variation of : MMD?(v*,v) =: F(v)
FW)(2) = forp(z) = 2(Eums[k(U, 2)] — Evnn[k(U, 2)])
The W5 gradient flow of the MMD:
Btut = diV(l/tv Wg}-(Vt)) — diV(l/tVfV*’Vt)

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008, Ch. 10)

Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019)
Arbel, Korba, Salim, G. (NeurIPS 2019)
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Wasserstein gradient flow on MMD
of : MMD?(v*,v) =: F(v)
W)(2) := furp(2) = 2(Byn [R(U, 2)] — Eu~u [R(U, 2)])
The W5 gradient flow of the MMD:
By = div(veV y, F(vy)) = div(ve Vi)

McKean-Vlasov dynamics for particles (existence and uniqueness
under Assumption A):

dZt — thfV*,I/t(Zt)dt7 Zo ~

. d
Assumption A: k(z,z) < K, for all z € R, zz’:l |18;k(z,-)||? < K14 and
Zfﬂ.:l 18:8;k(z,-)||? < Ka4, d indicates scaling with dimension.

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008, Ch. 10)

Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019)

Arbel, Korba, Salim, G. (NeurIPS 2019) )
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Wasserstein gradient flow on the MMD

Forward Euler scheme [A, Section 2.2]:

Vnt1 = (I = YV o, )#Vn
Zn—|—1 = Zp — 'YvanV*,Vn(Zn); Zo ~ Vo, Ly ~ Vp

Under Assumption A, v,, approaches v; as vy — 0

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Wasserstein gradient flow on the MMD

Forward Euler scheme [A, Section 2.2]:

Vnt1 = (I = YV o, )#Vn
Zn—|—1 = Zp — 'YvanV*,Vn(Zn); Zo ~ Vo, Ly ~ Vp

Under Assumption A, v,, approaches v; as vy — 0

Consistency? Does v; converge to v* as t — 007
y

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Consistency

Can we use geodesic (displacement) convexity?

m A geodesic p; between v; and v5 1s given by the transport map
Ty2 : R — R%:

pr = ((1—t)d+tTy2)

14/50



Consistency

Can we use geodesic (displacement) convexity?

m A geodesic p; between v; and v5 1s given by the transport map
Ty2 : R — R%:
pr = ((1 - t)Id + tT,7)
m A functional F is displacement convex if:

F(pt) < (1 —t)F(v1) + tF(v2)

#u1
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Consistency

Can we use geodesic (displacement) convexity?

m A geodesic p; between v; and v5 1s given by the transport map

Ty2 : R — R%:

p: = ((1 — t)Id + tT%2)

#u1

m A functional F is displacement convex if:

F(pt) < (1 —t)F(v1) + tF(v2)

MMD 1s not displace-
ment convex in general
(it is always mixture
convex?!).

Source and Target distribution Source and Target distribution

Wasserstein interpolation (o¢)te(o,1; Mixture interpolation (0¢)te o, 1
X X )

Figure from Korba, Salim, ICML 2022 Tutorial, “Sampling as
First-Order Optimization over a space of probability measures”

1. F(tvr + (1 — t)va) < tF(v1) + (1 — 1) F(r2) YVt € [0,1)).

14/50



Noise injection for convergence

Noise injection: Evaluate Vf,«,, outside of the support of v; to get a
better signal!
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Noise injection for convergence

Noise injection: Evaluate Vf,«,, outside of the support of v; to get a
better signal!

m Sample u; ~ N(0,1) and [; is the noise level:

g1 = Lt — YV for 0 (2t + Frug); iy ~ Vi

B Similar to continuation methods,1 but extended to interacting particles.

Chaudhari, Oberman, Osher, Soatto, Carlier. Deep relaxation: partial differential equations for
optimizing deep neural networks. Research in the Mathematical Sciences (2017)
Hazan, Levy, Shalev-Shwartz. On graduated optimization for stochastic non-convex problems. ICML

(2016).
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Noise injection for convergence

Noise injection: Evaluate Vf,«,, outside of the support of v; to get a
better signal!

m Sample u; ~ N(0,1) and [; is the noise level:

g1 = Lt — YV for 0 (2t + Frug); iy ~ Vi

B Similar to continuation methods,1 but extended to interacting particles.

m Different from entropic regularization:

Ziy1 = Z¢ — YV for 0, (Zt) + Pru

Chaudhari, Oberman, Osher, Soatto, Carlier. Deep relaxation: partial differential equations for
optimizing deep neural networks. Research in the Mathematical Sciences (2017)
Hazan, Levy, Shalev-Shwartz. On graduated optimization for stochastic non-convex problems. ICML

(2016).
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Noise 1njection: consistency

Recall: Liy1 = dy — nyf,,*,,,t(Zt + ut); Ly ~ Uy
‘Tradeoff for

m Large [;: vty11 — v not a descent direction any more:
]'—(Vt_|_1) > ]‘-(l/t)
m Small f;: does not converge

[A] Arbel, Korba, Salim, G. (NeurIPS 2019) 16/50



Noise 1njection: consistency

Recall: Liy1 = dy — nyf,,*,,,t(Zt + ut); Ly ~ Uy
Tradeoff for

m Large [;: vty11 — v not a descent direction any more:
]'—(Vt_|_1) > ]‘-(l/t)
m Small f;: does not converge

Need such that:

Fis1) = Fwe) < —CAE  xomwy [[IVFor e (Xt + Brug)|?]
ut~N(0,1)

t

Z 0
: t—oo

1

Then [A, Proposition 8]

F(ve) < Flug)e 72

[A] Arbel, Korba, Salim, G. (NeurIPS 2019) 16/50



Noise injected MMD flow in practice

® Data
® Particles

17/50



Noise injected MMD flow in practice

® Data
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Noise injected MMD flow in practice

® Data
® Particles

17/50



Noise injected MMD flow in practice

® Data
® Particles

+*
*
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Noise injection: neural net setting

m
Ziso.,
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Noise injection: neural net setting

| &
min MMD?*(v*,— Y &,
AW ( N; 2

kK(Z,7) = "Edam[¢z(x)¢2'(x)]
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Noise injection: neural net setting

Training error per second

10°
—r= 5GD :
10-1 . —— SGD + noise injection
—— SGD + diffusion
—— KSD
Q
< 103
= 10
1074
107>
1 10" 102 103 104 10°

Time (s)

KSD is Kernel Sobolev Discrepancy. Y. Mroueh, T. Sercu, and A. Raj. “Sobolev Descent.”
In: AISTATS. 2019.
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Adaptive MMD Flow (ICLR 25)

=] I‘Y\lv > ¢s > arXiv:2405.06780

Computer Science > Machine Learning

[Submitted on 10 May 2024]

Deep MMD Gradient Flow without adversarial training

Alexandre Galashov, Valentin de Bortoli, Arthur Gretton
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Will an adaptive kernel help?
Define the two measures:
v* = N(0, 0%Id) vy i= N (g, 0°1d).
Consider the family of MMDs:
MMD%(v%, ;) with k(e y) = @ “exp[—|z — y|2/(20%)]

0.4

0.3°

0.2

0.1
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Will an adaptive kernel help?
Define the two measures:
v* = N(0, 0%Id) vy i= N (g, 0°1d).
Consider the family of MMDs:
MMD%(v%, ;) with k(e y) = @ “exp[—|z — y|2/(20%)]

0.4
—N(0,1)
_N(Nta 1)
0.3"
0.2 -
0.1~
O |
-5 0 5 10

X 21/50



Will an adaptive kernel help?

Choose kernel such that:

Then

10 1

Value of mean u.

—— Adaptive
——— Non adaptive

0

20000

40000

60000

80000 100000

30 A1

25 A

20 1

15 A

10 A

o = argmax, ||V, MMD2 (v, 1))

a* = ReLU(||:]1%/(d + 2) — 20°)'/2.

Kernel width o

—— Adaptive
—— Non adaptive

0 20000 40000 60000 80000 100000
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How to train an adaptive MMD (1)

Diffusion:

P X IX: -
Og O "0z ~®
N/

vy

Generate forward path #;, ¢t € [0, 1], such that 75 = v*, and

= N(0, Id) is a Gaussian noise.

23/50



How to train an adaptive MMD (1)

Diffusion:

'),,I'XH l‘(l \
Oy <O 0z ~C
q(x; ’Xr 1) D

Generate forward path #;, ¢t € [0, 1], such that 75 = v*, and

= N(0,Id) is a Gaussian noise.
Given samples %y ~ ¥y, the samples Z;:|Zy are given by
T = aiZy + Bre, €€ N(0,Id),
with ag = B1 =1 and a1 = By = 0.

m low t: Z; close to the original data Zy,
m high ¢: Z; close to a unit Gaussian

Schedule (a¢, Bt) is the variance-preserving one of Song, Sohl-Dickstein, Kingma, Kumar,

Ermon, Poole. Score-based generative modeling through stochastic differential equatlggl/%o
(ICLR 2021)



How to train an adaptive MMD (2)
Time-dependent MMD training loss:

1 . .
F(6,t) = EEﬁtke,t(mt, Z,) + Bz, ko t(Z, y)

with kernel

ko,t(z,y) = ¢(z; t,6) ¢(v; t,0)
t)

: 9,
and witness f ,(/* 5,
?

Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville, Improved Training of Wasserstein GANs (NeurIPS
2017)

Binkowski, Sutherland, Arbel, G. (NeurIPS 2018) 24/50



How to train an adaptive MMD (2)
Time-dependent MMD training loss:

1 L. -
F(0,t) := §Eﬁt7€e,t($t, Z,) + Ep, v ko + (&4, v)

with kernel

ko,t(z,y) = ¢(z; t,6) ¢(v; t,0)
(6,1)

and witness f,. .

Train € by minimizing noise-conditional loss on forward path:
Fiot(0,t) = F(6,1t) + Ap, Fu, (0, 1) + AvFw(6, 1),
Fiot(0) = E¢nvio,1] [Frot (6, T)]

where

m Fy,(0,1) is a “variance”’-style penalty
m Fv(6,t) = % LSV 1(|\Vf(9 ) (%::)|]2 — 1)?, is a gradient penalty

v*, D¢

Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville, Improved Training of Wasserstein GANs (NeurIPS
2017)

Binkowski, Sutherland, Arbel, G. (NeurIPS 2018) 24/50



Sample generation

Algorithm Noise-adaptive MMD gradient flow

Sample initial particles Z ~ N(0,Id)
Set At = (tmax — tmin)/T
for 2 = T to 0 do
Set the noise level t = 1At
Set Z) = Z
for n = 0 to N —ldo*
Zn—I—l Ztn . Vf,/i Vtt ( 'n)
end for
Set Z = Z}N
end for
Output 2

25 /50



Results

Table: Unconditional generation, CIFAR-10. MMD GAN (orig.), used
mixed-RQ kernel. "Orig." — original paper, "impl." — our implementation.

Method FID IS NFE

MMD GAN (orig.) 39.90 651 -
MMD GAN (impl.) 13.62 8.93 -
DDPM (orig.) 3.17 9.46 1000
DDPM (impl.) 5.19 890 100

Discriminator flows

DGGF-KL 28.80 - 110
JKO-Flow 23.10 7.48 ~ 150
GS-MMD-RK 55.00 - 86
DMMD (ours) 831 9.09 100
DMMD (ours) 774 9.12 250

DDPM from (Ho et al., 2020). Discriminator flows include two KL gradient flows trained adversarially:
JKO-Flow (Fan et al., 2022) and Deep Generative Wasserstein Gradient Flows (DGGF-KL) (Hengfé/%]o,
2023). GS-MMD-RK is Generative Sliced MMD Flows with Riesz Kernels (Hertrich et al., 2024)
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Summary

m Gradient flows based on kernel dependence measures:
* MMD flow is simpler, KALE flow is mode-seeking
®* Noise injection can improve convergence

m NeurIPS 2019, ICLR 2025

Adaptive MMD (ICLR 25):

NeurIPS 20109:

AVE d I‘(lV > s > arXiv:2405.06780
ad I'L;f\lv > stat > arXiv:1906.04370 2

Computer Science > Machine Learning

Statistics > Machine Learning [Submitted on 10 May 2024]
[Submitted on 11 Jun 2019 (v1), last revised 3 Dec 2019 (this version, v2)] Deep MMD Gradient Flow without adversarial training
Maximum Mean Discrepancy Gradient Flow Alexandre Galashov, Valentin de Bortoli, Arthur Gretton

Michael Arbel, Anna Korba, Adil Salim, Arthur Gretton
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