
Representing and comparing probabilities
with kernels: Part 1

Arthur Gretton

Gatsby Computational Neuroscience Unit,
University College London

MLSS Madrid, 2018

1/64



A motivation: comparing two samples

Given: Samples from unknown distributions P and Q .
Goal: do P and Q differ?
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A real-life example: two-sample tests

Have: Two collections of samples X;Y from unknown distributions
P and Q .
Goal: do P and Q differ?

MNIST samples Samples from a GAN

Significant difference in GAN and MNIST?
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NIPS 2016
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.
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Training generative models

Have: One collection of samples X from unknown distribution P .
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q , MMD GAN

Using MMD to train a GAN
(Binkowski, Sutherland, Arbel, G., ICLR 2018)̄,
(Arbel, Sutherland, Binkowski, G., arXiv 2018)̄
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Testing goodness of fit

Given: A model P and samples and Q .
Goal: is P a good fit for Q?

Chicago crime data
Model is Gaussian mixture with two components.

5/64



Testing independence

Given: Samples from a distribution PXY

Goal: Are X and Y independent?

Their	noses	guide	them	
through	life,	and	they're	
never	happier	than	when	
following	an	interesting	scent.	

A	large	animal	who	slings	slobber,	
exudes	a	distinctive	houndy odor,	
and	wants	nothing	more	than	to	
follow	his	nose.	

Text	from	dogtime.com and	petfinder.com

A responsive,		interactive	
pet,	one	that	will	blow	in	
your	ear	and	follow	you	
everywhere.

YX
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Outline: part 1

What is a reproducing kernel Hilbert space?

1 Hilbert space

2 Kernel (lots of examples: e.g. you can build kernels from simpler
kernels)

3 Reproducing property

4 Using kernels to enforce smoothness

Classical results

1 Representer theorem

2 Kerrnel ridge regression
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Outline: part 2

The maximum mean discrepancy (MMD)

...as a difference in feature means

...as an integral probability metric (not just a technicality!)

Statistical testing with the MMD

How to choose the best kernel

Training GANs with MMD

Learning kernel features with gradient regularisation

Characteristic kernels: “is my feature space rich enough?”
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Outline: part 3

Goodness of fit testing

The kernel Stein discrepancy

Dependence testing

Dependence using the MMD

Depenence using feature covariances

Statistical testing
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Reproducing Kernel Hilbert Spaces
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Kernels and feature space (1): XOR example
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No linear classifier separates red from blue
Map points to higher dimensional feature space:
�(x ) =

h
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i
2 R

3
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Kernels and feature space (2): smoothing
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Kernel methods can control smoothness and avoid
overfitting/underfitting.
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Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function h�; �iH : H�H ! R is an
inner product on H if

1 Linear: h�1f1 + �2f2; giH = �1 hf1; giH + �2 hf2; giH
2 Symmetric: hf ; giH = hg ; f iH
3 hf ; f iH � 0 and hf ; f iH = 0 if and only if f = 0.

Norm induced by the inner product: kf kH :=
q
hf ; f iH

Definition (Hilbert space)
Inner product space containing Cauchy sequence limits.
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Kernel
Definition

Let X be a non-empty set. A function k : X � X ! R is a kernel if
there exists an R-Hilbert space and a map � : X ! H such that
8x ; x 0 2 X ,

k(x ; x 0) :=


�(x ); �(x 0)

�
H :

Almost no conditions on X (eg, X itself doesn’t need an inner
product, eg. documents).
A single kernel can correspond to several possible features. A trivial
example for X := R:

�1(x ) = x and �2(x ) =

"
x=
p
2

x=
p
2

#
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New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)
Given � > 0 and k, k1 and k2 all kernels on X , then �k and
k1 + k2 are kernels on X .

(Proof via positive definiteness: later!) A difference of kernels may
not be a kernel (why?)
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New kernels from old: products

Theorem (Products of kernels are kernels)
Given k1 on X1 and k2 on X2, then k1 � k2 is a kernel on X1 �X2.
If X1 = X2 = X , then k := k1 � k2 is a kernel on X .

Proof: Main idea only!
H1 space of kernels between shapes,

�1(x ) =

"
I�

I4

#
�1(�) =

"
1
0

#
; k1(�;4) = 0:

H2 space of kernels between colors,

�2(x ) =

"
I�

I�

#
�2(�) =

"
0
1

#
k2(�; �) = 1:
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New kernels from old: products

“Natural” feature space for colored shapes:

�(x ) =

"
I� I4

I� I4

#
=

"
I�

I�

# h
I� I4

i
= �2(x )�>1 (x )

Kernel is:

k(x ; x 0) =
X

i2f�;�g

X
j2f�;4g

�ij (x )�ij (x 0) = tr

0
BB@�1(x )�>2 (x )�2(x 0)| {z }

k2(x ;x 0)

�>1 (x
0)

1
CCA

= tr

0
BB@�>1 (x 0)�1(x )| {z }

k1(x ;x 0)

1
CCA k2(x ; x 0) = k1(x ; x 0)k2(x ; x 0)
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Sums and products =) polynomials

Theorem (Polynomial kernels)

Let x ; x 0 2 R
d for d � 1, and let m � 1 be an integer and c � 0 be

a positive real. Then

k(x ; x 0) :=
�

x ; x 0

�
+ c

�m
is a valid kernel.

To prove: expand into a sum (with non-negative scalars) of kernels
hx ; x 0i raised to integer powers. These individual terms are valid
kernels by the product rule.
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Infinite sequences

The kernels we’ve seen so far are dot products between finitely many
features. E.g.

k(x ; y) =
h
sin(x ) x 3 log x

i> h
sin(y) y3 log y

i

where �(x ) =
h
sin(x ) x 3 log x

i
Can a kernel be a dot product between infinitely many features?
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Infinite sequences
Definition
The space `2 (square summable sequences) comprises all sequences
a := (ai )i�1 for which

kak2`2 =
1X
`=1

a2
` <1:

Definition
Given sequence of functions (�`(x ))`�1 in `2 where �` : X ! R is the
ith coordinate of �(x ). Then

k(x ; x 0) :=
1X
`=1

�`(x )�`(x 0) (1)
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Infinite sequences (proof)

Why square summable? By Cauchy-Schwarz,�����
1X
`=1

�`(x )�`(x 0)

����� � k�(x )k`2


�(x 0)

`2 ;

so the sequence defining the inner product converges for all x ; x 0 2 X
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A famous infinite feature space kernel
Exponentiated quadratic kernel,

k(x ; x 0) = exp

 
�kx � x 0k2

2�2

!
=

1X
`=1

�p
�`e`(x )

�
| {z }

�`(x )

�p
�`e`(x 0)

�
| {z }

�`(x 0)

�`e`(x ) =
Z
k(x ; x 0)e`(x 0)p(x 0)dx 0;

p(x ) = N (0; �2):
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=

1X
`=1

�p
�`e`(x )

�
| {z }

�`(x )

�p
�`e`(x 0)

�
| {z }

�`(x 0)

�`e`(x ) =
Z
k(x ; x 0)e`(x 0)p(x 0)dx 0;

p(x ) = N (0; �2):

e
1
(x)

e
2
(x)

e
3
(x)

�` / b` b < 1

e`(x ) / exp(�(c � a)x 2)H`(x
p

2c);

a ; b; c are functions of �,
and H` is `th order Her-
mite polynomial.
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Positive definite functions

If we are given a function of two arguments, k(x ; x 0), how can we
determine if it is a valid kernel?

1 Find a feature map?

1 Sometimes this is not obvious (eg if the feature vector is infinite
dimensional, e.g. the exponentiated quadratic kernel in the last slide)

2 The feature map is not unique.

2 A direct property of the function: positive definiteness.
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Positive definite functions

Definition (Positive definite functions)

A symmetric function k : X � X ! R is positive definite if
8n � 1; 8(a1; : : : an) 2 R

n ; 8(x1; : : : ; xn) 2 X n ,

nX
i=1

nX
j=1

aiaj k(xi ; xj ) � 0:

The function k(�; �) is strictly positive definite if for mutually
distinct xi , the equality holds only when all the ai are zero.
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Kernels are positive definite
Theorem

Let H be a Hilbert space, X a non-empty set and � : X ! H.
Then h�(x ); �(y)iH =: k(x ; y) is positive definite.

Proof.

nX
i=1

nX
j=1

aiaj k(xi ; xj ) =
nX
i=1

nX
j=1

hai�(xi ); aj�(xj )iH

=







nX
i=1

ai�(xi )







2

H

� 0:

Reverse also holds: positive definite k(x ; x 0) is inner product in a
unique H (Moore-Aronsajn: coming later!).
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Sum of kernels is a kernel

Proof by positive definiteness:
Consider two kernels k1(x ; x 0) and k2(x ; x 0). Then

nX
i=1

nX
j=1

aiaj [k1(xi ; xj ) + k2(xi ; xj )]

=
nX
i=1

nX
j=1

aiaj k1(xi ; xj ) +
nX
i=1

nX
j=1

aiaj k2(xi ; xj )

� 0
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The reproducing kernel Hilbert space



First example: finite space, polynomial features

Reminder: XOR example:
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Example: finite space, polynomial features

Reminder: Feature space from XOR motivating example:

� : R2 ! R
3

x =

"
x1
x2

#
7! �(x ) =

2
64 x1

x2
x1x2

3
75 ;

with kernel

k(x ; y) =

2
64 x1

x2
x1x2

3
75
> 264 y1

y2
y1y2

3
75

(the standard inner product in R
3 between features). Denote this

feature space by H.

29/64



Example: finite space, polynomial features
Define a linear function of the inputs x1; x2; and their product x1x2,

f (x ) = f1x1 + f2x2 + f3x1x2:

f in a space of functions mapping from X = R
2 to R. Equivalent

representation for f ,

f (�) =
h
f1 f2 f3

i>
:

f (�) refers to the function as an object (here as a vector in R
3)

f (x ) 2 R is function evaluated at a point (a real number).

f (x ) = f (�)>�(x ) = hf (�); �(x )iH
Evaluation of f at x is an inner product in feature space (here
standard inner product in R

3)
H is a space of functions mapping R

2 to R.

30/64



Example: finite space, polynomial features
Define a linear function of the inputs x1; x2; and their product x1x2,

f (x ) = f1x1 + f2x2 + f3x1x2:

f in a space of functions mapping from X = R
2 to R. Equivalent

representation for f ,

f (�) =
h
f1 f2 f3

i>
:

f (�) refers to the function as an object (here as a vector in R
3)

f (x ) 2 R is function evaluated at a point (a real number).

f (x ) = f (�)>�(x ) = hf (�); �(x )iH
Evaluation of f at x is an inner product in feature space (here
standard inner product in R

3)
H is a space of functions mapping R

2 to R.

30/64



Functions of infinitely many features
Functions are linear combinations of features:

k(x ; y) =
1X
`=1

�`(x )�`(x 0)

f (x ) =
1X
`=1

f`�`(x )
1X
`=1

f 2` <1:
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Expressing the functions with kernels

Function with exponentiated quadratic kernel:

f (x ) =
1X
`=1

f`�`(x )

=
1X
`=1

 mX
i=1

�i�`(xi )

!
| {z }

f`

�`(x )

=

* mX
i=1

�i�(xi ); �(x )

+
H

=
mX
i=1

�ik(xi ; x )
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Pm

i=1 �i�`(xi )

Function of infinitely many features expressed using m coefficients.
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The feature map is also a function

On previous page,

f (x ) :=
mX
i=1

�ik(xi ; x ) = hf (�); �(x )iH where f` =
mX
i=1

�i�`(xi ):

What if m = 1 and �1 = 1?
Then

f (x ) = k(x1; x ) =

*
k(x1; �)| {z }

f (�)

; �(x )

+
H
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The reproducing property

This example illustrates the two defining features of an RKHS:

The reproducing property: (kernel trick)
8x 2 X ; 8f (�) 2 H; hf (�); k(�; x )iH = f (x )
: : :or use shorter notation hf ; �(x )iH.
The feature map of every point is a function: k(�; x ) = �(x ) 2 H for
any x 2 X , and

k(x ; x 0) =


�(x ); �(x 0)

�
H =



k(�; x ); k(�; x 0)�H :
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Understanding smoothness in the RKHS



Smoothness in RKHS with exp. quad. kernel
Reminder, exponentiated quadratic kernel,

k(x ; x 0) = exp

 
�kx � x 0k2

2�2

!
=

1X
`=1

�p
�`e`(x )

�
| {z }

�`(x )

�p
�`e`(x 0)

�
| {z }

�`(x 0)

�`e`(x ) =
Z
k(x ; x 0)e`(x 0)p(x 0)dx 0;

p(x ) = N (0; �2):

e
1
(x)

e
2
(x)

e
3
(x)
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Smoothness in RKHS with exp. quad. kernel
RKHS function, exponentiated quadratic kernel:

f (x ) :=
mX
i=1

�ik(xi ; x ) =
1X
`=1

f`
hp

�`e`(x )
i

| {z }
�`(x )

where f` =
Pm

i=1 �i
p
�`e`(xi ):

-6 -4 -2 0 2 4 6 8

x

-0.4

-0.2

0

0.2

0.4

0.6

0.8

f(
x
)

NOTE that this
enforces

smoothing:
�` decay as e`

become rougher,
f` decay sinceP

` f
2
` <1.
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Second (infinite) example: fourier series
Function on the interval [��; �] with periodic boundary.
Fourier series:

f (x ) =
1X

`=�1

f̂` exp({`x ) =
1X

l=�1

f̂` (cos(`x ) + { sin(`x )) :

using the orthonormal basis on [��; �],
1
2�

Z �

��
exp({`x )exp({mx )dx =

8<
:1 ` = m ;

0 ` 6= m :

Example: “top hat” function,

f (x ) =

8<
:1 jx j < T ;

0 T � jx j < �:

f̂` :=
sin(`T )

`�
f (x ) =

1X
`=0

2f̂` cos(`x ):
39/64
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Fourier series for top hat function

−4 −2 0 2 4
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x
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ℓ

f̂
ℓ

Fourier series coefficients
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Fourier series for top hat function
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Fourier series for top hat function
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Fourier series for kernel function
Assume kernel translation invariant,

k(x ; y) = k(x � y);

Fourier series representation of k

k(x � y) =
1X

`=�1

k̂` exp ({`(x � y))

=
1X

`=�1

�q
k̂`exp ({`(x )| {z }

e`(x )

��q
k̂`exp (�{`y)| {z }

e`(y)

�
:

Example: Jacobi theta kernel:

k(x � y) =
1
2�

#

 
(x � y)

2�
;
{�2

2�

!
; k̂` =

1
2�

exp

 
��2`2

2

!
:

# is Jacobi theta function, close to Gaussian when �2 much narrower than [��; �].
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Fourier series for Gaussian-spectrum kernel

−4 −2 0 2 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

k
(x

)
Jacobi Theta

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

ℓ

f̂
ℓ

Fourier series coefficients

48/64



Fourier series for Gaussian-spectrum kernel

−4 −2 0 2 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

k
(x

)
Jacobi Theta

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

ℓ

f̂
ℓ

Fourier series coefficients

49/64



Fourier series for Gaussian-spectrum kernel
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Fourier series for Gaussian-spectrum kernel
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RKHS via fourier series
Recall standard dot product in L2:

hf ; giL2
=

*
1X

`=�1

f̂` exp({`x );
1X

m=�1

ĝm exp({mx )

+
L2

=
1X

`=�1

1X
m=�1

f̂`ĝ` hexp({`x ); exp(�{mx )iL2

=
1X

`=�1

f̂`ĝ`:

Define the dot product in H to have a roughness penalty,

hf ; giH =
1X

`=�1

f̂`ĝ`
k̂`

:
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Roughness penalty explained

The squared norm of a function f in H enforces smoothness:

kf k2H = hf ; f iH =
1X

l=�1

f̂`f̂`
k̂`

=
1X

l=�1

���f̂`���2
k̂`

:

If k̂` decays fast, then so must f̂` if we want kf k2H <1.
Recall f (x ) =

P
1

`=�1
f̂` (cos(`x ) + { sin(`x )) :

Question: is the top hat function in the “Gaussian spectrum”
RKHS?
Warning: need stronger conditions on kernel than L2 convergence: Mercer’s theorem.
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Feature map and reproducing property
Reproducing property: define a function

g(x ) := k(x � z ) =
1X

`=�1

exp ({`x ) k̂` exp (�{`z )| {z }
ĝ`

Then for a function f (�) 2 H,

hf (�); k(�; z )iH = hf (�); g(�)iH

1X
`=�1

f̂`

ĝ`z }| {
k̂` exp({`z )
k̂`

1X
`=�1

f̂` exp({`z ) = f (z ):
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Feature map and reproducing property

Reproducing property for the kernel:
You can also show

hk(�; y); k(�; z )iH = k(y � z )

This is an exercise!
Hint: define a second function

f (x ) := k(x � y) =
1X

`=�1

exp ({`x ) k̂` exp (�{`y)| {z }
f̂`
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Link back to original RKHS function definition

Original form of a function in the RKHS was
(detail: sum now from �1 to 1, complex conjugate)

f (x ) =
1X

`=�1

f`�`(x ) = hf (�); �(x )iH :

We’ve defined the RKHS dot product as

hf ; giH =
1X

l=�1

f̂`ĝ`
k̂`

hf (�); k(�; z )iH =
1X

`=�1

f̂`
�
k̂` exp(�{`z )

�
k̂`
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f̂`
�
k̂` exp(�{`z )

�
�q
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By inspection

f` = f̂`=
q
k̂` �`(x ) =

q
k̂` exp(�{`x ):
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Main message

Small RKHS norm results in smooth functions.
E.g. kernel ridge regression with exponentiated quadratic kernel:

f � = argmin
f 2H

 nX
i=1

(yi � hf ; �(xi )iH)2 + �kf k2H
!
:
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Some reproducing kernel Hilbert space
theory



Reproducing kernel Hilbert space (1)

Definition
H a Hilbert space of R-valued functions on non-empty set X . A
function k : X � X ! R is a reproducing kernel of H, and H is a
reproducing kernel Hilbert space, if

8x 2 X ; k(�; x ) 2 H,

8x 2 X ; 8f 2 H; hf (�); k(�; x )iH = f (x ) (the reproducing property).

In particular, for any x ; y 2 X ,

k(x ; y) = hk (�; x ) ; k (�; y)iH: (2)

Original definition: kernel an inner product between feature maps.
Then �(x ) = k(�; x ) a valid feature map.
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Reproducing kernel Hilbert space (2)
Another RKHS definition:
Define �x to be the operator of evaluation at x , i.e.

�x f = f (x ) 8f 2 H; x 2 X :

Definition (Reproducing kernel Hilbert space)
H is an RKHS if the evaluation operator �x is bounded: 8x 2 X
there exists �x � 0 such that for all f 2 H,

jf (x )j = j�x f j � �xkf kH

=) two functions identical in RHKS norm agree at every point:

jf (x )� g(x )j = j�x (f � g)j � �xkf � gkH 8f ; g 2 H:
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RKHS definitions equivalent
Theorem (Reproducing kernel equivalent to bounded �x )
H is a reproducing kernel Hilbert space (i.e., its evaluation
operators �x are bounded linear operators), if and only if H has a
reproducing kernel.

Proof: If H has a reproducing kernel =) �x bounded

j�x [f ]j = jf (x )j
= jhf ; k(�; x )iHj
� kk(�; x )kH kf kH
= hk(�; x ); k(�; x )i1=2H kf kH
= k(x ; x )1=2 kf kH

Cauchy-Schwarz in 3rd line . Consequently, �x : F ! R bounded
with �x = k(x ; x )1=2.
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RKHS definitions equivalent

Proof: �x bounded =) H has a reproducing kernel
We use: : :

Theorem
(Riesz representation) In a Hilbert space H, all bounded linear
functionals are of the form h�; giH, for some g 2 H.

If �x : F ! R is a bounded linear functional, by Riesz 9f�x 2 H such
that

�x f = hf ; f�x iH; 8f 2 H:

Define k(�; x ) = f�x (�), 8x ; x 0 2 X . By its definition, both
k(�; x ) = f�x (�) 2 H and hf (�); k(�; x )iH = �x f = f (x ). Thus, k is the
reproducing kernel.
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Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)
Let k : X � X ! R be positive definite. There is a unique RKHS
H � R

X with reproducing kernel k.

Recall feature map is not unique (as we saw earlier):
only kernel is unique.
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Main message
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