
Representing and comparing probabilities
with kernels: Part 1

Arthur Gretton

Gatsby Computational Neuroscience Unit,
University College London

MLSS Madrid, 2018

1/64

A motivation: comparing two samples

Given: Samples from unknown distributions P and Q .
Goal: do P and Q differ?

2/64

A real-life example: two-sample tests

Have: Two collections of samples X;Y from unknown distributions
P and Q .
Goal: do P and Q differ?

MNIST samples Samples from a GAN

Significant difference in GAN and MNIST?
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NIPS 2016
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.

3/64

Training generative models

Have: One collection of samples X from unknown distribution P .
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q , MMD GAN

Using MMD to train a GAN
(Binkowski, Sutherland, Arbel, G., ICLR 2018)̄,
(Arbel, Sutherland, Binkowski, G., arXiv 2018)̄

4/64

Testing goodness of fit

Given: A model P and samples and Q .
Goal: is P a good fit for Q?

Chicago crime data
Model is Gaussian mixture with two components.

5/64

Testing independence

Given: Samples from a distribution PXY

Goal: Are X and Y independent?

Their	noses	guide	them	
through	life,	and	they're	
never	happier	than	when	
following	an	interesting	scent.	

A	large	animal	who	slings	slobber,	
exudes	a	distinctive	houndy odor,	
and	wants	nothing	more	than	to	
follow	his	nose.	

Text	from	dogtime.com and	petfinder.com

A responsive,		interactive	
pet,	one	that	will	blow	in	
your	ear	and	follow	you	
everywhere.

YX

6/64

Outline: part 1

What is a reproducing kernel Hilbert space?

1 Hilbert space

2 Kernel (lots of examples: e.g. you can build kernels from simpler
kernels)

3 Reproducing property

4 Using kernels to enforce smoothness

Classical results

1 Representer theorem

2 Kerrnel ridge regression

7/64

Outline: part 2

The maximum mean discrepancy (MMD)

...as a difference in feature means

...as an integral probability metric (not just a technicality!)

Statistical testing with the MMD

How to choose the best kernel

Training GANs with MMD

Learning kernel features with gradient regularisation

Characteristic kernels: “is my feature space rich enough?”

8/64

Outline: part 3

Goodness of fit testing

The kernel Stein discrepancy

Dependence testing

Dependence using the MMD

Depenence using feature covariances

Statistical testing

9/64

Reproducing Kernel Hilbert Spaces

10/64

Kernels and feature space (1): XOR example

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

No linear classifier separates red from blue
Map points to higher dimensional feature space:
�(x) =

h
x1 x2 x1x2

i
2 R

3

11/64

Kernels and feature space (2): smoothing

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Kernel methods can control smoothness and avoid
overfitting/underfitting.

12/64

Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function h�; �iH : H�H ! R is an
inner product on H if

1 Linear: h�1f1 + �2f2; giH = �1 hf1; giH + �2 hf2; giH
2 Symmetric: hf ; giH = hg ; f iH
3 hf ; f iH � 0 and hf ; f iH = 0 if and only if f = 0.

Norm induced by the inner product: kf kH :=
q
hf ; f iH

Definition (Hilbert space)
Inner product space containing Cauchy sequence limits.

13/64

Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function h�; �iH : H�H ! R is an
inner product on H if

1 Linear: h�1f1 + �2f2; giH = �1 hf1; giH + �2 hf2; giH
2 Symmetric: hf ; giH = hg ; f iH
3 hf ; f iH � 0 and hf ; f iH = 0 if and only if f = 0.

Norm induced by the inner product: kf kH :=
q
hf ; f iH

Definition (Hilbert space)
Inner product space containing Cauchy sequence limits.

13/64

Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function h�; �iH : H�H ! R is an
inner product on H if

1 Linear: h�1f1 + �2f2; giH = �1 hf1; giH + �2 hf2; giH
2 Symmetric: hf ; giH = hg ; f iH
3 hf ; f iH � 0 and hf ; f iH = 0 if and only if f = 0.

Norm induced by the inner product: kf kH :=
q
hf ; f iH

Definition (Hilbert space)
Inner product space containing Cauchy sequence limits.

13/64

Kernel
Definition

Let X be a non-empty set. A function k : X � X ! R is a kernel if
there exists an R-Hilbert space and a map � : X ! H such that
8x ; x 0 2 X ,

k(x ; x 0) :=

�(x); �(x 0)

�
H :

Almost no conditions on X (eg, X itself doesn’t need an inner
product, eg. documents).
A single kernel can correspond to several possible features. A trivial
example for X := R:

�1(x) = x and �2(x) =

"
x=
p
2

x=
p
2

#

14/64

New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)
Given � > 0 and k, k1 and k2 all kernels on X , then �k and
k1 + k2 are kernels on X .

(Proof via positive definiteness: later!) A difference of kernels may
not be a kernel (why?)

15/64

New kernels from old: products

Theorem (Products of kernels are kernels)
Given k1 on X1 and k2 on X2, then k1 � k2 is a kernel on X1 �X2.
If X1 = X2 = X , then k := k1 � k2 is a kernel on X .

Proof: Main idea only!
H1 space of kernels between shapes,

�1(x) =

"
I�

I4

#
�1(�) =

"
1
0

#
; k1(�;4) = 0:

H2 space of kernels between colors,

�2(x) =

"
I�

I�

#
�2(�) =

"
0
1

#
k2(�; �) = 1:

16/64

New kernels from old: products

“Natural” feature space for colored shapes:

�(x) =

"
I� I4

I� I4

#
=

"
I�

I�

h
I� I4

i
= �2(x)�>1 (x)

Kernel is:

k(x ; x 0) =
X

i2f�;�g

X
j2f�;4g

�ij (x)�ij (x 0) = tr

0
BB@�1(x)�>2 (x)�2(x 0)| {z }

k2(x ;x 0)

�>1 (x
0)

1
CCA

= tr

0
BB@�>1 (x 0)�1(x)| {z }

k1(x ;x 0)

1
CCA k2(x ; x 0) = k1(x ; x 0)k2(x ; x 0)

17/64

New kernels from old: products

“Natural” feature space for colored shapes:

�(x) =

"
I� I4

I� I4

#
=

"
I�

I�

h
I� I4

i
= �2(x)�>1 (x)

Kernel is:

k(x ; x 0) =
X

i2f�;�g

X
j2f�;4g

�ij (x)�ij (x 0) = tr

0
BB@�1(x)�>2 (x)�2(x 0)| {z }

k2(x ;x 0)

�>1 (x
0)

1
CCA

= tr

0
BB@�>1 (x 0)�1(x)| {z }

k1(x ;x 0)

1
CCA k2(x ; x 0) = k1(x ; x 0)k2(x ; x 0)

17/64

Sums and products =) polynomials

Theorem (Polynomial kernels)

Let x ; x 0 2 R
d for d � 1, and let m � 1 be an integer and c � 0 be

a positive real. Then

k(x ; x 0) :=
�

x ; x 0

�
+ c

�m
is a valid kernel.

To prove: expand into a sum (with non-negative scalars) of kernels
hx ; x 0i raised to integer powers. These individual terms are valid
kernels by the product rule.

18/64

Infinite sequences

The kernels we’ve seen so far are dot products between finitely many
features. E.g.

k(x ; y) =
h
sin(x) x 3 log x

i> h
sin(y) y3 log y

i

where �(x) =
h
sin(x) x 3 log x

i
Can a kernel be a dot product between infinitely many features?

19/64

Infinite sequences
Definition
The space `2 (square summable sequences) comprises all sequences
a := (ai)i�1 for which

kak2`2 =
1X
`=1

a2
` <1:

Definition
Given sequence of functions (�`(x))`�1 in `2 where �` : X ! R is the
ith coordinate of �(x). Then

k(x ; x 0) :=
1X
`=1

�`(x)�`(x 0) (1)

20/64

Infinite sequences
Definition
The space `2 (square summable sequences) comprises all sequences
a := (ai)i�1 for which

kak2`2 =
1X
`=1

a2
` <1:

Definition
Given sequence of functions (�`(x))`�1 in `2 where �` : X ! R is the
ith coordinate of �(x). Then

k(x ; x 0) :=
1X
`=1

�`(x)�`(x 0) (1)

20/64

Infinite sequences (proof)

Why square summable? By Cauchy-Schwarz,�����
1X
`=1

�`(x)�`(x 0)

����� � k�(x)k`2

�(x 0)

`2 ;

so the sequence defining the inner product converges for all x ; x 0 2 X

21/64

A famous infinite feature space kernel
Exponentiated quadratic kernel,

k(x ; x 0) = exp

�kx � x 0k2

2�2

!
=

1X
`=1

�p
�`e`(x)

�
| {z }

�`(x)

�p
�`e`(x 0)

�
| {z }

�`(x 0)

�`e`(x) =
Z
k(x ; x 0)e`(x 0)p(x 0)dx 0;

p(x) = N (0; �2):

22/64

A famous infinite feature space kernel
Exponentiated quadratic kernel,

k(x ; x 0) = exp

�kx � x 0k2

2�2

!
=

1X
`=1

�p
�`e`(x)

�
| {z }

�`(x)

�p
�`e`(x 0)

�
| {z }

�`(x 0)

�`e`(x) =
Z
k(x ; x 0)e`(x 0)p(x 0)dx 0;

p(x) = N (0; �2):

e
1
(x)

e
2
(x)

e
3
(x)

�` / b` b < 1

e`(x) / exp(�(c � a)x 2)H`(x
p

2c);

a ; b; c are functions of �,
and H` is `th order Her-
mite polynomial.

22/64

Positive definite functions

If we are given a function of two arguments, k(x ; x 0), how can we
determine if it is a valid kernel?

1 Find a feature map?

1 Sometimes this is not obvious (eg if the feature vector is infinite
dimensional, e.g. the exponentiated quadratic kernel in the last slide)

2 The feature map is not unique.

2 A direct property of the function: positive definiteness.

23/64

Positive definite functions

Definition (Positive definite functions)

A symmetric function k : X � X ! R is positive definite if
8n � 1; 8(a1; : : : an) 2 R

n ; 8(x1; : : : ; xn) 2 X n ,

nX
i=1

nX
j=1

aiaj k(xi ; xj) � 0:

The function k(�; �) is strictly positive definite if for mutually
distinct xi , the equality holds only when all the ai are zero.

24/64

Kernels are positive definite
Theorem

Let H be a Hilbert space, X a non-empty set and � : X ! H.
Then h�(x); �(y)iH =: k(x ; y) is positive definite.

Proof.

nX
i=1

nX
j=1

aiaj k(xi ; xj) =
nX
i=1

nX
j=1

hai�(xi); aj�(xj)iH

=

nX
i=1

ai�(xi)

2

H

� 0:

Reverse also holds: positive definite k(x ; x 0) is inner product in a
unique H (Moore-Aronsajn: coming later!).

25/64

Sum of kernels is a kernel

Proof by positive definiteness:
Consider two kernels k1(x ; x 0) and k2(x ; x 0). Then

nX
i=1

nX
j=1

aiaj [k1(xi ; xj) + k2(xi ; xj)]

=
nX
i=1

nX
j=1

aiaj k1(xi ; xj) +
nX
i=1

nX
j=1

aiaj k2(xi ; xj)

� 0

26/64

The reproducing kernel Hilbert space

First example: finite space, polynomial features

Reminder: XOR example:

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

28/64

Example: finite space, polynomial features

Reminder: Feature space from XOR motivating example:

� : R2 ! R
3

x =

"
x1
x2

#
7! �(x) =

2
64 x1

x2
x1x2

3
75 ;

with kernel

k(x ; y) =

2
64 x1

x2
x1x2

3
75
> 264 y1

y2
y1y2

3
75

(the standard inner product in R
3 between features). Denote this

feature space by H.

29/64

Example: finite space, polynomial features
Define a linear function of the inputs x1; x2; and their product x1x2,

f (x) = f1x1 + f2x2 + f3x1x2:

f in a space of functions mapping from X = R
2 to R. Equivalent

representation for f ,

f (�) =
h
f1 f2 f3

i>
:

f (�) refers to the function as an object (here as a vector in R
3)

f (x) 2 R is function evaluated at a point (a real number).

f (x) = f (�)>�(x) = hf (�); �(x)iH
Evaluation of f at x is an inner product in feature space (here
standard inner product in R

3)
H is a space of functions mapping R

2 to R.

30/64

Example: finite space, polynomial features
Define a linear function of the inputs x1; x2; and their product x1x2,

f (x) = f1x1 + f2x2 + f3x1x2:

f in a space of functions mapping from X = R
2 to R. Equivalent

representation for f ,

f (�) =
h
f1 f2 f3

i>
:

f (�) refers to the function as an object (here as a vector in R
3)

f (x) 2 R is function evaluated at a point (a real number).

f (x) = f (�)>�(x) = hf (�); �(x)iH
Evaluation of f at x is an inner product in feature space (here
standard inner product in R

3)
H is a space of functions mapping R

2 to R.

30/64

Functions of infinitely many features
Functions are linear combinations of features:

k(x ; y) =
1X
`=1

�`(x)�`(x 0)

f (x) =
1X
`=1

f`�`(x)
1X
`=1

f 2` <1:

31/64

Expressing the functions with kernels

Function with exponentiated quadratic kernel:

f (x) =
1X
`=1

f`�`(x)

=
1X
`=1

 mX
i=1

�i�`(xi)

!
| {z }

f`

�`(x)

=

* mX
i=1

�i�(xi); �(x)

+
H

=
mX
i=1

�ik(xi ; x)

-6 -4 -2 0 2 4 6 8

x

0

0.2

0.4

0.6

0.8

f(
x
)

32/64

Expressing the functions with kernels

Function with exponentiated quadratic kernel:

f (x) =
1X
`=1

f`�`(x)

=
1X
`=1

 mX
i=1

�i�`(xi)

!
| {z }

f`

�`(x)

=

* mX
i=1

�i�(xi); �(x)

+
H

=
mX
i=1

�ik(xi ; x)

-6 -4 -2 0 2 4 6 8

x

0

0.2

0.4

0.6

0.8

f(
x
)

f` :=
Pm

i=1 �i�`(xi)

32/64

Expressing the functions with kernels

Function with exponentiated quadratic kernel:

f (x) =
1X
`=1

f`�`(x)

=
1X
`=1

 mX
i=1

�i�`(xi)

!
| {z }

f`

�`(x)

=

* mX
i=1

�i�(xi); �(x)

+
H

=
mX
i=1

�ik(xi ; x)

-6 -4 -2 0 2 4 6 8

x

0

0.2

0.4

0.6

0.8

f(
x
)

f` :=
Pm

i=1 �i�`(xi)

32/64

Expressing the functions with kernels
Function with exponentiated quadratic kernel:

f (x) =
1X
`=1

f`�`(x)

=
1X
`=1

 mX
i=1

�i�`(xi)

!
| {z }

f`

�`(x)

=

* mX
i=1

�i�(xi); �(x)

+
H

=
mX
i=1

�ik(xi ; x)

-6 -4 -2 0 2 4 6 8

x

-0.4

-0.2

0

0.2

0.4

0.6

0.8

f(
x
)

f` :=
Pm

i=1 �i�`(xi)

Function of infinitely many features expressed using m coefficients.

32/64

The feature map is also a function

On previous page,

f (x) :=
mX
i=1

�ik(xi ; x) = hf (�); �(x)iH where f` =
mX
i=1

�i�`(xi):

What if m = 1 and �1 = 1?
Then

f (x) = k(x1; x) =

*
k(x1; �)| {z }

f (�)

; �(x)

+
H

33/64

The feature map is also a function

On previous page,

f (x) :=
mX
i=1

�ik(xi ; x) = hf (�); �(x)iH where f` =
mX
i=1

�i�`(xi):

What if m = 1 and �1 = 1?
Then

f (x) = k(x1; x) =

*
k(x1; �)| {z }

f (�)

; �(x)

+
H

33/64

The feature map is also a function
On previous page,

f (x) :=
mX
i=1

�ik(xi ; x) = hf (�); �(x)iH where f` =
mX
i=1

�i�`(xi):

What if m = 1 and �1 = 1?
Then

f (x) = k(x1; x) =

*
k(x1; �)| {z }

f (�)

; �(x)

+
H

= hk(x ; �); �(x1)iH
....so the feature map is a (very simple) function!
We can write without ambiguity

k(x ; y) = hk (�; x) ; k (�; y)iH:

34/64

The feature map is also a function
On previous page,

f (x) :=
mX
i=1

�ik(xi ; x) = hf (�); �(x)iH where f` =
mX
i=1

�i�`(xi):

What if m = 1 and �1 = 1?
Then

f (x) = k(x1; x) =

*
k(x1; �)| {z }

f (�)

; �(x)

+
H

= hk(x ; �); �(x1)iH
....so the feature map is a (very simple) function!
We can write without ambiguity

k(x ; y) = hk (�; x) ; k (�; y)iH:

34/64

The reproducing property

This example illustrates the two defining features of an RKHS:

The reproducing property: (kernel trick)
8x 2 X ; 8f (�) 2 H; hf (�); k(�; x)iH = f (x)
: : :or use shorter notation hf ; �(x)iH.
The feature map of every point is a function: k(�; x) = �(x) 2 H for
any x 2 X , and

k(x ; x 0) =

�(x); �(x 0)

�
H =

k(�; x); k(�; x 0)�H :

35/64

Understanding smoothness in the RKHS

Smoothness in RKHS with exp. quad. kernel
Reminder, exponentiated quadratic kernel,

k(x ; x 0) = exp

�kx � x 0k2

2�2

!
=

1X
`=1

�p
�`e`(x)

�
| {z }

�`(x)

�p
�`e`(x 0)

�
| {z }

�`(x 0)

�`e`(x) =
Z
k(x ; x 0)e`(x 0)p(x 0)dx 0;

p(x) = N (0; �2):

e
1
(x)

e
2
(x)

e
3
(x)

37/64

Smoothness in RKHS with exp. quad. kernel
RKHS function, exponentiated quadratic kernel:

f (x) :=
mX
i=1

�ik(xi ; x) =
1X
`=1

f`
hp

�`e`(x)
i

| {z }
�`(x)

where f` =
Pm

i=1 �i
p
�`e`(xi):

-6 -4 -2 0 2 4 6 8

x

-0.4

-0.2

0

0.2

0.4

0.6

0.8

f(
x
)

NOTE that this
enforces

smoothing:
�` decay as e`

become rougher,
f` decay sinceP

` f
2
` <1.

38/64

Second (infinite) example: fourier series
Function on the interval [��; �] with periodic boundary.
Fourier series:

f (x) =
1X

`=�1

f̂` exp({`x) =
1X

l=�1

f̂` (cos(`x) + { sin(`x)) :

using the orthonormal basis on [��; �],
1
2�

Z �

��
exp({`x)exp({mx)dx =

8<
:1 ` = m ;

0 ` 6= m :

Example: “top hat” function,

f (x) =

8<
:1 jx j < T ;

0 T � jx j < �:

f̂` :=
sin(`T)

`�
f (x) =

1X
`=0

2f̂` cos(`x):
39/64

Second (infinite) example: fourier series
Function on the interval [��; �] with periodic boundary.
Fourier series:

f (x) =
1X

`=�1

f̂` exp({`x) =
1X

l=�1

f̂` (cos(`x) + { sin(`x)) :

using the orthonormal basis on [��; �],
1
2�

Z �

��
exp({`x)exp({mx)dx =

8<
:1 ` = m ;

0 ` 6= m :

Example: “top hat” function,

f (x) =

8<
:1 jx j < T ;

0 T � jx j < �:

f̂` :=
sin(`T)

`�
f (x) =

1X
`=0

2f̂` cos(`x):
39/64

Second (infinite) example: fourier series
Function on the interval [��; �] with periodic boundary.
Fourier series:

f (x) =
1X

`=�1

f̂` exp({`x) =
1X

l=�1

f̂` (cos(`x) + { sin(`x)) :

using the orthonormal basis on [��; �],
1
2�

Z �

��
exp({`x)exp({mx)dx =

8<
:1 ` = m ;

0 ` 6= m :

Example: “top hat” function,

f (x) =

8<
:1 jx j < T ;

0 T � jx j < �:

f̂` :=
sin(`T)

`�
f (x) =

1X
`=0

2f̂` cos(`x):
39/64

Fourier series for top hat function

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f
(x

)
Top hat

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

ℓ

f̂
ℓ

Fourier series coefficients

40/64

Fourier series for top hat function

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f
(x

)
Top hat

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

ℓ

f̂
ℓ

Fourier series coefficients

41/64

Fourier series for top hat function

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f
(x

)
Top hat

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
−0.2

0

0.2

0.4

0.6

ℓ

f̂
ℓ

Fourier series coefficients

42/64

Fourier series for top hat function

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f
(x

)
Top hat

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
−0.2

0

0.2

0.4

0.6

ℓ

f̂
ℓ

Fourier series coefficients

43/64

Fourier series for top hat function

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f
(x

)
Top hat

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
−0.2

0

0.2

0.4

0.6

ℓ

f̂
ℓ

Fourier series coefficients

44/64

Fourier series for top hat function

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f
(x

)
Top hat

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
−0.2

0

0.2

0.4

0.6

ℓ

f̂
ℓ

Fourier series coefficients

45/64

Fourier series for top hat function

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f
(x

)
Top hat

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
−0.2

0

0.2

0.4

0.6

ℓ

f̂
ℓ

Fourier series coefficients

46/64

Fourier series for kernel function
Assume kernel translation invariant,

k(x ; y) = k(x � y);

Fourier series representation of k

k(x � y) =
1X

`=�1

k̂` exp ({`(x � y))

=
1X

`=�1

�q
k̂`exp ({`(x)| {z }

e`(x)

��q
k̂`exp (�{`y)| {z }

e`(y)

�
:

Example: Jacobi theta kernel:

k(x � y) =
1
2�

#

(x � y)

2�
;
{�2

2�

!
; k̂` =

1
2�

exp

��2`2

2

!
:

is Jacobi theta function, close to Gaussian when �2 much narrower than [��; �].

47/64

Fourier series for kernel function
Assume kernel translation invariant,

k(x ; y) = k(x � y);

Fourier series representation of k

k(x � y) =
1X

`=�1

k̂` exp ({`(x � y))

=
1X

`=�1

�q
k̂`exp ({`(x)| {z }

e`(x)

��q
k̂`exp (�{`y)| {z }

e`(y)

�
:

Example: Jacobi theta kernel:

k(x � y) =
1
2�

#

(x � y)

2�
;
{�2

2�

!
; k̂` =

1
2�

exp

��2`2

2

!
:

is Jacobi theta function, close to Gaussian when �2 much narrower than [��; �].

47/64

Fourier series for Gaussian-spectrum kernel

−4 −2 0 2 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

k
(x

)
Jacobi Theta

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

ℓ

f̂
ℓ

Fourier series coefficients

48/64

Fourier series for Gaussian-spectrum kernel

−4 −2 0 2 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

k
(x

)
Jacobi Theta

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

ℓ

f̂
ℓ

Fourier series coefficients

49/64

Fourier series for Gaussian-spectrum kernel

−4 −2 0 2 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

k
(x

)
Jacobi Theta

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

ℓ

f̂
ℓ

Fourier series coefficients

50/64

Fourier series for Gaussian-spectrum kernel

−4 −2 0 2 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

k
(x

)
Jacobi Theta

−4 −2 0 2 4
−1

−0.5

0

0.5

1

t

co
s(
ℓ
×

x
)

Basis function

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

ℓ

f̂
ℓ

Fourier series coefficients

51/64

RKHS via fourier series
Recall standard dot product in L2:

hf ; giL2
=

*
1X

`=�1

f̂` exp({`x);
1X

m=�1

ĝm exp({mx)

+
L2

=
1X

`=�1

1X
m=�1

f̂`ĝ` hexp({`x); exp(�{mx)iL2

=
1X

`=�1

f̂`ĝ`:

Define the dot product in H to have a roughness penalty,

hf ; giH =
1X

`=�1

f̂`ĝ`
k̂`

:

52/64

RKHS via fourier series
Recall standard dot product in L2:

hf ; giL2
=

*
1X

`=�1

f̂` exp({`x);
1X

m=�1

ĝm exp({mx)

+
L2

=
1X

`=�1

1X
m=�1

f̂`ĝ` hexp({`x); exp(�{mx)iL2

=
1X

`=�1

f̂`ĝ`:

Define the dot product in H to have a roughness penalty,

hf ; giH =
1X

`=�1

f̂`ĝ`
k̂`

:

52/64

Roughness penalty explained

The squared norm of a function f in H enforces smoothness:

kf k2H = hf ; f iH =
1X

l=�1

f̂`f̂`
k̂`

=
1X

l=�1

���f̂`���2
k̂`

:

If k̂` decays fast, then so must f̂` if we want kf k2H <1.
Recall f (x) =

P
1

`=�1
f̂` (cos(`x) + { sin(`x)) :

Question: is the top hat function in the “Gaussian spectrum”
RKHS?
Warning: need stronger conditions on kernel than L2 convergence: Mercer’s theorem.

53/64

Roughness penalty explained

The squared norm of a function f in H enforces smoothness:

kf k2H = hf ; f iH =
1X

l=�1

f̂`f̂`
k̂`

=
1X

l=�1

���f̂`���2
k̂`

:

If k̂` decays fast, then so must f̂` if we want kf k2H <1.
Recall f (x) =

P
1

`=�1
f̂` (cos(`x) + { sin(`x)) :

Question: is the top hat function in the “Gaussian spectrum”
RKHS?
Warning: need stronger conditions on kernel than L2 convergence: Mercer’s theorem.

53/64

Roughness penalty explained

The squared norm of a function f in H enforces smoothness:

kf k2H = hf ; f iH =
1X

l=�1

f̂`f̂`
k̂`

=
1X

l=�1

���f̂`���2
k̂`

:

If k̂` decays fast, then so must f̂` if we want kf k2H <1.
Recall f (x) =

P
1

`=�1
f̂` (cos(`x) + { sin(`x)) :

Question: is the top hat function in the “Gaussian spectrum”
RKHS?
Warning: need stronger conditions on kernel than L2 convergence: Mercer’s theorem.

53/64

Feature map and reproducing property
Reproducing property: define a function

g(x) := k(x � z) =
1X

`=�1

exp ({`x) k̂` exp (�{`z)| {z }
ĝ`

Then for a function f (�) 2 H,

hf (�); k(�; z)iH = hf (�); g(�)iH

1X
`=�1

f̂`

ĝ`z }| {
k̂` exp({`z)
k̂`

1X
`=�1

f̂` exp({`z) = f (z):

54/64

Feature map and reproducing property
Reproducing property: define a function

g(x) := k(x � z) =
1X

`=�1

exp ({`x) k̂` exp (�{`z)| {z }
ĝ`

Then for a function f (�) 2 H,

hf (�); k(�; z)iH = hf (�); g(�)iH

1X
`=�1

f̂`

ĝ`z }| {
k̂` exp({`z)
k̂`

1X
`=�1

f̂` exp({`z) = f (z):

54/64

Feature map and reproducing property
Reproducing property: define a function

g(x) := k(x � z) =
1X

`=�1

exp ({`x) k̂` exp (�{`z)| {z }
ĝ`

Then for a function f (�) 2 H,

hf (�); k(�; z)iH = hf (�); g(�)iH

1X
`=�1

f̂`

ĝ`z }| {
k̂` exp({`z)
k̂`

1X
`=�1

f̂` exp({`z) = f (z):

54/64

Feature map and reproducing property

Reproducing property for the kernel:
You can also show

hk(�; y); k(�; z)iH = k(y � z)

This is an exercise!
Hint: define a second function

f (x) := k(x � y) =
1X

`=�1

exp ({`x) k̂` exp (�{`y)| {z }
f̂`

55/64

Feature map and reproducing property

Reproducing property for the kernel:
You can also show

hk(�; y); k(�; z)iH = k(y � z)

This is an exercise!
Hint: define a second function

f (x) := k(x � y) =
1X

`=�1

exp ({`x) k̂` exp (�{`y)| {z }
f̂`

55/64

Link back to original RKHS function definition

Original form of a function in the RKHS was
(detail: sum now from �1 to 1, complex conjugate)

f (x) =
1X

`=�1

f`�`(x) = hf (�); �(x)iH :

We’ve defined the RKHS dot product as

hf ; giH =
1X

l=�1

f̂`ĝ`
k̂`

hf (�); k(�; z)iH =
1X

`=�1

f̂`
�
k̂` exp(�{`z)

�
k̂`

56/64

Link back to original RKHS function definition

Original form of a function in the RKHS was
(detail: sum now from �1 to 1, complex conjugate)

f (x) =
1X

`=�1

f`�`(x) = hf (�); �(x)iH :

We’ve defined the RKHS dot product as

hf ; giH =
1X

l=�1

f̂`ĝ`
k̂`

hf (�); k(�; z)iH =
1X

`=�1

f̂`
�
k̂` exp(�{`z)

�
�q

k̂`
�2

56/64

Link back to original RKHS function definition
Original form of a function in the RKHS was
(detail: sum now from �1 to 1, complex conjugate)

f (x) =
1X

`=�1

f`�`(x) = hf (�); �(x)iH :

We’ve defined the RKHS dot product as

hf ; giH =
1X

l=�1

f̂`ĝ`
k̂`

hf (�); k(�; z)iH =
1X

`=�1

f̂`
�
k̂` exp(�{`z)

�
�q

k̂`
�2

By inspection

f` = f̂`=
q
k̂` �`(x) =

q
k̂` exp(�{`x):

56/64

Main message

Small RKHS norm results in smooth functions.
E.g. kernel ridge regression with exponentiated quadratic kernel:

f � = argmin
f 2H

 nX
i=1

(yi � hf ; �(xi)iH)2 + �kf k2H
!
:

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

λ=0.1, σ=0.6

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

λ=10, σ=0.6

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

λ=1e−07, σ=0.6

57/64

Some reproducing kernel Hilbert space
theory

Reproducing kernel Hilbert space (1)

Definition
H a Hilbert space of R-valued functions on non-empty set X . A
function k : X � X ! R is a reproducing kernel of H, and H is a
reproducing kernel Hilbert space, if

8x 2 X ; k(�; x) 2 H,

8x 2 X ; 8f 2 H; hf (�); k(�; x)iH = f (x) (the reproducing property).

In particular, for any x ; y 2 X ,

k(x ; y) = hk (�; x) ; k (�; y)iH: (2)

Original definition: kernel an inner product between feature maps.
Then �(x) = k(�; x) a valid feature map.

59/64

Reproducing kernel Hilbert space (2)
Another RKHS definition:
Define �x to be the operator of evaluation at x , i.e.

�x f = f (x) 8f 2 H; x 2 X :

Definition (Reproducing kernel Hilbert space)
H is an RKHS if the evaluation operator �x is bounded: 8x 2 X
there exists �x � 0 such that for all f 2 H,

jf (x)j = j�x f j � �xkf kH

=) two functions identical in RHKS norm agree at every point:

jf (x)� g(x)j = j�x (f � g)j � �xkf � gkH 8f ; g 2 H:

60/64

RKHS definitions equivalent
Theorem (Reproducing kernel equivalent to bounded �x)
H is a reproducing kernel Hilbert space (i.e., its evaluation
operators �x are bounded linear operators), if and only if H has a
reproducing kernel.

Proof: If H has a reproducing kernel =) �x bounded

j�x [f]j = jf (x)j
= jhf ; k(�; x)iHj
� kk(�; x)kH kf kH
= hk(�; x); k(�; x)i1=2H kf kH
= k(x ; x)1=2 kf kH

Cauchy-Schwarz in 3rd line . Consequently, �x : F ! R bounded
with �x = k(x ; x)1=2.

61/64

RKHS definitions equivalent

Proof: �x bounded =) H has a reproducing kernel
We use: : :

Theorem
(Riesz representation) In a Hilbert space H, all bounded linear
functionals are of the form h�; giH, for some g 2 H.

If �x : F ! R is a bounded linear functional, by Riesz 9f�x 2 H such
that

�x f = hf ; f�x iH; 8f 2 H:

Define k(�; x) = f�x (�), 8x ; x 0 2 X . By its definition, both
k(�; x) = f�x (�) 2 H and hf (�); k(�; x)iH = �x f = f (x). Thus, k is the
reproducing kernel.

62/64

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)
Let k : X � X ! R be positive definite. There is a unique RKHS
H � R

X with reproducing kernel k.

Recall feature map is not unique (as we saw earlier):
only kernel is unique.

63/64

Main message

64/64

