Representing and comparing probabilities with kernels: Part 2

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

MLSS Madrid, 2018

Comparing two samples

■ Given: Samples from unknown distributions P and Q.
\square Goal: do P and Q differ?

Outline

Two sample testing
■ Test statistic: Maximum Mean Discrepancy (MMD)...

- ...as a difference in feature means
- ...as an integral probability metric (not just a technicality!)

■ Statistical testing with the MMD
■ "How to choose the best kernel"
Training GANs with MMD

Maximum Mean Discrepancy

Feature mean difference

■ Simple example: 2 Gaussians with different means

- Answer: t-test

Feature mean difference

■ Two Gaussians with same means, different variance
■ Idea: look at difference in means of features of the RVs

- In Gaussian case: second order features of form $\varphi(x)=x^{2}$

Feature mean difference

■ Two Gaussians with same means, different variance
■ Idea: look at difference in means of features of the RVs
■ In Gaussian case: second order features of form $\varphi(x)=x^{2}$

Feature mean difference

- Gaussian and Laplace distributions
- Same mean and same variance
- Difference in means using higher order features...RKHS

Infinitely many features using kernels

Kernels: dot products of features

Feature $\operatorname{map} \varphi(x) \in \mathcal{F}$,
$\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}$

For positive definite k,

$$
k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}
$$

Infinitely many features
$\varphi(x)$, dot product in closed form!

Infinitely many features using kernels

Kernels: dot products of features

Feature $\operatorname{map} \varphi(x) \in \mathcal{F}$,

$$
\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}
$$

For positive definite k,

$$
k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}
$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$
k\left(x, x^{\prime}\right)=\exp \left(-\gamma\left\|x-x^{\prime}\right\|^{2}\right)
$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4.

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X}, define feature map of probability P,

$$
\mu_{P}=\left[\ldots \mathbf{E}_{P}\left[\varphi_{i}(X)\right] \ldots\right]
$$

For positive definite $k\left(x, x^{\prime}\right)$,

$$
\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}}=\mathbf{E}_{P, Q} k(x, y)
$$

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered Always true if kernel bounded.

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X}, define feature map of probability P,

$$
\mu_{P}=\left[\ldots \mathbf{E}_{P}\left[\varphi_{i}(X)\right] \ldots\right]
$$

For positive definite $k\left(x, x^{\prime}\right)$,

$$
\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}}=\mathbf{E}_{P, Q} k(x, y)
$$

for $x \sim P$ and $y \sim Q$.

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded.

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
M M D^{2}(P, Q)=\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2}
$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle_{\mathcal{F}}+\left\langle\mu_{Q}, \mu_{Q}\right\rangle_{\mathcal{F}}-2\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\underbrace{\mathbb{E}_{P} k\left(X, X^{\prime}\right)}_{\text {(a) }}+\underbrace{\mathbb{E}_{Q} k\left(Y^{\prime}, Y^{\prime}\right)}_{\text {(a) }}-2 \underbrace{\mathbb{E}_{P, Q},(X, Y)}_{\text {(b) }}
\end{aligned}
$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle_{\mathcal{F}}+\left\langle\mu_{Q}, \mu_{Q}\right\rangle_{\mathcal{F}}-2\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\underbrace{\mathbf{E}_{P} k\left(X, X^{\prime}\right)}_{\text {(a) }}+\underbrace{\mathbf{E}_{Q} k\left(Y, Y^{\prime}\right)}_{\text {(a) }}-2 \underbrace{\mathbf{E}_{P, Q} k(X, Y)}_{\text {(b) }}
\end{aligned}
$$

$(a)=$ within distrib. similarity, $(b)=$ cross-distrib. similarity.

Illustration of MMD

- Dogs $(=P)$ and fish $(=Q)$ example revisited

■ Each entry is one of $k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right), k\left(\operatorname{dog}_{i}\right.$, fish $\left._{j}\right)$, or $k\left(\right.$ fish $\left._{i}, \mathrm{fish}_{j}\right)$

Illustration of MMD

The maximum mean discrepancy:

$$
\begin{aligned}
\widehat{M M D}^{2}= & \frac{1}{n(n-1)} \sum_{i \neq j} k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{fish}_{i}, \mathrm{fish}_{j}\right) \\
& -\frac{2}{n^{2}} \sum_{i, j} k\left(\operatorname{dog}_{i}, \mathrm{fish}_{j}\right) \\
& k\left(\log _{i}, \log _{j}\right) \quad k\left(\operatorname{dog}_{i}, \mathrm{fish}_{j}\right) \\
& k\left(\mathrm{fish}_{j}, \operatorname{dog}_{i}\right) \\
& k\left(\mathrm{fish}_{i}, \mathrm{fish}_{j}\right)
\end{aligned}
$$

MMD as an integral probability metric

Are P and Q different?
Samples from P and Q

MMD as an integral probability metric

Are P and Q different?
Samples from P and Q

MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" $f(x)$ to maximize

$$
\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)
$$

MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" $f(x)$ to maximize

$$
\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)
$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

Functions are linear combinations of features:

$$
\left.f(x)=\langle f, \varphi(x)\rangle_{\mathcal{F}}=\sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x)=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right]^{\top} \xrightarrow{\substack{\varphi_{2}(x)}} \begin{array}{c}
\varphi_{x}(x) \\
\overbrace{3}
\end{array}\right]
$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

Expectations of functions are linear combinations of expected features

$$
\mathbf{E}_{P}(f(X))=\left\langle f, \mathbf{E}_{P} \varphi(X)\right\rangle_{\mathcal{F}}=\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}}
$$

(always true if kernel is bounded)

MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

For characteristic RKHS $\mathcal{F}, M M D(P, Q ; F)=0$ iff $P=Q$

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

■ Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

Integral prob. metric vs feature difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{f \in F}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right]
\end{aligned}
$$

Integral prob. metric vs feature difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{f \in F}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{f \in F}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{f \in F}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{f \in F}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{f \in F}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{f \in F}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{f \in F}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{f \in F}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{f \in F}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{f \in F}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\|\mu_{P}-\mu_{Q}\right\|
\end{aligned}
$$

Function view and feature view equivalent

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Observe $\mathrm{X}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right\} \sim P$

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
f^{*}(v)=\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
\begin{aligned}
f^{*}(v) & =\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& \propto\left\langle\widehat{\mu}_{P}-\widehat{\mu}_{Q}, \varphi(v)\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
\begin{aligned}
f^{*}(v) & =\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& \propto\left\langle\widehat{\mu}_{P}-\widehat{\mu}_{Q}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& =\frac{1}{n} \sum_{i=1}^{n} k\left(x_{i}, v\right)-\frac{1}{n} \sum_{i=1}^{n} k\left(\mathrm{y}_{i}, v\right)
\end{aligned}
$$

Don't need explicit feature coefficients $f^{*}:=\left[\begin{array}{lll}f_{1}^{*} & f_{2}^{*} & \ldots\end{array}\right]$

Interlude: divergence measures

Divergences

Divergences

Divergences

Divergences

Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)

Two-Sample Testing with MMD

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

How does this help decide whether $P=Q$?

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Perspective from statistical hypothesis testing:
■ Null hypothesis \mathcal{H}_{0} when $P=Q$

- should see $\widehat{M M D}^{2}$ "close to zero".

■ Alternative hypothesis \mathcal{H}_{1} when $P \neq Q$

- should see $\widehat{M M D}^{2}$ "far from zero"

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Perspective from statistical hypothesis testing:
■ Null hypothesis \mathcal{H}_{0} when $P=Q$

- should see $\widehat{M M D}^{2}$ "close to zero".

■ Alternative hypothesis \mathcal{H}_{1} when $P \neq Q$

- should see $\widehat{M M D}^{2}$ "far from zero"

Want Threshold c_{α} for $\widehat{M M D}^{2}$ to get false positive rate α

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Draw $n=200$ i.i.d samples from P and Q
■ Laplace with different y -variance.

- $\sqrt{n} \times \widehat{M M D}^{2}=1.2$

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Draw $n=200$ i.i.d samples from P and Q
$■$ Laplace with different y -variance.

- $\sqrt{n} \times \widehat{M M D}^{2}=1.2$

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Draw $n=200$ new samples from P and Q
■ Laplace with different y -variance.

- $\sqrt{n} \times \widehat{M M D}^{2}=1.5$

Number of MMDs: 2

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Repeat this 150 times ...

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Repeat this 300 times ...
Number of MMDs: 300

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$

Repeat this 3000 times ...

Asymptotics of $\widehat{M M D}^{2}$ when $P \neq Q$
When $P \neq Q$, statistic is asymptotically normal,

$$
\frac{\widehat{\mathrm{MMD}}^{2}-\operatorname{MMD}(P, Q)}{\sqrt{V_{n}(P, Q)}} \xrightarrow{D} \mathcal{N}(0,1),
$$

where variance $V_{n}(P, Q)=O\left(n^{-1}\right)$.

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

What happens when P and Q are the same?

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 10

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 20

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 50

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 100

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 1000

Asymptotics of $\widehat{M M D}^{2}$ when $P=Q$

Where $P=Q$, statistic has asymptotic distribution

$$
n \widehat{\mathrm{MMD}}^{2} \sim \sum_{l=1}^{\infty} \lambda_{l}\left[z_{l}^{2}-2\right]
$$

MMD density under \mathcal{H}_{0}

where

$$
\begin{aligned}
\lambda_{i} \psi_{i}\left(x^{\prime}\right) & =\int_{\mathcal{X}} \underbrace{\tilde{k}\left(x, x^{\prime}\right)}_{\text {centred }} \psi_{i}(x) d P(x) \\
z_{l} & \sim \mathcal{N}(0,2) \quad \text { i.i.d. }
\end{aligned}
$$

A statistical test

A summary of the asymptotics:

A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

How do we get test threshold c_{α} ?

Original empirical MMD for dogs and fish:

$$
\begin{aligned}
& X=\left[\begin{array}{ll}
\operatorname{lon} & \ldots
\end{array}\right] \\
& Y=\left[\begin{array}{ll}
\log
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\widehat{M M D}^{2}= & \frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right) \\
& +\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
& -\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{aligned}
$$

How do we get test threshold c_{α} ?
Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
& \tilde{X}=\left[\begin{array}{ll}
\operatorname{lom} & \ldots]
\end{array}\right] \\
& \tilde{Y}=\left[\begin{array}{ll}
\operatorname{lon} & \ldots
\end{array}\right]
\end{aligned}
$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
\tilde{X}= & {\left[\begin{array}{c}
\tilde{Y}= \\
\widehat{M M D}^{2}= \\
\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\tilde{x}_{i}, \tilde{x}_{j}\right) \\
\\
+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\tilde{y}_{i}, \tilde{y}_{j}\right) \\
\\
\\
-\frac{2}{n^{2}} \sum_{i, j} k\left(\tilde{x}_{i}, \tilde{y}_{j}\right)
\end{array}\right.}
\end{aligned}
$$

Permutation simulates
$P=Q$

How to choose the best kernel (1) optimising the kernel parameters

Graphical illustration

■ Maximising test power same as minimizing false negatives

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right)
$$

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow \Phi\left(\frac{n \mathrm{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}-\frac{c_{\alpha}}{\sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

where
■ Φ is the CDF of the standard normal distribution.
■ \hat{c}_{α} is an estimate of c_{α} test threshold.

Optimizing kernel for test power

The power of our test (Pr_{1} denotes probability under $P \neq Q$):

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\operatorname{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow \Phi(\underbrace{\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}}_{O\left(n^{1 / 2}\right)}-\underbrace{\left.\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)}_{O\left(n^{-1 / 2}\right)}
\end{aligned}
$$

Variance under \mathcal{H}_{1} decreases as $\sqrt{V_{n}(P, Q)} \sim O\left(n^{-1 / 2}\right)$
For large n, second term negligible!

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow \Phi\left(\frac{\mathrm{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}-\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

To maximize test power, maximize

$$
\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}
$$

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017)
Code: github.com/dougalsutherland/opt-mmd

Troubleshooting for generative adversarial networks

1	8	4	5	0
5				
5	9	7	5	4
8				
9	8	5	0	7
2	2	4	0	7

MNIST samples

Samples from a GAN

Troubleshooting for generative adversarial networks

1	8	4	5	0
5				
5	9	7	5	4
8				
9	8	5	0	7
2	2	4	0	7

MNIST samples

ARD map

| 3 | 0 | 7 | 5 | 4 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 0 | 5 | 7 | 5 |
| 5 | 2 | 4 | 9 | 4 | 5 |
| 0 | 4 | 1 | 0 | 8 | 1 |

Samples from a GAN

- Power for optimzed ARD kernel: 1.00 at $\alpha=0.01$

■ Power for optimized RBF kernel: 0.57 at $\alpha=0.01$

Troubleshooting generative adversarial networks

How to choose the best kernel (2) characteristic kernels

Characteristic kernels

```
Characteristic: MMD a metric MMD = 0 iff P=Q)
[NIPS07b, JMLR10]
```

In the next slides:
■ Characteristic property on $[-\pi, \pi]$ with periodic boundary

- Characteristic property on \mathbb{R}^{d}

Characteristic kernels on $[-\pi, \pi]$

Reminder: Fourier series
Function on $[-\pi, \pi]$ with periodic boundary.

$$
f(x)=\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp (\imath \ell x)=\sum_{l=-\infty}^{\infty} \hat{f}_{\ell}(\cos (\ell x)+\imath \sin (\ell x)) .
$$

Top hat

Fourier series coefficients

Characteristic kernels on $[-\pi, \pi]$

Jacobi theta kernel (close to exponentiated quadratic):

$$
k(x-y)=\frac{1}{2 \pi} \vartheta\left(\frac{x-y}{2 \pi}, \frac{\imath \sigma^{2}}{2 \pi}\right), \quad \hat{k}_{\ell}=\frac{1}{2 \pi} \exp \left(\frac{-\sigma^{2} \ell^{2}}{2}\right) .
$$

ϑ is the Jacobi theta function, close to Gaussian when σ^{2} small

The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

- Fourier series for P is characteristic function $\varphi_{P, \ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$
\mu_{P}(x)=\left\langle\mu_{P}, k(\cdot, x)\right\rangle_{\mathcal{F}}
$$

The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

- Fourier series for P is characteristic function $\varphi_{P, \ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$
\begin{aligned}
\mu_{P}(x) & =\left\langle\mu_{P}, k(\cdot, x)\right\rangle_{\mathcal{F}} \\
& =E_{X \sim P} k(X-x)
\end{aligned}
$$

The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

- Fourier series for P is characteristic function $\varphi_{P, \ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$
\begin{aligned}
\mu_{P}(x) & =\left\langle\mu_{P}, k(\cdot, x)\right\rangle_{\mathcal{F}} \\
& =E_{X \sim P} k(X-x) \\
& =\int_{-\pi}^{\pi} k(x-t) d P(t)
\end{aligned}
$$

The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

- Fourier series for P is characteristic function $\varphi_{P, \ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$
\begin{aligned}
\mu_{P}(x) & =\left\langle\mu_{P}, k(\cdot, x)\right\rangle_{\mathcal{F}} \\
& =E_{X \sim P} k(X-x) \\
& =\int_{-\pi}^{\pi} k(x-t) d P(t) \quad \hat{\mu}_{\mathrm{Pr}, \ell}=\hat{k}_{\ell} \times \bar{\varphi}_{P, \ell}
\end{aligned}
$$

The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

- Fourier series for P is characteristic function $\varphi_{P, \ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$
\begin{aligned}
\mu_{P}(x) & =\left\langle\mu_{P}, k(\cdot, x)\right\rangle_{\mathcal{F}} \\
& =E_{X \sim P} k(X-x) \\
& =\int_{-\pi}^{\pi} k(x-t) d P(t) \quad \hat{\mu}_{\mathrm{Pr}, \ell}=\hat{k}_{\ell} \times \bar{\varphi}_{P, \ell}
\end{aligned}
$$

MMD can be written in terms of Fourier series:

$$
\begin{aligned}
\operatorname{MMD}(P, Q ; F) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}} \\
& =\left\|\sum_{\ell=-\infty}^{\infty}\left[\left(\bar{\varphi}_{P, \ell}-\bar{\varphi}_{Q, \ell}\right) \hat{k}_{\ell}\right] \exp (\imath \ell x)\right\|_{\mathcal{F}}
\end{aligned}
$$

A simpler Fourier representation for MMD

From previous slide,

$$
M M D(P, Q ; F)=\left\|\sum_{\ell=-\infty}^{\infty}\left[\left(\bar{\varphi}_{P, \ell}-\bar{\varphi}_{Q, \ell}\right) \hat{k}_{\ell}\right] \exp (\imath \ell x)\right\|_{\mathcal{F}}
$$

Reminder: the squared norm of a function f in \mathcal{F} is:

$$
\|f\|_{\mathcal{F}}^{2}=\sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_{\ell}\right|^{2}}{\hat{k}_{\ell}} .
$$

Simple, interpretable expression for squared MMD:

A simpler Fourier representation for MMD

From previous slide,

$$
M M D(P, Q ; F)=\left\|\sum_{\ell=-\infty}^{\infty}\left[\left(\bar{\varphi}_{P, \ell}-\bar{\varphi}_{Q, \ell}\right) \hat{k}_{\ell}\right] \exp (\imath \ell x)\right\|_{\mathcal{F}}
$$

Reminder: the squared norm of a function f in \mathcal{F} is:

$$
\|f\|_{\mathcal{F}}^{2}=\sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_{\ell}\right|^{2}}{\hat{k}_{\ell}}
$$

Simple, interpretable expression for squared MMD:

$$
M M D^{2}(P, Q ; F)=\sum_{l=-\infty}^{\infty} \frac{\left[\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}\right]^{2}}{\hat{k}_{\ell}}=\sum_{l=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

Characteristic kernels on $[-\pi, \pi]$

Example: P differs from Q at one frequency:

Characteristic kernels on $[-\pi, \pi]$

Example: P differs from Q at one frequency:

Characteristic kernels on $[-\pi, \pi]$

Example: P differs from Q at one frequency:

Characteristic function difference

Characteristic kernels on $[-\pi, \pi]$

Is the Gaussian spectrum kernel characteristic?

$$
M M D^{2}(P, Q ; F)=\sum_{l=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

Characteristic kernels on $[-\pi, \pi]$

Is the Gaussian spectrum kernel characteristic? YES

$$
M M D^{2}(P, Q ; F)=\sum_{l=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

Characteristic kernels on $[-\pi, \pi]$

Is the triangle kernel characteristic?

$$
M M D^{2}(P, Q ; F)=\sum_{l=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

Characteristic kernels on $[-\pi, \pi]$

Is the triangle kernel characteristic? NO

$$
M M D^{2}(P, Q ; F)=\sum_{l=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

Characteristic kernels on \mathbb{R}^{d}

Can we prove characteristic on \mathbb{R}^{d} ?
Characteristic function of P via Fourier transform

$$
\varphi_{P}(\omega)=\int_{\mathbb{R}^{d}} e^{i x^{\top} \omega} d P(x)
$$

For translation invariant kernels: $k(x, y)=k(x-y)$, Bochner's theorem:

$$
k(x-y)=\int e^{-i(x-y)^{\top} \omega} d \Lambda(\omega)
$$

$\Lambda(\omega)$ finite non-negative Borel measure.

Characteristic kernels on \mathbb{R}^{d}

Can we prove characteristic on \mathbb{R}^{d} ?
Characteristic function of P via Fourier transform

$$
\varphi_{P}(\omega)=\int_{\mathbb{R}^{d}} e^{i x^{\top} \omega} d P(x)
$$

For translation invariant kernels: $k(x, y)=k(x-y)$, Bochner's theorem:

$$
k(x-y)=\int_{\mathbb{R}^{d}} e^{-i(x-y)^{\top} \omega} d \Lambda(\omega)
$$

$\Lambda(\omega)$ finite non-negative Borel measure.

Characteristic kernels on \mathbb{R}^{d}

Fourier representation of MMD on \mathbb{R}^{d} :

$$
M M D^{2}(P, Q ; F)=\int\left|\varphi_{P}(\omega)-\varphi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
$$

Proof: an exercise! But recall the Fourier series case for $[-\pi, \pi]$:

Characteristic kernels on \mathbb{R}^{d}

Fourier representation of MMD on \mathbb{R}^{d} :

$$
M M D^{2}(P, Q ; F)=\int\left|\varphi_{P}(\omega)-\varphi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
$$

Proof: an exercise! But recall the Fourier series case for $[-\pi, \pi]$:

$$
M M D^{2}(P, Q ; F)=\sum_{l=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at roughly one frequency:

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at roughly one frequency:

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at roughly one frequency:

Characteristic function difference
(20.15

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:
Exponentiated quadraric kernel spectrum $\Lambda(\omega)$
Difference $\left|\varphi_{P}-\varphi_{Q}\right|$

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:

Characteristic

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:
Sinc kernel spectrum $\Lambda(\omega)$
Difference $\left|\varphi_{P}-\varphi_{Q}\right|$

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:

Not characteristic

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:
Triangle (B-spline) kernel spectrum $\Lambda(\omega)$
Difference $\left|\phi_{P}-\phi_{Q}\right|$

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:
???

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:

Characteristic

Summary: characteristic kernels on \mathbb{R}^{d}

Characteristic kernel: $M M D=0$ iff $P=Q_{\text {Fukumizu et al. [NIPSo7b], }}$ Sriperumbudur et al.[COLT08]

Main theorem: A translation invariant k is characteristic for prob. measures on \mathbb{R}^{d} if and only if

$$
\operatorname{supp}(\Lambda)=\mathbb{R}^{d}
$$

(i.e. support zero on at most a countable set)

Corollary: any continuous, compactly supported k characteristic (since Fourier spectrum $\Lambda(\omega)$ cannot be zero on an interval).

Summary: characteristic kernels on \mathbb{R}^{d}

Characteristic kernel: $M M D=0$ iff $P=Q_{\text {Fukumizu et al. [NiPSo7b], }}$ Sriperumbudur et al.[COLT08]

Main theorem: A translation invariant k is characteristic for prob. measures on \mathbb{R}^{d} if and only if

$$
\operatorname{supp}(\Lambda)=\mathbb{R}^{d}
$$

(i.e. support zero on at most a countable set) Sriperumbudur et al. [Colto8, JMLR10]

Corollary: any continuous, compactly supported k characteristic (since Fourier spectrum $\Lambda(\omega)$ cannot be zero on an interval).

Summary: characteristic kernels on \mathbb{R}^{d}

Characteristic kernel: $M M D=0$ iff $P=Q_{\text {Fukumizu et al. [NiPSo7b], }}$ Sriperumbudur et al.[COLT08]

Main theorem: A translation invariant k is characteristic for prob. measures on \mathbb{R}^{d} if and only if

$$
\operatorname{supp}(\Lambda)=\mathbb{R}^{d}
$$

(i.e. support zero on at most a countable set) Sriperumbudur et al. [Coltos, JMLR10]

Corollary: any continuous, compactly supported k characteristic (since Fourier spectrum $\Lambda(\omega)$ cannot be zero on an interval).
1-D proof sketch from [Mallat, 99, Theorem 2.6], proof on \mathbb{R}^{d} via distribution theory in Sriperumbudur et al. [JMLR10, Corollary 10 p. 1535]

