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Comparing two samples

m Given: Samples from unknown distributions P and Q.
m Goal: do P and @ differ?
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Two sample testing
m Test statistic: Maximum Mean Discrepancy (MMD)...

» ...as a difference in feature means
e ...as an integral probability metric (not just a technicality!)

m Statistical testing with the MMD

m “How to choose the best kernel”

Training GANs with MMD
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Maximum Mean Discrepancy
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Feature mean difference

m Simple example: 2 Gaussians with different means

m Answer: t-test

Two Gaussians with different means

Prob. density
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Feature mean difference

Prob. density

Two Gaussians with same means, different variance

In Gaussian case: second order features of form ¢(z) = z

Two Gaussians with different variances

Idea: look at difference in means of features of the RVs

2
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Feature mean difference

Prob. density

Two Gaussians with different variances

Two Gaussians with same means, different variance

Densities of feature X2

In Gaussian case: second order features of form ¢(z) = z

Idea: look at difference in means of features of the RVs

2

Prob. density
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Feature mean difference

m Gaussian and Laplace distributions
®m Same mean and same variance

m Difference in means using higher order features.. RKHS

Gaussian and Laplace densities

0.7

Prob. density
o o o o
L £ 9 9

o
)

0.1F
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

olz)=1[..0i(z)..] €L

For positive definite k,

k(z,2") = (p(z), o(z'))

Infinitely many features
@(z), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

p(z)=[..0iz).. ] €L

For positive definite k&,

k(z,2') = (p(z), o(z'))

Infinitely many features
¢(z), dot product in
closed form!

Exponentiated quadratic kernel

k(z,a') = exp (—v ||z — 2'||%)

_901(517) /\
RN RGAVAN
pa(z) |~
—

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 8,60




Infinitely many features of distributions

Given P a Borel probability measure on &', define feature map of
probability P,
up =1[..Eplpi(X)]...]
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Infinitely many features of distributions

Given P a Borel probability measure on &', define feature map of
probability P,
up =1[..Eplpi(X)]...]

For positive definite k(z, z’),

(kp,po)r = Ep ok(z,y)

forz ~ Pand y ~ Q.

Fine print: feature map ¢(z) must be Bochner integrable for all probability measures considered.
Always true if kernel bounded.

9/60



The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD?*(P, Q) = |lup — poll>
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = |lup — pollx
= (up, uP) r + (L) Q) — 2 (1P, HO) £
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = ||up — poll>

= (up,ur)r+ (Lo, ko) — 2(kP, LQ) £
= Epk(X, XY+ Egk(Y, Y') — 2Ep ok(X, Y)

(a) (2) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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[Mustration of MMD

m Dogs (= P) and fish (= Q) example revisited
m Each entry is one of k(dog,,dog;), k(dog;, fish;), or k(fish;, fish;)

VR
P -~

>

»?

-

11/60



[Mustration of MMD

The maximum mean discrepancy:

—2
MMD =n(n—_ > k(dog,, dog;) + n(n— > k(fish,, fish, )
z;éj 1#]
- E > k(dog;, fish;)
LR

*

g

dog;, dog;; )

k(fish;, dog;) ‘ fish;, fish; )

)

k(dog;, fish

.:
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MMD as an integral probability metric

Are P and @ different?

051

-0.5

Samples from P and Q

L 4
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MMD as an integral probability metric

Are P and @ different?

051

-0.5

BRAR

Samples from P and Q

00 ¢ 00000 © 06 -
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0.4

0.6

0.8

14/60



MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function

0.5

-05 1
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := s [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := s [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)

Witness f for Gauss and Laplace densities
0.8 : : : :

s

Gauss ]

0.6

e |_aplace

Prob. density and f

Xor
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := sup [Epf(X) — Eof(
I7lI<1

(F' = unit ball in RKHS F)

Functions are linear combinations of features:

f1
2
[(x) = ([, ¢z ;—Zfew =1 71

V)l

po(@) T~




MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := e [Epf(X) —Eqf(Y)]
(F = unit ba_ill in RKHS F)

Expectations of functions are linear combinations
of expected features

Ep(f(X)) = {f,Epp(X))r = (f,uP) 5

(always true if kernel is bounded)
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := s [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)

For characteristic RKHS 7, MMD(P,Q; F)=0iff P = Q

Other choices for witness function class:

m Bounded continuous [pudiey, 2002]
m Bounded varation 1 (Kolmogorov metric) puiter, 1997)

m Bounded Lipschitz (Wasserstein distances) [pudiey, 2002
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Integral prob. metric vs feature difference

The MMD:

Witness f for Gauss and Laplace densities

JE—

0.6 = Gauss ||
= |_aplace

MMD(P, Q; F)

=sup [Epf(X) - Eqf(Y)]
fEF

Prob. density and f
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Integral prob. metric vs feature difference

The MMD:
use

MMD(P, o:; F) EPf(X) = (MP:f)]:

=sup[Epf(X) — Eqgf(Y)]
feF

=sup (f, up — 1Q)
feEF
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Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

=sup[Epf(X) — Eqf(Y)]
feEF

=sup(f, up — 1o) x
feFr
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Integral prob. metric vs feature difference

The MMD: Q
\ g >
2\ S
MMD(P, Q; F) aé\‘b ¥
= sup [Bpf(X) — Eof (¥) f
fEF

=sup(f, up — 1o) x
feFr
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Integral prob. metric vs feature difference

The MMD:

Q
p 1\
MMD(P, Q; F) -\’&“a\\ \yQ
=sup [Epf(X) — Eqf(Y)] Do
feF
_ B *
= sup (frbp — 1Q)r f

* Hp — HQ
lep —pall e



Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

=sup [Epf(X) - Eqf(Y)]
feF

=sup (f, up — 1Q) £
fEF

= llup — poll

Function view and feature view equivalent
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = {xy,...,X,} ~ P

S Ynt~ Q
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

o @®o — — VvV
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

witness(v)
~———
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po

20/60



Derivation of empirical witness function

Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\I—‘
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\l—‘

The empirical witness function at v

FH(v) = e(v)z
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘

Z (zi,v nzk Vis V)

Don’t need explicit feature coeflicients f* := { T } 20/60



Interlude: divergence measures
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Divergences
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Divergences

tesr! prob. Metrig,,

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

tesr! prob. Metrig,,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

sesr prob. Metrig,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

¢tesra| pI'Ob. met’.'-q’

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)

26/60



Two-Sample Testing with MMD



A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

How does this help decide whether P = Q7
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A statistical test using MMD
The empirical MMD:

—_—2
MMD™ =———— Zk (z:, 7;)
z;ﬁj

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

Zk (vi,¥5)

z;ﬁj
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A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

———— 2
Want Threshold ¢, for MMD to get false positive rate o
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—_—2
Behaviour of MMD when P # Q

Draw n = 200 i.i.d samples from P and @
Laplace with different y-variance.

/\2
nx MMD =1.2

—— 9
Vn x MMD™ =1.2

10
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Behaviour of MMD when P # O
Draw n = 200 i.i.d samples from P and Q

m Laplace with different y-variance.

B /N X ]\T.M\D2 =1.2

— 2
MMD =1.2
Number of MMDs: 1 wﬁx —

10

]
T

2
o
T

Prob. of \/n x MMD
IS o

w
T

N
T

0 05 1 15
Vi x MMD"

2 25
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. —— s 2
Behaviour of MMD when P # @
Draw n = 200 new samples from P and @
m Laplace with different y-variance.

/\2
B /nx MMD =15

— 2
nxX MMD =1.5
Number of MMDs: 2 }of ‘ :
4 : : : : :
351 o . ]
-~ .l. .
a3 ap e
& 2l n gt
S 25t b i
X 0 """’q-. &%?’3:
§ 2 2 ':.,";5'“’.."~
k kS
S sl A e
Q DRI
2 -6
A&t
-8
05¢ 0 ‘
2 0 2
0

0 0.5 1 15 ) 2 25
i x MMD s1/60



—_— 2
Behaviour of MMD when P # @

Repeat this 150 times ...

Number of MMDs: 150

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 32/60



—_— 2
Behaviour of MMD when P # @

Repeat this 300 times ...

Number of MMDs: 300

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 32/60



—_— 2
Behaviour of MMD when P # @

Repeat this 3000 times ...
Number of MMDs: 3000

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 32/60



— 2
Asymptotics of MMD when P # Q
When P # @, statistic is asymptotically normal,
MMD~ — MMD(P, Q) p

— N(0,1),
where variance V,(P, Q)= O (n™1) .
MMD density U_nder Hl Two Laplace distributions with different variances
1 -
15 T T . T T T —Px
[ =rpirical PDF —Q,
e Giaussian fit =
S g
= o
(= .| :
= @ 05
X
% 6 -4 2 0 2 4 6
. 05¢ X
k5
s}
0

0 0.5 1 15 2 2.5 3 3.5
—_— 2
Vi x MMD 53/60



—2
Behaviour of MMD when P = Q

What happens when P and @ are the same?

34/60



— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)

Number of MMDs: 10

0.7

0.6

2

051

—

Prob. of n x MMD

0.4r

031

0.2r

0.1r
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 20

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 50

—

Prob. of n x MM D

35/60



—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 100

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs:

1000

—

Prob. of n x MM D
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—_— 2
Asymptotics of MMD when P = Q)

Where P = @, statistic has asymptotic distribution

77,1\—/I’1\HD2 ~ i)‘l {zf — 2]

=1
) where
MMD density under H,
T e | )= [ He @
™ : -Empirical PDF centred

Prob. of n x MM D
o
~

2~ N(0,2) iid.

o
o

n x MMD’
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A statistical test

A summary of the asymptotics:

0.7 T

0.6

2
o
o
T

Prob. of n x MMD
a 5

o
o
T

0.1+

37,/60



A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

07 :
—_—P =
0.6 - ' —_—P £ Q|

[a\

(Cq 05 ]
= oal ]
X
IS
5 03F ]
,g ¢o =1 — a quantile when P = Q
02 B
R~ false negatives

0.1F
0
-2 1 0 1 2 3 4 5 6
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How do we get test threshold c,?

Original empirical MMD for dogs and fish:

X =[P ™ P ... ]

Y =2, M ... |

—_—2
MMD = ln =) Zk(zz,:c])
1£]
1
k(yi,y
2
- ﬁzk(m’n}q)




How do we get test threshold c,?

Permuted dog and fish samples (merdogs):
K= (4 e ]
Y

[ Pat. H...]

39,/60



How do we get test threshold c,?
Permuted dog and fish samples (merdogs):

X [\'Q—%\') " W e ]
Y

MMD” —(n_lgk %)

+7n(n_1);k(s7 %)

2 o i .
—ﬁzk(@ﬁj) ! | I!
1,7
rlI_ll

. . 'f'l 1" L=
Permutation simulates Al mmin il

P:Q | II_II _I-l-




How to choose the best kernel (1)
optimising the kernel parameters



Graphical illustration

B Maximising test power same as minimizing false negatives

07 :
—_—P =
0.6 - —_—P £ Q|

[a\)

(C: 05 ]
= oal ]
X
IS
5 03F ]
,;C:; ¢o =1 — a quantile when P = @
02t B
R~ false negatives

0.1
0 T
-2 1 0 1 2 3 4 5 6

41/60



Optimizing kernel for test power
The power of our test (Pr; denotes probability under P # Q):

/\2
Prq (nMMD > &a)
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Pr; (nMMD > &a)

5 <nMMD2(P, Q) Car >
vV Vn(Pa Q) V Vn(Pi Q)

where

m & is the CDF of the standard normal distribution.

m C, 1s an estimate of ¢, test threshold.

42/60



Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

—2
Pr; (nMMD > ?:a)

(MMD2(P, Q) Ca
vV Vn(P, Q)J ny/ Vo(P, Q)
O(n1/2) O(nfl/z)

Variance under H; decreases as v/ V,(P, Q) ~ O(n~1/?)

For large n, second term negligible!
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Prq (nMMD > &a)

s (MMDZ(P, Q) Ca )

VVa(P,Q) 1/ Vu(P, Q)

To maximize test power, maximize
MMD?(P, Q)
Vn(P, Q)

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017)
Code: github.com/dougalsutherland /opt-mmd
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Troubleshooting for generative adversarial networks

13450/ > 07|57 4[7

5]9/7|574/2 M5 (3/0(7]7|5
OiNCIE] HERICIEES
225097 SENOY8 8/

MNIST samples Samples from a GAN



Troubleshooting for generative adversarial networks

1345|105
5197|548

3017|5419
5130|578

SEICICIENE
01y1118.81/

9185078
4240095

MNIST samples Samples from a GAN

m Power for optimzed ARD
kernel: 1.00 at « = 0.01

m Power for optimized RBF
kernel: 0.57 at o = 0.01

43/60

ARD map



Troubleshooting generative adversarial networks

108

[ dataset images
770 GAN samples

-
Jw-
| |

more like dataset —
MMD? = 0. 0001 44/60




How to choose the best kernel (2)
characteristic kernels



Characteristic kernels

Characteristic: MMD a metric MMD = 0 iff P = Q)
[NIPSO7b, JMLR10]

In the next slides:

m Characteristic property on [—m, 7] with periodic boundary

m Characteristic property on R¢
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Characteristic kernels on [, 7]

Reminder: Fourier series

Function on [—m, 7] with periodic boundary.

Z frexp(alz) Z fo (cos(£z) + 1sin(£z)) .

= l=—o0
Top hat Fourier series coefficients
05
1.4
12 0.4f
1 0.3
0.8
0.2
2 os =
=
0.1
0.4 1 T T

-0.2

-4 -2

no
~
IS
Ik
5
&
~o
e
3
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Characteristic kernels on [, 7]

Jacobi theta kernel (close to exponentiated quadratic):

1 T —vy 10° - 1 —o24?
k(zr —y)=—72 — ke = — .
(e-v)=o ( or 27r> o T o P ( 2

¥ is the Jacobi theta function, close to Gaussian when 2 small

Kernel Fourier series coefficients

0.16
06 ] 014
05 012
04 01
£ o3 «30.08
=
0.2 0.06
0.1 0.04
0 002
041 o T T P
4 2 0 2 4 10 5 [) 5 70
T {
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The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

m Fourier series for P is characteristic function ¢p
m Fourier series for mean embedding is product of fourier series!
(convolution theorem)

,u'P(:B) = <,LLP, k(': x))]—"
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The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

m Fourier series for P is characteristic function ¢p
m Fourier series for mean embedding is product of fourier series!
(convolution theorem)

,u'P(:B) = <,LLP, k(': x))]—"
= EXNpk(X — :I:)
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The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

m Fourier series for P is characteristic function ¢p
m Fourier series for mean embedding is product of fourier series!
(convolution theorem)

/‘LP(:B) = </‘LP, k(': x))]—"
= EXNpk(X — :I:)

_ /7r k(z — £)dP(t)

49/60



The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

m Fourier series for P is characteristic function ¢p
m Fourier series for mean embedding is product of fourier series!
(convolution theorem)

/‘LP(:B) = </‘LP, k(': x))]—"
= EXNpk(X — :I:)

_ / k(z — t)dP(t)  fipeg = ke X Bpyg

49/60



The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

m Fourier series for P is characteristic function ¢p
m Fourier series for mean embedding is product of fourier series!
(convolution theorem)

/‘LP(:B) = </‘LP, k(': x))]—"
= EXNpk(X — :I:)

_ / k(z — t)dP(t)  fipeg = ke X Bpyg

MMD can be written in terms of Fourier series:

MMD(P, Q; F) = [lup — kol x
o0

> [(@P,z —00,) 7231] exp(ifz)

{=—0c0

f
49/60



A simpler Fourier representation for MMD

From previous slide,

(o)

> [(¢P,Z —Po.) fﬂe] exp(1fz)

{=—0c0

MMD(P,Q; F) =

F

Reminder: the squared norm of a function f in F is:

o (32
=y B

l=—oc0 k'l
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A simpler Fourier representation for MMD

From previous slide,

(o)

> [(¢P,Z —Po.) fﬂe] exp(1fz)

{=—0c0

MMD(P,Q; F) =

F

Reminder: the squared norm of a function f in F is:

o (32
=y B

l=—oc0 k'l

Simple, interpretable expression for squared MMD:

2 Pe—P0u kz
MMD*(P, Q;F)= > e ,‘;Q i Z lope—

l=—00 l=—00
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Characteristic kernels on [—, 7]

Example: P differs from @ at one frequency:

0.2
0.15
Z o
A
0.05
0
0.2
0.15
S
— 0.1
<&
0.05
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Characteristic kernels on [—, 7]

Example: P differs from @ at one frequency:

0.2 ’ o
0.15
8 ~
T O Sos
0.05
0 (ERRRRAARRIARRRAEEED)
2 0 2 -10 0 10
0.2 1 ©
E o 05
o <
0.05
=% > -10 0 10
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Characteristic kernels on [—, 7]

Example: P differs from @ at one frequency:

0.2

0.15

—

8
— 0.1

A
0.05

0.2

0.15

0.05

Characteristic  function
difference
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Characteristic kernels on [, 7]

Is the Gaussian spectrum kernel characteristic?

Kernel Fourier series coefficients
0.16
0.6 0.14
0.5 0.12
0.4 0.1
E o3 «Z0.08
~e
0.2 0.06
0.1 0.04
0 0.02
~04 . P T T Po
4 -2 0 2 4 -10 5 [ 5 10
T l
(o]

MMD*(P,Q;F) = " |ppe— 0oul’ke

l=—00 52/60



Characteristic kernels on [, 7]

Is the Gaussian spectrum kernel characteristic? Y ES

Kernel Fourier series coefficients
0.16
0.6 0.14
0.5 0.12
0.4 0.1
E o3 «Z0.08
~e
0.2 0.06
0.1 0.04
0 0.02
~04 . P T T Po
4 -2 0 2 4 -10 5 [ 5 10
T l
(o]

MMD*(P,Q;F)= > |ppe— 0o’k

l=—00 52/60



Characteristic kernels on [, 7]

Is the triangle kernel characteristic?

Triangle Fourier series coefficients
0. 0.07
025 0.06
02
0.05
0.15
. 0.04
2 oaf =
=
003
0.051
0.02
of
_0.05 0.01
01 L L L - 0?? T T ??0 Q
-4 -2 0 2 4 -10 -5 0 5 10
x L
(o]
2 . _ 27,
MMD*(P,Q;F)= > |ppse— 0o’k
l=—00
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Characteristic kernels on [, 7]

Is the triangle kernel characteristic? NO

Triangle Fourier series coefficients
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Characteristic kernels on R?

Can we prove characteristic on R%?

Characteristic function of P via Fourier transform

pp(w) = /Rd e= w4 P(z)
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Characteristic kernels on R?

Can we prove characteristic on R%?

Characteristic function of P via Fourier transform

pp(w) = /Rd e= w4 P(z)

For translation invariant kernels: k(z,y) = k(z — y), Bochner’s
theorem:

k(z —y) = /Rd e Uz )T dA(w)

A(w) finite non-negative Borel measure.
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Characteristic kernels on R?

Fourier representation of MMD on R¢%:

MMD*(P, @5 F) = [ lpp(w) - po)l® dAw)
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Characteristic kernels on R?

Fourier representation of MMD on R¢%:

MMD*(P, @5 F) = [ lpp(w) - po)l® dAw)
Proof: an exercise! But recall the Fourier series case for [—m, 7]:

MMD?*(P, Q; F) Z lope — ok

l=—00
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Characteristic kernels on R?

Example: P differs from @ at roughly one frequency:
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Characteristic kernels on R?

Example: P differs from @ at roughly one frequency:
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Characteristic kernels on R?

Example: P differs from @ at roughly one frequency:
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:
Exponentiated quadraric kernel spectrum A(w)

Difference |pp — @]
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:

Characteristic
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:
Sinc kernel spectrum A(w)

Difference |pp — @]
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:

Not characteristic
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:
Triangle (B-spline) kernel spectrum A(w)

Difference |¢pp — ¢g|
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:
777
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:

Characteristic
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Summary: characteristic kernels on R¢

Characteristic kernel: MMD = 0 iff P = Q rukumizu et al. [NIPS07b],

Sriperumbudur et al.[COLTO08]
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Summary: characteristic kernels on R¢

Characteristic kernel: MMD = 0 iff P = Q rukumizu et al. [NIPS07b],

Sriperumbudur et al.[COLTO08]

Main theorem: A translation invariant k is characteristic for prob.
measures on R? if and only if

supp(A) = R*

(i.e. support zero on at most a countable set) sriperumbudur et a1 [covTos,

JMLR10]

60,/60



Summary: characteristic kernels on R¢

Characteristic kernel: MMD = 0 iff P = Q rukumizu et al. [NIPS07b],

Sriperumbudur et al.[COLTO08]
Main theorem: A translation invariant k is characteristic for prob.
measures on R? if and only if
_ mod
supp(A) = R
(i.e. support zero on at most a countable set) sriperumbudur et a1 [covTos,

JMLR10]

Corollary: any continuous, compactly supported k characteristic
(since Fourier spectrum A(w) cannot be zero on an interval).

1-D proof sketch from [Mallat, 99, Theorem 2.6], proof on R? via distribution theory in Sriperumbudur
et al. [JMLR10, Corollary 10 p. 1535]
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