Representing and comparing probabilities with kernels: Part 2

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

MLSS Madrid, 2018

Comparing two samples

■ Given: Samples from unknown distributions P and Q.

■ Goal: do P and Q differ?

Outline

Two sample testing

- Test statistic: Maximum Mean Discrepancy (MMD)...
 - ...as a difference in feature means
 - ...as an integral probability metric (not just a technicality!)
- Statistical testing with the MMD
- "How to choose the best kernel"

Training GANs with MMD

Maximum Mean Discrepancy

■ Simple example: 2 Gaussians with different means

Answer: t-test

- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $\varphi(x) = x^2$

- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $\varphi(x) = x^2$

- Gaussian and Laplace distributions
- Same mean *and* same variance
- Difference in means using higher order features...RKHS

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$oldsymbol{arphi}(x) = [\dots arphi_i(x) \dots] \in oldsymbol{\ell}_2$$

For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$oldsymbol{arphi}(oldsymbol{x}) = [\dots arphi_i(oldsymbol{x}) \dots] \in oldsymbol{\ell}_2$$

For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$k(x,x') = \exp\left(-\gamma \left\|x-x'
ight\|^2
ight)$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4. 8/60

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

$$\mu_P = [\dots \mathbf{E}_P \left[\varphi_i(X) \right] \dots]$$

For positive definite k(x, x'),

$$\langle \mu_{I\!\!P}, \mu_{I\!\!Q}
angle_{\mathcal{F}} = \mathbf{E}_{I\!\!P},_{I\!\!Q} k(\pmb{x}, \pmb{y})$$

for $x \sim P$ and $y \sim Q$.

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded.

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

$$\mu_P = [\dots \mathbf{E}_P \left[\varphi_i(X) \right] \dots]$$

For positive definite k(x, x'),

$$\langle \mu_{I\!\!P}, \mu_{I\!\!Q}
angle_{\mathcal{F}} = \mathbf{E}_{I\!\!P},_{I\!\!Q} k(m{x}, m{y})$$

for $x \sim P$ and $y \sim Q$.

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded.

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$\begin{split} MMD^{2}(P,Q) &= \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2} \\ &= \langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}} \\ &= \underbrace{\mathbf{E}_{P}k(X,X')}_{\text{(a)}} + \underbrace{\mathbf{E}_{Q}k(Y,Y')}_{\text{(a)}} - 2\underbrace{\mathbf{E}_{P,Q}k(X,Y)}_{\text{(b)}} \end{split}$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$\begin{split} MMD^{2}(P,Q) &= \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2} \\ &= \langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}} \\ &= \underbrace{\mathbb{E}_{P}k(X,X')}_{\text{(a)}} + \underbrace{\mathbb{E}_{Q}k(Y,Y')}_{\text{(b)}} - 2\underbrace{\mathbb{E}_{P,Q}k(X,Y)}_{\text{(b)}} \end{split}$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between **feature** means:

$$\begin{split} MMD^{2}(P,Q) &= \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2} \\ &= \langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}} \\ &= \underbrace{\mathbf{E}_{P}k(X,X')}_{(\mathbf{a})} + \underbrace{\mathbf{E}_{Q}k(Y,Y')}_{(\mathbf{a})} - 2\underbrace{\mathbf{E}_{P,Q}k(X,Y)}_{(\mathbf{b})} \end{split}$$

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

Illustration of MMD

- Dogs (= P) and fish (= Q) example revisited
- Each entry is one of $k(dog_i, dog_j)$, $k(dog_i, fish_j)$, or $k(fish_i, fish_j)$

Illustration of MMD

The maximum mean discrepancy:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\operatorname{dog}_i, \operatorname{dog}_j) + rac{1}{n(n-1)} \sum_{i
eq j} k(\operatorname{fish}_i, \operatorname{fish}_j) \\ & - rac{2}{n^2} \sum_{i,j} k(\operatorname{dog}_i, \operatorname{fish}_j) \\ & k(\operatorname{dog}_i, \operatorname{dog}_j) \quad k(\operatorname{dog}_i, \operatorname{fish}_j) \end{aligned}$$

Are P and Q different?

Are P and Q different?

Integral probability metric:

Find a "well behaved function" f(x) to maximize

$$\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)$$

Integral probability metric:

Find a "well behaved function" f(x) to maximize

$$\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)$$

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} \mathit{MMD}(P, \column{Q}{Q}; F) &:= \sup_{\|f\| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{\column{Q}} f(\column{Y}{Y})
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} \mathit{MMD}(P, \column{Q}{Q}; F) &:= \sup_{\|f\| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{\column{Q}} f(\column{Y}{Y})
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Maximum mean discrepancy: smooth function for P vs Q

$$MMD(P, \begin{subarray}{l} oldsymbol{\mathcal{Q}}; F) := \sup_{\|f\| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{\mathcal{Q}}} f(\begin{subarray}{l} oldsymbol{Y} \end{array}
ight) \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{array}$$

Functions are linear combinations of features:

$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\top} \begin{bmatrix} \varphi_1(x) & & \\ \varphi_2(x) & & \\ \varphi_3(x) & & \\ \vdots & & \end{bmatrix}$$

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} \mathit{MMD}(P, \column{Q}{Q}; F) &:= \sup_{\|f\| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{\column{Q}} f(\column{Y}{Y})
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Expectations of functions are linear combinations of expected features

$$\mathrm{E}_P(f(X)) = \langle f, \mathrm{E}_P arphi(X)
angle_{\mathcal{F}} = \langle f, \pmb{\mu}_P
angle_{\mathcal{F}}$$

(always true if kernel is bounded)

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} \mathit{MMD}(P, \column{Q}{Q}; F) &:= \sup_{\|f\| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{\column{Q}} f(\column{Y}{Y})
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

For characteristic RKHS
$$\mathcal{F}$$
, $MMD(P, Q; F) = 0$ iff $P = Q$

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded varation 1 (Kolmogorov metric) [Müller, 1997]
- Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

$$MMD(P, Q; F)$$

$$= \sup_{f \in F} [\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)]$$

The MMD:

MMD(P, Q; F) $= \sup \left[\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y) \right]$

$$=\sup_{f\in\mathcal{F}}\langle f,\mu_P-\mu_Q
angle_{\mathcal{F}}$$

use

$$\mathbf{E}_P f(X) = \langle \mu_P, f
angle_{\mathcal{F}}$$

$$egin{aligned} & MMD(P, \column{2}{c}Q; F) \ &= \sup_{f \in F} \left[\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)
ight] \ &= \sup_{f \in F} \left\langle f, \mu_P - \mu_Q \right\rangle_{\mathcal{F}} \end{aligned}$$

$$MMD(P, Q; F)$$

$$= \sup_{f \in F} [\mathbf{E}_{P}f(X) - \mathbf{E}_{Q}f(Y)]$$

$$= \sup_{f \in F} \langle f, \mu_{P} - \mu_{Q} \rangle_{F}$$

$$\begin{split} &MMD(P, \colon{Q}; F) \ &= \sup_{f \in F} \left[\mathbf{E}_P f(X) - \mathbf{E}_Q f(\colon{Y}) \right] \ &= \sup_{f \in F} \langle f, \mu_P - \mu_Q \rangle_{\mathcal{F}} \end{split}$$

$$f^* = \frac{\mu P}{\|\mu_P - \mu_Q\|}$$

The MMD:

```
egin{aligned} & MMD(P, \ensuremath{\mathcal{Q}}; F) \ &= \sup_{f \in F} \left[ \mathbf{E}_P f(X) - \mathbf{E}_{\ensuremath{\mathcal{Q}}} f(Y) 
ight] \ &= \sup_{f \in F} \left\langle f, \mu_P - \mu_{\ensuremath{\mathcal{Q}}} \right\rangle_{\mathcal{F}} \ &= \|\mu_P - \mu_{\ensuremath{\mathcal{Q}}} \| \end{aligned}
```

Function view and feature view equivalent

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{\pmb{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{\pmb{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$f^*(v) = \langle f^*, arphi(v)
angle_{\mathcal{F}}$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{\pmb{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$f^*(v) = \langle f^*, \varphi(v) \rangle_{\mathcal{F}} \ \propto \langle \widehat{\mu}_P - \widehat{\mu}_Q, \varphi(v) \rangle_{\mathcal{F}}$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{\pmb{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} f^*(v) &= \langle f^*, arphi(v)
angle_{\mathcal{F}} \ &\propto \langle \widehat{\pmb{\mu}}_P - \widehat{\pmb{\mu}}_{m{\mathcal{Q}}}, arphi(v)
angle_{m{\mathcal{F}}} \ &= rac{1}{n} \sum_{i=1}^n k(\pmb{x}_i, v) - rac{1}{n} \sum_{i=1}^n k(\pmb{ extbf{y}}_i, v) \end{aligned}$$

Don't need explicit feature coefficients $f^* := \begin{bmatrix} f_1^* & f_2^* & \dots \end{bmatrix}$

Interlude: divergence measures

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)

Two-Sample Testing with MMD

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}}_i, \pmb{ extbf{y}}_j) \ & - rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{ extbf{y}}_j) \end{aligned}$$

How does this help decide whether P = Q?

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}}_i, \pmb{ extbf{y}}_j) \ & - rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{ extbf{y}}_j) \end{aligned}$$

Perspective from statistical hypothesis testing:

- Null hypothesis \mathcal{H}_{0} when P=Q
 - should see \widehat{MMD}^2 "close to zero".
- Alternative hypothesis \mathcal{H}_1 when $P \neq Q$
 - should see \widehat{MMD}^2 "far from zero"

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}}_i, \pmb{ extbf{y}}_j) \ & - rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{ extbf{y}}_j) \end{aligned}$$

Perspective from statistical hypothesis testing:

- Null hypothesis \mathcal{H}_0 when P = Q
 - should see \widehat{MMD}^2 "close to zero".
- Alternative hypothesis \mathcal{H}_1 when $P \neq Q$
 - should see \widehat{MMD}^2 "far from zero"

Draw n = 200 i.i.d samples from P and Q

■ Laplace with different y-variance.

$$\sqrt{n} \times \widehat{MMD}^2 = 1.2$$

Draw n = 200 i.i.d samples from P and Q

■ Laplace with different y-variance.

$$\sqrt{n} \times \widehat{MMD}^2 = 1.2$$

Draw n = 200 new samples from P and Q

■ Laplace with different y-variance.

$$\sqrt{n} \times \widehat{MMD}^2 = 1.5$$

Repeat this 150 times ...

Repeat this 300 times ...

Repeat this 3000 times ...

Asymptotics of \widehat{MMD}^2 when $P \neq Q$

When $P \neq Q$, statistic is asymptotically normal,

$$rac{\widehat{ ext{MMD}}^2 - ext{MMD}(P, extstyle{Q})}{\sqrt{V_n(P, extstyle{Q})}} \stackrel{D}{\longrightarrow} \mathcal{N}(0, 1),$$

where variance $V_n(P,Q) = O(n^{-1})$.

What happens when P and Q are the same?

Asymptotics of \widehat{MMD}^2 when P = Q

Where P = Q, statistic has asymptotic distribution

$$n\widehat{ ext{MMD}}^2 \sim \sum_{l=1}^\infty \lambda_l \left[z_l^2 - 2
ight]$$

where

$$\lambda_i \psi_i(x') = \int_{\mathcal{X}} rac{ ilde{k}(x,x') \psi_i(x) dP(x)}{ ext{centred}}$$

$$z_l \sim \mathcal{N}(0, 2)$$
 i.i.d

A statistical test

A summary of the asymptotics:

A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

How do we get test threshold c_{α} ?

Original empirical MMD for dogs and fish:

$$X = \begin{bmatrix} & & & \\ & & &$$

$$egin{split} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) \ &+ rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}_i}, \pmb{ extbf{y}_j}) \ &- rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{ extbf{y}_j}) \end{split}$$

How do we get test threshold c_{α} ?

<u>Permuted</u> dog and fish samples (merdogs):

$$\widetilde{X} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$$

$$\widetilde{Y} = [$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$\widetilde{X} = \begin{bmatrix} \bigcirc & \bigcirc & \\ & \bigcirc & \\ & & \end{bmatrix}$$

$$\widetilde{Y} = [$$

$$egin{aligned} \widehat{MMD}^2 = &rac{1}{n(n-1)} \sum_{i
eq j} k(ilde{m{x}}_i, ilde{m{x}}_j) \ &+ rac{1}{n(n-1)} \sum_{i
eq j} k(ilde{m{y}}_i, ilde{m{y}}_j) \ &- rac{2}{n^2} \sum_{i
eq i} k(ilde{m{x}}_i, ilde{m{y}}_j) \end{aligned}$$

Permutation simulates

$$P = Q$$

How to choose the best kernel (1) optimising the kernel parameters

Graphical illustration

Maximising test power same as minimizing false negatives

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$ext{Pr}_1\left(\widehat{n ext{MMD}}^2>\widehat{c}_lpha
ight)$$

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{split} & \Pr_1\left(n\widehat{ ext{MMD}}^2 > \hat{c}_{lpha}
ight) \ & o \Phi\left(rac{n ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_{lpha}}{\sqrt{V_n(P,Q)}}
ight) \end{split}$$

where

- \blacksquare Φ is the CDF of the standard normal distribution.
- \hat{c}_{α} is an estimate of c_{α} test threshold.

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$\Pr_1\left(n\widehat{\mathsf{MMD}}^2 > \hat{c}_{\alpha}\right) \ o \Phi\left(\underbrace{\frac{\mathsf{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}}}_{O(n^{1/2})} - \underbrace{\frac{c_{\alpha}}{n\sqrt{V_n(P,Q)}}}_{O(n^{-1/2})}\right)$$

Variance under \mathcal{H}_1 decreases as $\sqrt{V_n(P,Q)} \sim O(n^{-1/2})$ For large n, second term negligible!

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{split} & \Pr_1\left(n\widehat{ ext{MMD}}^2 > \hat{c}_lpha
ight) \ & o \Phi\left(rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_lpha}{n\sqrt{V_n(P,Q)}}
ight) \end{split}$$

To maximize test power, maximize

$$\frac{\text{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}}$$

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017)

Code: github.com/dougalsutherland/opt-mmd

Troubleshooting for generative adversarial networks

MNIST samples

Samples from a GAN

Troubleshooting for generative adversarial networks

307549 530575 524945 041081

MNIST samples

ARD map

Samples from a GAN

- Power for optimzed ARD kernel: 1.00 at $\alpha = 0.01$
- Power for optimized RBF kernel: 0.57 at α = 0.01

43/60

Troubleshooting generative adversarial networks

How to choose the best kernel (2) characteristic kernels

Characteristic kernels

```
Characteristic: MMD a metric MMD = 0 iff P = Q) [NIPS07b, JMLR10]
```

In the next slides:

- Characteristic property on $[-\pi, \pi]$ with periodic boundary
- Characteristic property on \mathbb{R}^d

Reminder: Fourier series

Function on $[-\pi, \pi]$ with periodic boundary.

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp(\imath \ell x) = \sum_{l=-\infty}^{\infty} \hat{f}_{\ell} \left(\cos(\ell x) + \imath \sin(\ell x)
ight).$$

Jacobi theta kernel (close to exponentiated quadratic):

$$k(x-y) = rac{1}{2\pi} artheta \left(rac{x-y}{2\pi}, rac{\imath \sigma^2}{2\pi}
ight), \qquad \hat{k}_\ell = rac{1}{2\pi} \exp\left(rac{-\sigma^2 \ell^2}{2}
ight).$$

 ϑ is the Jacobi theta function, close to Gaussian when σ^2 small

- Fourier series for P is characteristic function $\varphi_{P,\ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$egin{aligned} \mu_P(x) &= \langle \mu_P, k(\cdot, x)
angle_{\mathcal{F}} \ &= E_{X \sim P} k(X - x) \ &= \int_{-\pi}^{\pi} k(x - t) dP(t) \qquad \hat{\mu}_{ ext{Pr}, \ell} = \hat{k}_{\ell} imes ar{arphi}_{P, \ell} \end{aligned}$$

- Fourier series for P is characteristic function $\varphi_{P,\ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$egin{aligned} \mu_P(x) &= \left< \mu_P, k(\cdot, x) \right>_{\mathcal{F}} \ &= E_{X \sim P} k(X - x) \ &= \int_{-\pi}^{\pi} k(x - t) dP(t) \qquad \hat{\mu}_{ ext{Pr}, \ell} = \hat{k}_{\ell} imes ar{arphi}_{P, \ell} \end{aligned}$$

- Fourier series for P is characteristic function $\varphi_{P,\ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$egin{aligned} \mu_P(x) &= \left\langle \mu_P, k(\cdot, x)
ight
angle_{\mathcal{F}} \ &= E_{X \sim P} k(X - x) \ &= \int_{-\pi}^{\pi} k(x - t) dP(t) \qquad \hat{\mu}_{ ext{Pr}, \ell} = \hat{k}_{\ell} imes ar{arphi}_{P, \ell} \end{aligned}$$

- Fourier series for P is characteristic function $\varphi_{P,\ell}$
- Fourier series for mean embedding is product of fourier series!
 (convolution theorem)

$$egin{aligned} \mu_P(x) &= \left\langle \mu_P, k(\cdot, x)
ight
angle_{\mathcal{F}} \ &= E_{X \sim P} k(X - x) \ &= \int_{-\pi}^{\pi} k(x - t) dP(t) \qquad \hat{\mu}_{ ext{Pr}, \ell} = \hat{k}_{\ell} imes ar{arphi}_{P, \ell} \end{aligned}$$

Maximum mean embedding via Fourier series:

- Fourier series for P is characteristic function $\varphi_{P,\ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$egin{aligned} \mu_P(x) &= \left\langle \mu_P, k(\cdot, x)
ight
angle_{\mathcal{F}} \ &= E_{X \sim P} k(X - x) \ &= \int_{-\pi}^{\pi} k(x - t) dP(t) \qquad \hat{\mu}_{ ext{Pr}, \ell} = \hat{k}_{\ell} imes ar{arphi}_{P, \ell} \end{aligned}$$

MMD can be written in terms of Fourier series:

$$egin{aligned} MMD(P,\, oldsymbol{Q};\, F) &= \left\| oldsymbol{\mu}_P - oldsymbol{\mu}_{oldsymbol{Q}}
ight\|_{\mathcal{F}} \ &= \left\| \sum_{\ell=-\infty}^{\infty} \left[\left(ar{arphi}_{P,\ell} - ar{arphi}_{oldsymbol{Q},\ell}
ight) \hat{k}_{\ell}
ight] \exp(\imath \ell x)
ight\|_{\mathcal{F}} \end{aligned}$$

A simpler Fourier representation for MMD

From previous slide,

$$MMD(P, \ oldsymbol{Q}; F) = \left\| \sum_{\ell = -\infty}^{\infty} \left[\left(ar{arphi}_{P,\ell} - ar{arphi}_{\mathcal{Q},\ell}
ight) \hat{k}_{\ell}
ight] \exp(\imath \ell x)
ight\|_{\mathcal{F}}$$

Reminder: the squared norm of a function f in \mathcal{F} is:

$$||f||_{\mathcal{F}}^2 = \sum_{l=-\infty}^{\infty} \frac{|\hat{f}_{\ell}|^2}{\hat{k}_{\ell}}.$$

Simple, interpretable expression for squared MMD:

$$MMD^2(P,Q;F) = \sum_{l=-\infty}^{\infty} \frac{[|\varphi_{P,\ell} - \varphi_{Q,\ell}|^2 \hat{k}_{\ell}]^2}{\hat{k}_{\ell}} = \sum_{l=-\infty}^{\infty} |\varphi_{P,\ell} - \varphi_{Q,\ell}|^2 \hat{k}_{\ell}$$

A simpler Fourier representation for MMD

From previous slide,

$$MMD(P, rac{oldsymbol{Q}}{oldsymbol{Q}}; F) = \left\| \sum_{\ell = -\infty}^{\infty} \left[\left(ar{arphi}_{P,\ell} - ar{arphi}_{oldsymbol{Q},\ell}
ight) \hat{k}_{\ell}
ight] \exp(\imath \ell x)
ight\|_{\mathcal{F}}$$

Reminder: the squared norm of a function f in \mathcal{F} is:

$$||f||_{\mathcal{F}}^2 = \sum_{l=-\infty}^{\infty} \frac{|\hat{f}_{\ell}|^2}{\hat{k}_{\ell}}.$$

Simple, interpretable expression for squared MMD:

$$MMD^2(\emph{P},\emph{Q};F) = \sum_{l=-\infty}^{\infty} rac{[|arphi_{\emph{P},\emph{\ell}} - arphi_{\emph{Q},\emph{\ell}}|^2 \hat{k}_{\emph{\ell}}]^2}{\hat{k}_{\emph{\ell}}} = \sum_{l=-\infty}^{\infty} |arphi_{\emph{P},\emph{\ell}} - arphi_{\emph{Q},\emph{\ell}}|^2 \hat{k}_{\emph{\ell}}$$

Example: P differs from Q at one frequency:

Example: P differs from Q at one frequency:

Example: P differs from Q at one frequency:

Is the Gaussian spectrum kernel characteristic?

$$MMD^2(P, rac{oldsymbol{Q}}{oldsymbol{Q}}; F) = \sum_{l=-\infty}^{\infty} |arphi_{P,oldsymbol{\ell}} - arphi_{rac{oldsymbol{Q}}{oldsymbol{Q}},oldsymbol{\ell}}|^2 \hat{k}_{oldsymbol{\ell}}$$

Is the Gaussian spectrum kernel characteristic? YES

$$MMD^2(P, rac{oldsymbol{Q}}{oldsymbol{Q}}; F) = \sum_{l=-\infty}^{\infty} |arphi_{P,oldsymbol{\ell}} - arphi_{rac{oldsymbol{Q}}{oldsymbol{Q}},oldsymbol{\ell}}|^2 \hat{k}_{oldsymbol{\ell}}$$

Is the triangle kernel characteristic?

$$MMD^2(\emph{P}, \emph{Q}; F) = \sum_{l=-\infty}^{\infty} |arphi_{\emph{P}, \ell} - arphi_{\emph{Q}, \ell}|^2 \hat{k}_{\ell}$$

Is the triangle kernel characteristic? NO

$$MMD^2(P, \begin{cases} Q \ F \) = \sum_{l=-\infty}^{\infty} |arphi_{P,\ell} - arphi_{Q,\ell}|^2 \hat{k}_\ell$$

Can we prove characteristic on \mathbb{R}^d ?

Characteristic function of P via Fourier transform

$$oldsymbol{arphi}_P(\omega) = \int_{\mathbb{R}^d} e^{ix^ op \omega} \, dP(x)$$

For translation invariant kernels: k(x, y) = k(x - y), Bochner's theorem:

$$g(x-y) = \int_{\mathbb{R}^d} e^{-i(x-y)^ op \omega} d\Lambda(\omega)$$

 $\Lambda(\omega)$ finite non-negative Borel measure.

Can we prove characteristic on \mathbb{R}^d ?

Characteristic function of P via Fourier transform

$$arphi_P(\omega) = \int_{\mathbb{R}^d} e^{ix^ op \omega} \, dP(x)$$

For translation invariant kernels: k(x, y) = k(x - y), Bochner's theorem:

$$k(x-y) = \int_{\mathbb{R}^d} e^{-i(x-y)^ op \omega} d\Lambda(\omega)$$

 $\Lambda(\omega)$ finite non-negative Borel measure.

Fourier representation of MMD on \mathbb{R}^d :

$$MMD^{2}(P, \colon{Q}; F) = \int \left| arphi_{P}(\omega) - arphi_{Q}(\omega)
ight|^{2} d\Lambda(\omega)$$

Proof: an exercise! But recall the Fourier series case for $[-\pi, \pi]$

$$MMD^2(P, extbf{ extit{Q}}; F) = \sum_{l=-\infty}^{\infty} |arphi_{P,\ell} - arphi_{ extbf{ extit{Q}},\ell}|^2 \hat{k}_{\ell}$$

Fourier representation of MMD on \mathbb{R}^d :

$$MMD^{2}(P, {\color{red} Q}; F) = \int \left| {\color{red} arphi_{P}(\omega) - {\color{red} arphi_{Q}(\omega)}}
ight|^{2} d\Lambda(\omega)$$

Proof: an exercise! But recall the Fourier series case for $[-\pi, \pi]$:

$$MMD^2(P, extbf{ extit{Q}}; F) = \sum_{l=-\infty}^{\infty} |arphi_{P,\ell} - arphi_{ extbf{ extit{Q}},\ell}|^2 \hat{k}_{\ell}$$

Example: P differs from Q at roughly one frequency:

Example: P differs from Q at roughly one frequency:

Example: P differs from Q at roughly one frequency:

Example: P differs from Q at (roughly) one frequency:

Exponentiated quadraric kernel spectrum $\Lambda(\omega)$

Difference $|\varphi_P - \varphi_Q|$

Example: P differs from Q at (roughly) one frequency:

Characteristic

Example: P differs from Q at (roughly) one frequency:

Sinc kernel spectrum $\Lambda(\omega)$

Difference $|\varphi_P - \varphi_Q|$

Example: P differs from Q at (roughly) one frequency:

Not characteristic

Example: P differs from Q at (roughly) one frequency:

Triangle (B-spline) kernel spectrum $\Lambda(\omega)$

Difference $|\phi_P - \phi_Q|$

Example: P differs from Q at (roughly) one frequency:

Example: P differs from Q at (roughly) one frequency:

Characteristic

Summary: characteristic kernels on \mathbb{R}^d

Characteristic kernel: MMD = 0 iff P = Q Fukumizu et al. [NIPS07b], Sriperumbudur et al. [COLT08]

Main theorem: A translation invariant k is characteristic for prob. measures on \mathbb{R}^d if and only if

$$\operatorname{supp}(\Lambda) = \mathbb{R}^d$$

(i.e. support zero on at most a countable set) Sriperumbudur et al. [COLT08, JMLR10]

Corollary: any continuous, compactly supported k characteristic (since Fourier spectrum $\Lambda(\omega)$ cannot be zero on an interval).

1-D proof sketch from [Mallat, 99, Theorem 2.6], proof on \mathbb{R}^d via distribution theory in Sriperumbudur et al. [JMLR10, Corollary 10 p. 1535]

Summary: characteristic kernels on \mathbb{R}^d

Characteristic kernel: MMD = 0 iff P = Q Fukumizu et al. [NIPS07b], Sriperumbudur et al. [COLT08]

Main theorem: A translation invariant k is characteristic for prob. measures on \mathbb{R}^d if and only if

$$\operatorname{supp}(\Lambda)=\mathbb{R}^d$$

(i.e. support zero on at most a countable set) Sriperumbudur et al. [COLT08, JMLR10]

Corollary: any continuous, compactly supported k characteristic (since Fourier spectrum $\Lambda(\omega)$ cannot be zero on an interval).

1-D proof sketch from [Mallat, 99, Theorem 2.6], proof on \mathbb{R}^d via distribution theory in Sriperumbudur et al. [JMLR10, Corollary 10 p. 1535]

Summary: characteristic kernels on \mathbb{R}^d

Characteristic kernel: MMD = 0 iff P = Q Fukumizu et al. [NIPS07b], Sriperumbudur et al. [COLT08]

Main theorem: A translation invariant k is characteristic for prob. measures on \mathbb{R}^d if and only if

$$\operatorname{supp}(\Lambda)=\mathbb{R}^d$$

(i.e. support zero on at most a countable set) Sriperumbudur et al. [COLT08, JMLR10]

Corollary: any continuous, compactly supported k characteristic (since Fourier spectrum $\Lambda(\omega)$ cannot be zero on an interval).

1-D proof sketch from [Mallat, 99, Theorem 2.6], proof on \mathbb{R}^d via distribution theory in Sriperumbudur et al. [JMLR10, Corollary 10 p. 1535]