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Training GANs with MMD



What is a Generative Adversarial Network (GAN)?

* Generator (student) * Critic (teacher)

* Task: critic must teach generator
to draw images (here dogs)
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Why is classification not enough?

Definitely
a dog

Classification not enough!
Need to compare sets

(otherwise student can just produce the same dog over and over)
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MMD for GAN critic

Can you use MMD as a critic to train GANs?
From ICML 2015:

Generative Moment Matching Networks

Yujia Li' YUJIALI@CS.TORONTO.EDU
Kevin Swersky' KSWERSKY @CS.TORONTO.EDU
Richard Zemel'? ZEMEL@CS.TORONTO.EDU

! Department of Computer Science, University of Toronto, Toronto, ON, CANADA
2Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy

optimization
Gintare Karolina Dziugaite Daniel M. Roy Zoubin Ghahramani
University of Cambridge University of Toronto University of Cambridge
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MMD for GAN critic

Can you use MMD as a critic to train GANs?

7107124/

HEFICIFEIR
6 4/723

Need better image features.
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How to improve the critic witness

m Add convolutional features!
m The critic (teacher) also needs to be trained.

m How to regularise?

o B @ i A
fi=, e

MMD GAN Li et al., [NIPS 2017]
Coulomb GAN Unterthiner et al., [[CLR 2018]
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017
WGAN-GP Gukrajani et al. [NIPS 2017

Gradient close to 1 here

Real
points
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017
WGAN-GP Gukrajani et al. [NIPS 2017]

Given a generator Gy with parameters 8 to be trained.
Samples Y ~ Gg(Z) where Z ~ R

22
m Given critic features hy with parameters 9 to be trained. f;

a linear function of hy.
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017
WGAN-GP CGukrajani et al. [NIPS 2017]

L Given a generator Gy with parameters 8 to be trained.
Samples Y ~ Gyp(Z) where Z ~ R

L] Given critic features hy with parameters ¢ to be trained. f;

a linear function of hy.

WGAN-GP gradient penalty:
max Bxopfy(X) — Bzurfy(Go(2)) + ABx (VA ()] - 1)

where

=7z + (1 —7)Gy(z)
y~U0,1]) =z e{zd), 7 € {ak), v



The (W)MMD

Train MMD critic features with the witness function gradient penalty
Binkowski, Sutherland, Arbel, G. [ICLR 2018], Bellemare et al. [2017] for energy distance:

max 1110 (hy (X), hy( Go(2))) + ABz |V f(X)| - 1)’

where

fw(')=—sz(hw(ivz = Z (hy(Go(z5)), )

New

X =7z + (1 —7)Gy(%)
v~U0,1]) o€ {m}, 2z € {a},

Remark by Bottou et al. (2017): gradient penalty modifies the function class. So crit/#
not an MMD in RKHS F.



MMD for GAN critic: revisited

From ICLR 2018:
DEMYSTIFYING MMD GANS

Mikotaj Birikowski*
Department of Mathematics
Imperial College London
mikbinkowskiBgmail.com

Dougal J. Sutherland; Michael Arbel & Arthur Gretton
Gatsby Computational Neuroscience Unit
University College London

{dougal, michael .n.arbel,arthur.gretton}@gmail.com
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visited

MMD for GAN critic: re
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MMD for GAN critic: revisited

Samples are better!

Can we do better still?



Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution

Nagarajan and Kolter [NIPS 2017], Mescheder et al. [ICML 2018]|, Balduzzi et al. [ICML
2018

The Dirac-GAN

Figure from Mescheder et al. [[CML 2018] 1o/71



Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution
Nagarajan and Kolter [NIPS 2017], Mescheder et al. [ICML 2018]|, Balduzzi et al. [ICML
2018]

The Dirac-GAN
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Figure from Mescheder et al. [[CML 2018]
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A Dbetter gradient penalty

m New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]
m Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
m Related to Sobolev GAN wMroueh et al. [ICLR 2018

arXiv.org > stat > arXiv:1805.11565

Statistics > Machine Learning

On gradient regularizers for MMD GANs

Michael Arbel, Dougal J. Sutherland, Mikotaj Bifikowski, Arthur Gretton
(Submitted on 29 May 2018)
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A Dbetter gradient penalty

m New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]
m Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
m Related to Sobolev GAN wMroueh et al. [ICLR 2018

I Should be flat here I

I Can be steep here I

Real
points
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A Dbetter gradient penalty

m New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]
m Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
m Related to Sobolev GAN Mroueh et al. [ICLR 2018

Modified witness function:

MMD := e [Epf(X)—Eqof(V)]

where

A2 = 1£13, ) + IV F1Z, 0y + MIFIE
2N & PN

L, norm Gradient RKHS
control control smoothness
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A Dbetter gradient penalty

m New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]
m Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]

m Related to Sobolev GAN wMroueh et al. [ICLR 2018

Modified witness function:

MMD := sup [Epf(X)—Eof(V)]

where

LA = 1 £ 1700y + IV 1 Z ey + AIFIIE
& N

2N

L, norm
control

Gradient
control

RKHS
smoothness

Problem: not computationally feasible: O(n3) per iteration.

11/71



A Dbetter gradient penalty

m New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]
m Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
m Related to Sobolev GAN Mroueh et al. [ICLR 2018

The scaled MMD:
SMMD = Ok,P,\ MMD

where
-1/2

d

kP = ( A—i—/k(m,m)dP(m) —|—Z/6¢6i+dk(a:,m) dp(a;)>
i=1

Replace expensive constraint with cheap upper bound:

2 ~1 2
1715 < okpa 171
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A Dbetter gradient penalty

m New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]
m Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
m Related to Sobolev GAN wMroueh et al. [ICLR 2018

The scaled MMD:
SMMD = o px MMD

where
-1/2

d

Crpa = ( A—i—/k(x,ac)dp(m) +Z/6i6i+dk(x,m) dp(x)>
i=1

Replace expensive constraint with cheap upper bound:

||f||s < UkPA ||f||k

Idea: rather than regularise the critic or witness function, regularise

features directly 11/71



Evaluation and experiments
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Evaluation of GANs

The inception score? satimans et al. [NIPS 2016]

Based on the classification output p(y|z) of the inception model s:ezeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)[|P(y))-
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).
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Evaluation of GANs

The inception score? salimans et al. [NIPS 2016]

Based on the classification output p(y|z) of the inception model s:czeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)[|P(y)).
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new
categories (celeb, bedroom...)
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Evaluation of GANs

The Frechet inception distance? Heusel et al. [NIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = [|lur — pol > + tr(Zp) + tr(So) — 2t (Zp50)?)

where up and X p are the feature mean and covariance of P
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Evaluation of GANs

The Frechet inception distance? Heusel et al. [NIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = [|lur — pol > + tr(Zp) + tr(So) — 2t (Zp50)?)

where up and X p are the feature mean and covariance of P

50

Problem: bias. For
finite samples can 0

consistently give 30

FID

incorrect answer. 2

m Bias demo,
CIFAR-10 train vs

0
test 0 2000 4000 6000 8000 10000
n
14/71



Evaluation of GANs

The FID can give the wrong answer in theory.
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Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P1 ~N(0,(1 —m™1)?) Py ~ N(0,1) Q ~ N(0,1).
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Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P1 ~N(0,(1 —m™1)?) Py ~ N(0,1) Q ~ N(0,1).

Clearly,

FID(Py, Q) = —; > FID(P;, Q) = 0
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Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P1 ~N(0,(1 —m™1)?) Py ~ N(0,1) Q ~ N(0,1).

Clearly,
1
FID(P1, Q) = o > FID(P,, Q) =0

Given m samples from P; and P,

FID(Py, Q) < FID(Py, Q).
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Evaluation of GANs

The FID can give the wrong answer in practice.
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, 1)) Ps =relu(N(1,.88+.214)) Q =relu(WN(1, 1))

where X = %CCT, with C a d x d matrix with iid standard normal
entries.
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, 1)) Ps =relu(N(1,.88+.214)) Q =relu(WN(1, 1))

where X = %CCT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(P;, Q) ~ 1123.0 > 1114.8 ~ FID(P,, Q)
With m = 50000 samples,
FID(P;, Q) ~ 1133.7 < 1136.2 & FID(P,, Q)
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, 1)) Ps =relu(N(1,.88+.214)) Q =relu(WN(1, 1))

where X = %CCT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(P;, Q) ~ 1123.0 > 1114.8 ~ FID(P,, Q)
With m = 50000 samples,
FID(Py, Q) ~ 1133.7 < 1136.2 & FID(P,, Q)

At m = 100000 samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C. 16/71



The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [[CLR 2018]
Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)

MMD with kernel 0.004

0.003
0.002

1 3
k(z,y) = (d:cTy + 1) . oo

0.000

m Checks match for feature
means, variances, skewness

-0.001
-0.002

m Unbiased : eg CIFAR-10 -0.003
train /test 0 250 500 750 1000 1250 1500 1750 2000
n
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [I[CLR 2018]
Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)

MMD with kernel 0.004

0.003
0.002

1 3
k(z,y) = (dwTy + 1) . oo

0.000

m Checks match for feature
means, variances, skewness

-0.001
-0.002

m Unbiased : eg CIFAR-10 -0.003

traln/test 0 250 500 750 1(1:)0 1250 1500 1750 2000

.but isn’t KID is computationally costly?”
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel 0.004

0.003
0.002

1 3
k(z,y) = (d:cTy + 1) . o0

0.000

m Checks match for feature
means, variances, skewness

-0.001

-0.002

m Unbiased : eg CIFAR-10 -0.003

tra]_n/test 0 250 500 750 12;)0 1250 1500 1750 2000

...“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper

(or use Tensorflow implementation)!
17/71



The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel 0.004

0.003
0.002

1 3
k(z,y) = (d:cTy + 1) . o0

0.000

m Checks match for feature
means, variances, skewness

-0.001

-0.002

m Unbiased : eg CIFAR-10 -0.003

tra]_n/test 0 250 500 750 12;)0 1250 1500 1750 2000

Also used for automatic learning rate adjustment: if KID(]BH_l, Q)
not significantly better than KID(]Bt, @) then reduce learning rate.
[Bounliphone et al. ICLR 2016]

7/71
Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al. l[agxiv,
June 2018]



Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION
FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato', Toshiki Kataoka', Masanori Koyama®, Yuichi Yoshida®
{miyato, katauka]ﬁgreferred.jp

orks, Inc. *Ritsumeikan University *National Institute of Informatics

DEMYSTIFYING MMD GANS

Mikolaj Biikowski®
Department of Mathematics
Imperial College London
mikbinkowskifgmal

om

Dougal J. smmn;w Arhel & Arthur Gretton

rbel,arthur.grett:

SOBOLEV GAN

Youssef Mroueh', ,Chan-Lisng L *, Tom Sercu’*, Anant Raj°* & Yu Cheng'

+ IBM Rescarch A

o Camnegie Mellon U

© Max Planck Institute for Imauigem Systems

+ denotes Equal Contribution

{mroueh, chengyu}@us.ibm.com, chunlial@cs.cmu.edu,
tom.sercul@ibm.com, anant.rajltuebingen. mpg. de

BOUNDARY-SEEKING
GENERATIVE ADVERSARIAL NETWORKS
R Devan H

MILA, University of Montréal, IVADO
erroneusdgrall.com

Athul Paul Jacab-
MILA, MSR, University of Waterloo
apjacobledu. uwaterloo.ca

Tong Che
MILA, University of Moatréal
tong.chefunontreal.ca
Kv\mgmm Cho Yoshua Bengio
York Uni MILA, Univessity of Monteéal, CIFAR, IVADO
AR Al Gk Schola yoshua.bengiofumontreal .ca

kyunghyun. chollayu. edu
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Results: what does MMD buy you?

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

MMD GAN samples, f = 64, WGAN samples, f = 64,
FID=32, KID=3 FID=41, KID=4 /™



Results: what does MMD buy you?

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

MMD GAN samples, f = 16, WGAN samples, f = 16,
FID=86, KID=9 f = 64, FID=293, KID=4¥/""



The kernel inception distance (KID)

Faster training: performance scores vs generator iterations on MNIST
KID

175

150

— MMD rq* 125

—— MMD rbf

—— MMD dot 100

—— MMD distance 75
Cramer GAN

WGAN-GP 50

25

FID

0

10000 20000 30000 40000 50000
generator iterations

0.12

0.10

0.08

0.06

0.04

0.02

RN AL I
0 10000 20000 30000 40000 50000
generator iterations
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Results: celebrity faces 160x 160

KID (FID)

scores:

m Sobolev GAN:
14 (20)

m SN-GAN:
18 (28)

m Old MMD
GAN:
13 (21)

m SMMD GAN:
6 (12)

202 599 face images, re-

sized and cropped to 160
X 160




Results: imagenet 64 x64

KID (FID)
SCores:

= BGAN:
47 (44)

m SN-GAN:
44 (48)

m SMMD GAN:
35 (37)
ILSVRC2012 (ImageNet)
dataset, 1 281 167 im-

ages, resized to 64 x 64.
Around 20 000 classes.
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Results: imagenet 64 x64

KID (FID)
SCores:

m BGAN:
A7 (44)
m SN-GAN:
44 (48)
= SMMD GAN:
35 (37)
ILSVRC2012 (ImageNet)
dataset, 1 281 167 im-

ages, resized to 64 x 64.
Around 20 000 classes.




Results: imagenet 64 x64

KID (FID)
SCores:

= BGAN:
A7 (44)
m SN-GAN:
44 (48)
= SMMD GAN:
35 (37)
ILSVRC2012 (ImageNet)
dataset, 1 281 167 im-

ages, resized to 64 x 64.
Around 20 000 classes.




Summary

m MMD critic gives state-of-the-art performance for GAN training
(FID and )

use convolutional input features
train with new gradient regulariser

m Faster training, simpler critic network

m Reasons for good performance:
Unlike WGAN-GP, MMD loss still a valid critic when features not
optimal
Kernel features do some of the “work”, so simpler hy features possible.
Better gradient/feature regulariser gives better critic

Code for “Demystifying MMD GANs,” ICLR 2018, including KID
score: https://github.com/mbinkowski/MMD-GAN

Code for new SMMD:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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https://github.com/mbinkowski/MMD-GAN
https://github.com/MichaelArbel/Scaled-MMD-GAN 

Testing against a probabilistic model



Statistical model criticism

MMD(P, Q) = [|f*||*> = sup,<1[Eqf — Epf]

— p(x)
— q(x)
-0.1 _ f*(x)
-0.2
-0.3

f*(z) is the witness function
Can we compute MMD with samples from @ and a model P?
Problem: usualy can’t compute E,f in closed form.
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Stein idea

To get rid of E,f in

sup [Eqf — Epf]
[Ifll=<1

we define the Stein operator

[Tof](2) =

Then
EpTpf=0

subject to appropriate boundary conditions. (oates, Girolami, Chopin, 2016)
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Stein idea: proof
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Stein idea: proof

d

BT, = [ [p;m (f(2)p(2)) | phaTde
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Stein idea: proof




Stein idea: proof
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Stein idea: proof

B, (1,0 = [ [p;ﬁj (f(2)p(2))| ptaYda
[ | 6@ a
= [F(@)p(=)] %
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Kernel Stein Discrepancy
Stein operator

1 d
=) @

Kernel Stein Discrepancy (KSD)

(f(z)n(z))

KSD(p,q,F)= sup EgTp,g9— EyTpg
llgllz<1
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Kernel Stein Discrepancy
Stein operator

1 d

Tof = 2y 45 V@)

Kernel Stein Discrepancy (KSD)

KSD(p,q,F)= sup E,T,9— E,F;g= sup E;T,g
lg]| <1 llgllF<1
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Kernel Stein Discrepancy

Stein operator 4
1
Tpf = m az (f(z)p(z))

Kernel Stein Discrepancy (KSD)

KSD(p,q,F)= sup E,T,g— E,F5g= sup E,Tyg
llgll#<1 lloll <1

— p(x)
— q(x)
— g'(x)
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Kernel Stein Discrepancy

Stein operator 4
1
Tpf = m az (f(z)p(z))

Kernel Stein Discrepancy (KSD)

KSD(p,q,F)= sup E,T,g— E,F5g= sup E,Tyg
llgll#<1 lloll <1

— p(x)
— q(x)
— g'(x)
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Kernel stein discrepancy

Closed-form expression for KSD: given Z, Z' ~ g, then

(Chwialkowski, Strathmann, G., ICML 2016) (Liu, Lee, Jordan ICML 2016)

KSD(p7 qr‘F) = thp(Z: Z,)

where

hy(z,y) := 6 log p(x)0; log p(y)k(z, y)
+ 0y log p(y)0:k(z, y)
+ 8; log p(z)0yk(z, v)
+ 0;0yk(z, )

and k is RKHS kernel for F

Only depends on kernel and 8, log p(z). Do not need to
normalize p, or sample from it.
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Statistical model criticism

Chicago crime data
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components.
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components
Stein
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with ten components.
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with ten components
Stein witness function
Code: https://github.com/karlnapf/kernel goodness of fit 2%/



Kernel stein discrepancy

Further applications:
m Evaluation of approximate MCMC methods.

(Chwialkowski, Strathmann, G., ICML 2016; Gorham, Mackey, ICML 2017)
What kernel to use?

m The inverse multiquadric kernel,

kz,9) = (e +lle — ul)’

for g € (—1,0).

arXiv.org > stat > arXiv:1703.01717

Statistics > Machine Learning

Measuring Sample Quality with Kernels

Jackson Gorham, Lester Mackey ICML 2017
(Submitted on 6 Mar 2017 (v1), last revised 3 Aug 2017 (this version, v6))
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Testing statistical dependence



Dependence testing

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?

X Y

A large animal who slings slobber,
exudes a distinctive houndy odor,
and wants nothing more than to
follow his nose.

Their noses guide them
through life, and they're
never happier than when
following an interesting scent.

A responsive, interactive
pet, one that will blow in
your ear and follow you
everywhere.

Text from dogtime.com and petfinder.com
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MMD as a dependence measure?

Could we use MMD?

MMD(Pxy, Px Py, Hx)
N N —
P Q
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MMD as a dependence measure?

Could we use MMD?

MMD(Pxy, Px Py, Hx)
N N —
P Q

m We don’t have samples from @ := Px Py, only pairs
i.id.
{(zi, yi}}y "* Pxy

Solution: simulate @ with pairs (z;, y;) for 7 # 1.
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MMD as a dependence measure?

Could we use MMD?

MMD(Pxy, Px Py, Hx)
N N —
P Q

m We don’t have samples from @ := Px Py, only pairs
i.id.
{(zi, yi}}y "* Pxy

Solution: simulate @ with pairs (z;, y;) for 7 # 1.

m What kernel k to use for the RKHS H,.?

34/71



MMD as a dependence measure

Kernel k£ on images with feature space F,

k(™ %)

Kernel [ on captions with feature space G,

Alarge animal Aresponsive,
who slings interactive pet
slobber, .. ’ .
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MMD as a dependence measure

Kernel k£ on images with feature space F,

k(™ %)

Kernel [ on captions with feature space G,

Alarge animal Aresponsive,
who slings interactive pet
slobber, .. ’ .

Alarge
animal
who slings

slobber, ...

A responsive,
interactive
7 pet,

35,71



MMD as a dependence measure

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?

~ o~ oa 1
MMD?(Pxy, Px Py, H,) := —strace(K L)
n

( K, L column centered)
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MMD as a dependence measure

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?

= ~ = 1
MMD?(Pxy, Px Py, H,) := —strace(K L)
n
K A large animal who slings L

slobber, exudes a distinctive
houndy odor, ...

D A Their noses guide them through li

..) and they're never happier than wk

following an interesting scent.

A responsive, interactive pet, one
that will blow in your ear and
) follow you everywhere.

36,71

Text from dogtime.com and petfinder.com



MMD as a dependence measure

Two questions:

m Why the product kernel? Many ways to combine kernels - why not
eg a sum?

m Is there a more interpretable way of defining this dependence
measure?
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[llustration: dependence #correlation

m Given: Samples from a distribution Pxy
m Goal: Are X and Y dependent?

Correlation: 0.88

1.5

0.5 [
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[llustration: dependence #correlation

m Given: Samples from a distribution Pxy
m Goal: Are X and Y dependent?
Correlation: 0.07

0 0.2 0.4 0.6 0.8 1
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[llustration: dependence #correlation

m Given: Samples from a distribution Pxy

m Goal: Are X and Y dependent?

1.5

1 L

Correlation: 0.00

Mo |




Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.

Correlation: 0.00

= o
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Finding covariance with smooth transformations

INlustration: two variables with no correlation but strong dependence.

f(X) witness

05
15 Correlation: 0.00 0
1 Sy 0.5
KX -
0.5 . “ p
: 1 2 0 2
S~ 0 A . X
. s g(Y') witness
05 s X 05
L .
e .
1 - .
15
-2 1 0 1 2,45
X
-
2 0 2
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Finding covariance with smooth transformations

INlustration: two variables with no correlation but strong dependence.

E=}

0.5
15 Correlation: 0.00 0
1 Sy 0.5
KX -
0.5 . + p
H E
>~ 0 .
0.5 .:.. . 3 0.5
e o
1 ~ 0
1.5
2 1 1 2,05

f(X) witness

0
X

g(Y') witness

0.5 A

Correlation: 0.90

0.5

STl
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Define two spaces, one for each witness

Function in F
z) =) fip(z)
J=1

Feature map

[ 1(2) /\_
-\

—~T —

p(x) =

Kernel for RKHS F on X:

k(z,z') =

T

T

T

(p(z), p(z) 7

Function in G

Z 9;95(y

Feature map

_¢1(y)/\
/ Y
oy) = |2~
TN
STy

Kernel for RKHS G on Y:

Uz, ') = ($(v), $(¥"))g
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The constrained covariance

The constrained covariance is

COCO(Pxy) =

Correlation: 0.00

NE=}

0.5

-0.5

sup

IFll7 <1
lgllg <1

f(X) witness

0
X

9(Y') witness

0.5

-0.5

cov[f(z)g(y)]

Correlation: 0.90

e

oot

41/71
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The constrained covariance

The constrained covariance is

COCO(Pxy)=  sup  cov [(ZJ?%(?E)) (Z gj¢j(y)>]
T P T AV=" =
lgllg <1
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The constrained covariance

The constrained covariance is

COCO(Pxy)=  sup  FHy (ij%‘(fﬂ)) (Z gj¢j(y)>]
Ifllz <1 =1 =1
lgllg <1

Fine print: feature mappings ¢(z) and ¢(y) assumed to have zero mean.
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The constrained covariance

The constrained covariance is

COCO(PXY) = sup Eacy <Zf]‘p](x)> (Z gj¢j(y)>]
Ifllx <1 = =
lgllg <1
Fine print: feature mappings ¢(z) and ¢(y) assumed to have zero mean.
Rewriting:
Bay[f(2)9(y)]
T
h pi(z) 9

=| | By || @) | [is) e20) ]| 2

Co(2)¢(v)
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The constrained covariance

The constrained covariance is

oo oo

COCO(Pxy) =  sup  Hy (ij‘l’j(x)) (Z 9j¢j(y)>]

Wlr<t LA =

lgllg <1
Fine print: feature mappings ¢(z) and ¢(y) assumed to have zero mean.
Rewriting:

Eryf(2)9(y)]
T
h p1(z) g1

=| B Byl | 00 | [4(0) tv) ]| ] o

Co()e(v)

COCO: max singular value of feature covariance C‘P(I)‘ﬁ(%




Computing COCO in practice

Given sample {(z;, v;)}7 4 LR Pxvy, what is empirical COCO ?
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Computing COCO in practice

Given sample {(z;, v;)}7 4 Lhg Pxvy, what is empirical COCO ?

COCO is largest eigenvalue Ymax of

e ]S ]

Ky = k(z;,z;) and Ly; = I(y;, yj).

Fine print: kernels are computed with empirically centered features ¢(z) — % ;:1 o(z;)

1 n
and ¢(y) = 7 )=y $(¥i):

G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis,
AISTATS’05
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Computing COCO in practice

Given sample {(z;, v;)}7 4 LR Pxvy, what is empirical COCO ?
COCO is largest eigenvalue ymax of
L 5156 ]G]
1 = .
~LK 0 B 0 L B
Kij = k(xi, :Bj) and Lij = l(yi, y]‘).

Witness functions (singular vectors):

n n
fle) o< Y ak(z,z)  g(y) « Y Bilyi, )
=1 1=1
Fine print: kernels are computed with empirically centered features p(z) — % ?:1 o(z;)

1 n
and ¢(y) — 2 327 #(w).
G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis,

AISTATS’05

42/71



Empirical COCO: proof (1)

The Lagrangian is

1< A 4
£f,90m = o S @)e(w)] - 5 (1713~ 1) = 5 (92 - 1).
1=1
covariance smoothness constraints

Fine print: f(z;)g(y;) centered to have zero empirical mean.
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Empirical COCO: proof (1)

The Lagrangian is

n

L0790 = = Dl @)aw] - 5 (1713~ 1) = 2 (sl - 1),

1=1

g smoothness constraints
covariance

Fine print: f(z;)g(y;) centered to have zero empirical mean.

Assume (cf representer theorem):
n n
f=>aip(z) g=> Bit(w)
i=1 i=1

for centered ¢(z;), ¢(vi).
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Empirical COCO: proof (1)

The Lagrangian is

n

L0790 = = Dl @)aw] - 5 (1713~ 1) = 2 (sl - 1),

1=1

g smoothness constraints
covariance

Fine print: f(z;)g(y;) centered to have zero empirical mean.

Assume (cf representer theorem):
n n
f=>aip(z) g=> Bit(w)
i=1 i=1

for centered ¢(z;), ¢(vi).

First step is smoothness constraint:

IfIF-1=(fflr—1
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Empirical COCO: proof (1)

The Lagrangian is

n

L0790 = = Dl @)aw] - 5 (1713~ 1) = 2 (sl - 1),

1=1

g smoothness constraints
covariance

Fine print: f(z;)g(y;) centered to have zero empirical mean.

Assume (cf representer theorem):
n n
f=>aip(z) g=> Bit(w)
i=1 i=1

for centered ¢(z;), ¢(vi).

First step is smoothness constraint:

IflIF-1={ffr-1
= <Z ai‘p(xi))zai‘p(xi)> -1
1=1 1=1

F
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Empirical COCO: proof (1)

The Lagrangian is

n

L0790 = = Dl @)aw] - 5 (1713~ 1) = 2 (sl - 1),

1=1

g smoothness constraints
covariance

Fine print: f(z;)g(y;) centered to have zero empirical mean.

Assume (cf representer theorem):
n n
f=>aip(z) g=> Bit(w)
i=1 i=1

for centered ¢(z;), ¢(vi).

First step is smoothness constraint:

IflIF-1={ffr-1
= <Z ai‘p(xi))zai‘p(xi)> -1
1=1 1=1

F
43/71
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Proof sketch (2)

Second step is covariance:

n

= S I (@)a(w)] = - 3 {F 0@ (0, 0(ui)g
1=1

1=1
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Proof sketch (2)

Second step is covariance:

S (@) 9] = = D U el@)hr (0, 9(wi)lg
1=1 1=1
= 25 (D (@) so(mi)> (9,9(u:))g
1=1 =1 F
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Proof sketch (2)

Second step is covariance:

1 1

—2 f(@)g(wll = — > (@) 5 (9, 0(v:))g
1—1 1—1
==y <Zaz<ﬂ($fz), so(wi)> (9,0(u))g
iil l:l ].‘
= laTKLﬁ
n

where Ky = k(zi, z;)=(p(z:), 0(2)) r Ly = Uy, ¥))-
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Proof sketch (2)

Second step is covariance:

%Z[f(m )g(w:)] = %Z {f,0(2:)) 7 (9, 0(9i))g
i=1 =1
Z<Za,;g0 ), > (9, 0(vi))g
i=1 \¢=1 F
= laTKLﬁ
n

where Ky = k(z;, z;)=(p(z:), o(z;)) 7 Li; = UYs, ¥5)-

The Lagrangian is now:

(f 9 A 7) laTKL,B ;\( TKa_]_)_

N2

(5758

44/71



What is a large dependence with COCQO?

Smooth density Rough density
E— 3[000000000000
7 \\ / 000000000000
2( 2l0 00000000000
A / ,oococoooooog
\\\_/,/ ) ©oc0000000 000
> 0 > /2000000 0000T
—— ©0E000000000
g /066006060600

©60000000000 .
2gopegacozecs  Density takes the form:

3000600060006

-2 0 2

x

500 samples, rough density Pxy « 1+Sln(w$) sm(wy)
4

4 -2 0 2 4 24 -2 0 2 4
X X

Which of these is the more “dependent”?
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Finding covariance with smooth transformations

Case of w = 1:

. f(X) witness
0.5 .
4 Correlation: 0.31 Correlation: 0.50 COCO: 0.09
0
0.5
2 0.5
K 2 0 2 o
0 T ox = 0
g(Y) witness e
-2
05 0.5
-4 o
-4 -2 0 2 4 -0.5 0 0.5
X 05 f(X)
-1
2 0 2
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Finding covariance

Case of w = 2:

Correlation: 0.02

with smooth transformations

f(X) witness

-2

0
X

2

g(Y) witness

g(Y)

Correlation: 0.54

0.5

-0.5

COCO:

0.07

47/71



Finding covariance with smooth transformations

Case of w = 3:

. f(X) witness
0.5 .
4 Correlation: 0.03 Correlation: 0.44 COCO: 0.04
0
0.5
2 0.5
K 2 0 2 o
>~ 0 X = 0
. . g(Y) witness e
-2 .'
: 05 0.5
-4 0
4 -2 0 2 4 M 0.5 0 0.5
X 05 f(X)
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Finding covariance with smooth transformations

Case of w = 4:

. f(X) witness
0.5 .
4 Correlation: 0.05 Correlation: 0.25 COCO: 0.02
0
0.5
2 0.5
K 2 0 2 o
>~ 0 Cox = 0
g(Y) witness e
-2
05 0.5
-4 0
-4 -2 0 2 4 -0.5 0 0.5
X 05 f(X)
-1
2 0 2
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Finding covariance with smooth transformations

Case of w =77:

. f(X) witness
0.5 .
4 Correlation: 0.01 Correlation: 0.14  COCO: 0.02
0
0.5
2 0.5
K 2 0 2 o
>~ 0 ) X b 0
g(Y) witness e
2 o5 -0.5
-4 0
-4 -2 0 2 4
X 0.5
-1
2 0 2
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Finding covariance with smooth transformations

Case of w = 0: uniform noise! (shows bias)

Correlation: 0.01

1

0.5

0

-0.5

0.5

-0.5

f(X) witness

-2

0
X

9(Y) witness

2

Correlation: 0.14  COCO: 0.02

0.5

-0.5
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Dependence largest when at “low” frequencies

m As dependence is encoded at higher frequencies, the smooth
mappings f, g achieve lower linear dependence.

m Even for independent variables, COCO will not be zero at finite
sample sizes, since some mild linear dependence will be found by f,g
(bias)

m This bias will decrease with increasing sample size.
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Can we do better than COCQO?

A second example with zero correlation.

First singular value of feature covariance Cy(z)g(y):

Correlation: 0.00

ot
o o

0.5

-0.5

fi1(X) witness

0
X

¢1(Y') witness

~ o

g1(Y)

Correlation: 0.80  COCO,: 0.11

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Pl

K3

-1

-0.5 0 0.5
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Can we do better than COCQO?

A second example with zero correlation.

Second singular value of feature covariance Cy(z)g(y):
fo(X) witness

0.5
Correlation: 0.00 0
1 et 05
0.5 p

D N -2 0 2

S 0 R A X
O : S 92(Y') witness
0.5 “ 1
A e 05
1 05 0 05 1 0
X

05

~ o
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Can we do better than COCQO?

A second example with zero correlation.

Second singular value of feature covariance Cy(z)g(y):

fo(X) witness

0.5
Correlation: 0.00 0 Correlation: 0.37  COCO,: 0.06
1 05 050  te.
05 A p .
-2 0 2 —~ . .
P~ 0 X b 0 .-' -
05 - 1 92(Y') witness > ) .;
: . PR
A e 05 05 s Ll
-1 05 0 05 1 0 -1 -0.5 0 0.5 1
X f2(X)
0.5
-1
2 0 2
Y

53/71



The Hilbert-Schmidt Independence Criterion

Writing the :th singular value of the feature covariance Cy(y)4(y) as
v; := COCO;(Pxy; F,G),
define Hilbert-Schmidt Independence Criterion (HSIC)

HSIC?*(Pxy; F,G) =Y _7i.
1=1

G, Bousquet , Smola., and Schoelkopf, ALTO05; G,., Fukumizu, Teo., Song., Schoelkopf., and Smola,
NIPS 2007,.
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The Hilbert-Schmidt Independence Criterion

Writing the :th singular value of the feature covariance Cy(z)4(y) as
vi := COCO,(Pxy; F,9),

define Hilbert-Schmidt Independence Criterion (HSIC)

[e e}

HSIC*(Pxy; F,G) =Y _7;.
1=1

G, Bousquet , Smola., and Schoelkopf, ALT05; G,., Fukumizu, Teo., Song., Schoelkopf., and Smola,
NIPS 2007,.

HSIC is MMD with product kernel!
HSIC?*(Pxy; F,G) = MMD?(Pxy, Px Py;HL)
where k((z,y), (z',¥")) = k(z, ") l(y, ¥').
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Asymptotics of HSIC under independence

m Given sample {(z;, i }7; L Pxy, what is empirical HSIC?
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Asymptotics of HSIC under independence
m Given sample {(z;, y; }1- L Pxy, what is empirical HSIC?
m Empirical HSIC (biased)
— 1
HSIC = — trace(KL)
n

Kij = ]C(:Ez', :Ej) and Lij = l(yi yj) (K and L computed with
empirically centered features)
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Asymptotics of HSIC under independence
m Given sample {(z;, y; }1- L Pxy, what is empirical HSIC?
m Empirical HSIC (biased)
— 1
HSIC = — trace(KL)
n
Kij = ]C(:Ez', :Ej) and Lij = l(yiyj) (K and L computed with
empirically centered features)

m Statistical testing: given Pxy = Px Py, what is the threshold c,
such that P(HSIC > c,) < a for small a?
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Asymptotics of HSIC under independence

m Given sample {(z;, y; }1- L Pxy, what is empirical HSIC?

m Empirical HSIC (biased)
— 1
HSIC = — trace(KL)
n

Kij = ]C(:Ez', :Ej) and Lij = l(yi yj) (K and L computed with
empirically centered features)

m Statistical testing: given Pxy = Px Py, what is the threshold c,
such that P(HSIC > c,) < a for small a?

m Asymptotics of H/SI\C when Pxy = PxPy:

—

o
D ..
nHSIC = Az, z ~ N(0,1)iid.
=1
where \3i(z) = f hijori(2)dFi q,ry  Pajer = % Z(w'q'r) ktwltu + Keuwlow — 2kt i

(tyu,v,w)
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A statistical test

m Given Pxy = Px Py, what is the threshold ¢, such that
P(HSIC > c¢4) < o for small o (prob. of false positive)?
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A statistical test

m Given Pxy = Px Py, what is the threshold ¢, such that
P(HSIC > c¢4) < o for small o (prob. of false positive)?

m Original time series:

m Permutation:

X1
Y,

X1

Yo

Xa X5 Xe X7 Xg Xg X1
Yy Vs Y Y7 Yg Yo Yig

X X5 Xe X7 Xg Xg X1
Yy Yg Vs V1 Y Yo

56/71



A statistical test

m Given Pxy = Px Py, what is the threshold ¢, such that
P(HSIC > c¢4) < o for small o (prob. of false positive)?

m Original time series:

X1 Xy Xe X7 Xg Xo X10

Y; Y, Ys Y7 Yg Yy Yig
m Permutation:

X1 Xa X5 Xo X7 Xg Xo X10

Y7 Yg Y4 Yg Yl Y6 YlO

m Null distribution via permutation
Compute HSIC for {z;, Yr(;) };=, for random permutation 7 of indices
{1,...,n}. This gives HSIC for independent variables.
Repeat for many different permutations, get empirical CDF
Threshold ¢, is 1 — a quantile of empirical CDF 56/71



Application: dependence detection across languages

Testing task: detect dependence between English and French text

X Y

Honourable senators, | have a Honorables sénateurs, ma question
question for the Leader of the s’adresse au leader du
Government in the Senate gouvernement au Sénat

Les ordres de gouvernements
provinciaux et municipaux
subissent de fortes pressions

No doubt there is great pressure
on provincial and municipal

governments

In fact, we have increased Au contraire, nous avons augmenté
federal investments for early le financement fédéral pour le
childhood development. développement des jeunes

Text from the aligned hansards of the 36" parliament of canada,
ttps://www.si ! 57/71




Application: dependence detection across languages

Testing task: detect dependence between English and French text

k-spectrum kernel, k£ = 10, sample size n = 10

X

Y

Honourable senators, |
have a question for the
Leader of the Government
in the Senate

No doubt there is great
pressure on provincial and
municipal governments

In fact, we have increased
federal investments for
early childhood
development.

(K and L column centered)

Honorables sénateurs, ma
question s’adresse au leader
du gouvernement au Sénat

Les ordres de gouvernements
provinciaux et municipaux
subissent de fortes pressions

Au contraire, nous avons
augmenté

le financement fédéral pour le ="
développement des jeunes

f L

1
ﬁtrace(K L)
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Application:Dependence detection across languages

Results (for oo = 0.05)

m k-spectrum kernel: average Type II error O

m Bag of words kernel: average Type II error 0.18

Settings: Five line extracts, averaged over 300 repetitions, for
“Agriculture” transcripts. Similar results for Fisheries and
Immigration transcripts.
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Testing higher order interactions



Detecting higher order interaction

How to detect V-structures with pairwise weak individual
dependence?

61,71



Detecting higher order interaction

How to detect V-structures with pairwise weak individual
dependence?

catalyst

reaction

61,71



Detecting higher order interaction

How to detect V-structures with pairwise weak individual
dependence?

XULY,YULZXUZ

X1vs Y1 Y1vs Z1
' “ e . . e “

X1vs Z1 X1*Y1 vs Z1
. )

5 To0 0 ii.d.

;é.-.::' = X,Y =" N(0,1)
«?!&‘ T mZ X, Y~ sign(XY)Emp(%)
cl.;.

Fine print: Faithfulness violated here!
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V-structure discovery

Assume X 1l Y has been established.
V-structure can then be detected by:

m Consistent CI test: Hg : X 1L Y|Z [rukumizu et al. 2008, Zhang et al. 2011]
m Factorisation test: Ho: (X, Y) 1 Z Vv (X,Z2) L Y Vv (Y,Z2) 1L X
(multiple standard two-variable tests)

How well do these work?
62/71



Detecting higher order interaction

Generalise earlier example to p dimensions

XULY,YULZXUZ

X1vs Y1 Y1vs Z1
e S . . O .

e Kz = X, Y " N(0,1)

52 e
m 7| X,Y ~ sign(XY)Ewp(%)

.1.d.
n X2:p; Y2:p; ZQ:p S N(O, Ip—l)

Fine print: Faithfulness violated here!
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V-structure discovery

CI test for X 1l Y|Z from znang et a1 (2011), and a factorisation test

n = 500

Null acceptance rate (Type Il error)

0.8

0.6

0.4

0.2

V-structure discovery: Dataset A

————— 2var: Factor

—8— C: X1Y|Z

n n | T

1 3 5 7 9 11

Dimension

13 15 17 19
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Lancaster interaction measure

Lancaster interaction measure of (Xi,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALpszy—PXpy

65,71



Lancaster interaction measure

Lancaster interaction measure of (Xi,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALpszy—PXpy
D=3: ApLP = Pxyz — PxPyz — PyPxz — Pz Pxy +2Px Py Py
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Lancaster interaction measure

Lancaster interaction measure of (Xj,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALP:.ny—PXpy
AP =
Pxyz —PxPyz —PyPxz — Py Pxy +2Px Py Py

4 b o o

65,71



Lancaster interaction measure

Lancaster interaction measure of (Xi,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALpszy—PXpy
D=3: ApLP = Pxyz — PxPyz — PyPxz — Pz Pxy +2Px Py Py

© O OO ORONO
sr=o O O, ©

+xvz =Ptz =P = TR,

Case of Px 1l Pyy

65,71



Lancaster interaction measure

Lancaster interaction measure of (Xi,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALP:P)(y—PXpY
D=3: ApLP = Pxyz — PxPyz — PyPxz — Pz Pxy +2Px Py Py

(X, V)L ZV(X,2)ILY v (Y,Z)1LX = ALP=0.

...s0 what might be missed?
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Lancaster interaction measure

Lancaster interaction measure of (Xi,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALP = Pxy — PxPy
D=3: ALP:nyz—PXpyz—Pypxz—Pszy+2PXpyPZ

ALP=0» (X,Y)I ZV (X,2) 1LY V(Y,Z)1LX

Example:
P(v ) )_02 P(O’O,l)_ P( ,)_01 P].O, =0
P(0,1,0)=0.1 | P(0,1,1) = P(1,1,0)=0.1 | P(1,1,1) =

65,71



A kernel test statistic using Lancaster Measure

Construct a test by estimating ||u (ALP)H%K , where k = k ® I ® m:

|we(Pxyz — Pxy Pz — - )|3,. =
(bePxyz, b Pxvz)ey, — 2{ePxvz, b Pxy Pz)q -

66,71



A kernel test statistic using Lancaster Measure

| v\ | Pxyz | Pxy Pz | PxzPy ‘ PyzPx | Px Py Pz
Pxyz (KoLoM), (KoM, , (KoM)L), , (Mo L)K), , tr(K+ oLy o My)
Pxy Pz (KoL) Myy (MKL), 4 (KLM), (KL) 4+ My
PxzPy (KoM), Ly (KML), (KM) Ly
PyzPx (LoM), , Kyy (LM) Ky
PxPyPz Kyt byt My

Table: V-statistic estimators of (uxv, uxv')q, (without terms Px Py Pz). H
is centering matrix J — n~!
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A kernel test statistic using Lancaster Measure

| v\v'

Pxyz Pxy Pz PxzPy PyzPx Px Py Pz
Pxyz (KoLoM), (KoM, , (KoM)L), , (Mo L)K), , tr(K+ oLy o My)
Pxy Pz (KoL) Myy (MKL), 4 (KLM), (KL) 4+ My
PxzPy (KoM), Ly (KML), (KM) Ly
PyzPx (LoM), , Kyy (LM) Ky
PxPyPz Kyt byt My

Table: V-statistic estimators of (uxv, uxv')q, (without terms Px Py Pz). H
is centering matrix J — n~!

Lancaster interaction statistic: sejdinovic, G, Bergsma, NIPS13

I (ALP)II3, =

1

n2

(HKHo HLH o f{PV[ff)+“+ i

Empirical joint central moment in the feature space
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V-structure discovery

V-structure discovery: Dataset A

1~
—_
=
o
2
= . . . . . .
o . . . . . .
— 08 .o Ll o
©
S
L
ot
]
= . . . . .
53 4L .. T
2 0. ' : ' ' ! ' ———+—— 2var: Factor
£ ;
O . —+—— A : Factor
Y 02r .
I
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Interaction for D > 4

m Interaction measure valid for all D:

(Streitberg, 1990)

AgP = Z D=t (|7 — 1)1 P

For a partition m, J, associates to the
joint the corresponding factorisation,
e.g., Jizj2jaP = Px, x, Px, Px,.
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Interaction for D > 4

m Interaction measure valid for all D: Bell numbers growth

B1e+19

(Streitberg, 1990) H
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For a partition m, J, associates to the 3
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joint the corresponding factorisation,
e.g., Jizj2jaP = Px, x, Px, Px,.
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Questions?
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