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Training GANs with MMD
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What is a Generative Adversarial Network (GAN)?
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Why is classification not enough?
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MMD for GAN critic
Can you use MMD as a critic to train GANs?
From ICML 2015:

From UAI 2015:
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MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.
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How to improve the critic witness

Add convolutional features!

The critic (teacher) also needs to be trained.

How to regularise?

MMD GAN Li et al., [NIPS 2017]
Coulomb GAN Unterthiner et al., [ICLR 2018]
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017]
WGAN-GP Gukrajani et al. [NIPS 2017]
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017]
WGAN-GP Gukrajani et al. [NIPS 2017]

Given a generator G� with parameters � to be trained.
Samples Y � G�(Z ) where Z � R

Given critic features h with parameters  to be trained. f 
a linear function of h .
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017]
WGAN-GP Gukrajani et al. [NIPS 2017]

Given a generator G� with parameters � to be trained.
Samples Y � G�(Z ) where Z � R

Given critic features h with parameters  to be trained. f 
a linear function of h .

WGAN-GP gradient penalty:

max
 

EX�P f (X )�EZ�Rf (G�(Z )) + �EeX �reX f�(fX )
� 1

�2
where fX = xi + (1� )G (zj )

 � U([0; 1]) xi 2 fx`gm`=1 zj 2 fz`gn`=1
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The (W)MMD
Train MMD critic features with the witness function gradient penalty
Binkowski, Sutherland, Arbel, G. [ICLR 2018], Bellemare et al. [2017] for energy distance:

max
 

MMD2(h (X ); h (G�(Z ))) + �EeX �reX f (fX )
� 1

�2
where

fX = xi + (1� )G (zj )

 � U([0; 1]) xi 2 fx`gm`=1 zj 2 fz`gn`=1

Remark by Bottou et al. (2017): gradient penalty modifies the function class. So critic is
not an MMD in RKHS F .
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MMD for GAN critic: revisited

From ICLR 2018:
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MMD for GAN critic: revisited

Samples are better!
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MMD for GAN critic: revisited

Samples are better!

Can we do better still?
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Convergence issues for WGAN-GP penalty
WGAN-GP style gradient penalty may not converge near solution
Nagarajan and Kolter [NIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al. [ICML
2018]

The Dirac-GAN

P = �0 Q = �� f (x ) =  � x

Figure from Mescheder et al. [ICML 2018] 10/71
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A better gradient penalty

New MMD GAN witness regulariser (just accepted, NIPS 2018)
Arbel, Sutherland, Binkowski, G. [NIPS 2018]
Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]
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A better gradient penalty

New MMD GAN witness regulariser (just accepted, NIPS 2018)
Arbel, Sutherland, Binkowski, G. [NIPS 2018]
Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness function:

where

Problem: not computationally feasible: O(n3) per iteration.
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A better gradient penalty

New MMD GAN witness regulariser (just accepted, NIPS 2018)
Arbel, Sutherland, Binkowski, G. [NIPS 2018]
Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]

The scaled MMD:
SMMD = �k ;P ;� MMD

where

�k ;P ;� =

 
�+

Z
k(x ; x )dP(x ) +

dX
i=1

Z
@i@i+dk(x ; x ) dP(x )

!�1=2
Replace expensive constraint with cheap upper bound:

kf k2S � ��1k ;P ;� kf k2k

11/71
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New MMD GAN witness regulariser (just accepted, NIPS 2018)
Arbel, Sutherland, Binkowski, G. [NIPS 2018]
Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]

The scaled MMD:
SMMD = �k ;P ;� MMD

where

�k ;P ;� =

 
�+

Z
k(x ; x )dP(x ) +

dX
i=1

Z
@i@i+dk(x ; x ) dP(x )

!�1=2
Replace expensive constraint with cheap upper bound:

kf k2S � ��1k ;P ;� kf k2k

Idea: rather than regularise the critic or witness function, regularise
features directly
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Evaluation and experiments
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Evaluation of GANs

The inception score? Salimans et al. [NIPS 2016]

Based on the classification output p(y jx ) of the inception model Szegedy

et al. [ICLR 2014],
EX expKL(P(y jX )kP(y)):

High when:

predictive label distribution P(y jx ) has low entropy (good quality
images)

label entropy P(y) is high (good variety).
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The inception score? Salimans et al. [NIPS 2016]

Based on the classification output p(y jx ) of the inception model Szegedy

et al. [ICLR 2014],
EX expKL(P(y jX )kP(y)):

High when:

predictive label distribution P(y jx ) has low entropy (good quality
images)

label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new
categories (celeb, bedroom...)
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Evaluation of GANs
The Frechet inception distance? Heusel et al. [NIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P ;Q) = k�P � �Qk
2 + tr(�P ) + tr(�Q)� 2tr

�
(�P�Q)

1
2
�

where �P and �P are the feature mean and covariance of P
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Evaluation of GANs
The Frechet inception distance? Heusel et al. [NIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P ;Q) = k�P � �Qk
2 + tr(�P ) + tr(�Q)� 2tr

�
(�P�Q)

1
2
�

where �P and �P are the feature mean and covariance of P

Problem: bias. For
finite samples can
consistently give
incorrect answer.

Bias demo,
CIFAR-10 train vs
test 0 2000 4000 6000 8000 10000

n
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Evaluation of GANs
The FID can give the wrong answer in theory.
Assume m samples from P and n !1 samples from Q .
Given two alternatives:

P1 � N (0; (1�m�1)2) P2 � N (0; 1) Q � N (0; 1):

Clearly,

FID(P1;Q) =
1

m2 > FID(P2;Q) = 0

Given m samples from P1 and P2,

FID(cP1;Q) < FID(cP2;Q):
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Evaluation of GANs
The FID can give the wrong answer in practice.
Let d = 2048, and define

P1 = relu(N (0; Id)) P2 = relu(N (1; :8�+:2Id)) Q = relu(N (1; Id))

where � = 4
d CCT , with C a d � d matrix with iid standard normal

entries.
For a random draw of C :

FID(P1;Q) � 1123:0 > 1114:8 � FID(P2;Q)

With m = 50 000 samples,

FID(cP1;Q) � 1133:7 < 1136:2 � FID(cP2;Q)

At m = 100 000 samples, the ordering of the estimates is correct.
This behavior is similar for other random draws of C . 16/71
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k(x ; y) =
�
1
d
x>y + 1

�3
:

Checks match for feature
means, variances, skewness

Unbiased : eg CIFAR-10
train/test 0 250 500 750 1000 1250 1500 1750 2000

n

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

K
ID
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...“but isn’t KID is computationally costly?”
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The kernel inception distance (KID)
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k(x ; y) =
�
1
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K
ID

...“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper
(or use Tensorflow implementation)!
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The kernel inception distance (KID)
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k(x ; y) =
�
1
d
x>y + 1

�3
:

Checks match for feature
means, variances, skewness

Unbiased : eg CIFAR-10
train/test 0 250 500 750 1000 1250 1500 1750 2000

n
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K
ID

Also used for automatic learning rate adjustment: if KID( bP t+1;Q)

not significantly better than KID( bP t ;Q) then reduce learning rate.
[Bounliphone et al. ICLR 2016]

Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al. [arxiv,
June 2018]
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Benchmarks for comparison (all from ICLR 2018)
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Results: what does MMD buy you?

Critic features from DCGAN: an f -filter critic has f , 2f , 4f and 8f
convolutional filters in layers 1-4. LSUN 64� 64.

MMD GAN samples, f = 64,
FID=32, KID=3

WGAN samples, f = 64,
FID=41, KID=4 19/71



Results: what does MMD buy you?

Critic features from DCGAN: an f -filter critic has f , 2f , 4f and 8f
convolutional filters in layers 1-4. LSUN 64� 64.

MMD GAN samples, f = 16,
FID=86, KID=9

WGAN samples, f = 16,
f = 64, FID=293, KID=3719/71



The kernel inception distance (KID)

Faster training: performance scores vs generator iterations on MNIST
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Results: celebrity faces 160�160

KID (FID)
scores:

Sobolev GAN:
14 (20)

SN-GAN:
18 (28)

Old MMD
GAN:
13 (21)

SMMD GAN:
6 (12)

202 599 face images, re-
sized and cropped to 160
� 160
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Results: imagenet 64�64

KID (FID)
scores:

BGAN:
47 (44)

SN-GAN:
44 (48)

SMMD GAN:
35 (37)

ILSVRC2012 (ImageNet)
dataset, 1 281 167 im-
ages, resized to 64 × 64.
Around 20 000 classes.
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Summary
MMD critic gives state-of-the-art performance for GAN training
(FID and KID)

• use convolutional input features
• train with new gradient regulariser

Faster training, simpler critic network
Reasons for good performance:

• Unlike WGAN-GP, MMD loss still a valid critic when features not
optimal

• Kernel features do some of the “work”, so simpler h features possible.
• Better gradient/feature regulariser gives better critic

Code for “Demystifying MMD GANs,” ICLR 2018, including KID
score: https://github.com/mbinkowski/MMD-GAN
Code for new SMMD:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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Testing against a probabilistic model
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Statistical model criticism

MMD(P ;Q) = kf �k2 = supkf kF�1[EQ f � Epf ]

-4 -2 2 4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

p(x)

q(x)

f *(x)

f �(x ) is the witness function
Can we compute MMD with samples from Q and a model P?
Problem: usualy can’t compute Epf in closed form.
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Stein idea

To get rid of Epf in
sup

kf kF�1
[Eq f � Epf ]

we define the Stein operator

[Tpf ] (x ) =
1

p(x )
d
dx

(f (x )p(x ))

Then
EPTP f = 0

subject to appropriate boundary conditions. (Oates, Girolami, Chopin, 2016)
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Stein idea: proof

Ep [Tpf ] =
Z � 1

p(x )
d
dx

(f (x )p(x ))
�
p(x )dxZ � d

dx
(f (x )p(x ))

�
dx

= [f (x )p(x )]1�1
= 0

27/71



Stein idea: proof

Ep [Tpf ] =
Z � 1

���p(x )
d
dx

(f (x )p(x ))
�
�

��p(x )dxZ � d
dx

(f (x )p(x ))
�
dx

= [f (x )p(x )]1�1
= 0

27/71



Stein idea: proof

Ep [Tpf ] =
Z � 1

���p(x )
d
dx

(f (x )p(x ))
�
�

��p(x )dxZ � d
dx

(f (x )p(x ))
�
dx

= [f (x )p(x )]1�1
= 0

27/71



Stein idea: proof

Ep [Tpf ] =
Z � 1

���p(x )
d
dx

(f (x )p(x ))
�
�

��p(x )dxZ � d
dx

(f (x )p(x ))
�
dx

= [f (x )p(x )]1�1
= 0

27/71



Stein idea: proof

Ep [Tpf ] =
Z � 1

���p(x )
d
dx

(f (x )p(x ))
�
�

��p(x )dxZ � d
dx

(f (x )p(x ))
�
dx

= [f (x )p(x )]1�1
= 0

27/71



Kernel Stein Discrepancy
Stein operator

Tpf =
1

p(x )
d
dx

(f (x )p(x ))

Kernel Stein Discrepancy (KSD)

KSD(p; q ;F) = sup
kgkF�1

EqTpg � EpTpg
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Kernel stein discrepancy
Closed-form expression for KSD: given Z ;Z 0 � q , then
(Chwialkowski, Strathmann, G., ICML 2016) (Liu, Lee, Jordan ICML 2016)

KSD(p; q ;F) = Eqhp(Z ;Z 0)

where

hp(x ; y) := @x log p(x )@x log p(y)k(x ; y)

+ @y log p(y)@xk(x ; y)

+ @x log p(x )@yk(x ; y)

+ @x@yk(x ; y)

and k is RKHS kernel for F

Only depends on kernel and @x log p(x ). Do not need to
normalize p, or sample from it.
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Statistical model criticism

Chicago crime data
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components.
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components

Stein witness function
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with ten components.
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with ten components

Stein witness function
Code: https://github.com/karlnapf/kernel_goodness_of_fit 30/71



Kernel stein discrepancy
Further applications:

Evaluation of approximate MCMC methods.
(Chwialkowski, Strathmann, G., ICML 2016; Gorham, Mackey, ICML 2017)

What kernel to use?

The inverse multiquadric kernel,

k(x ; y) =
�
c + kx � yk22

��
for � 2 (�1; 0).
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Testing statistical dependence
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Dependence testing

Given: Samples from a distribution PXY

Goal: Are X and Y independent?

Their	noses	guide	them	
through	life,	and	they're	
never	happier	than	when	
following	an	interesting	scent.	

A	large	animal	who	slings	slobber,	
exudes	a	distinctive	houndy odor,	
and	wants	nothing	more	than	to	
follow	his	nose.	

Text	from	dogtime.com and	petfinder.com

A responsive,		interactive	
pet,	one	that	will	blow	in	
your	ear	and	follow	you	
everywhere.

YX
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MMD as a dependence measure?

Could we use MMD?

MMD(PXY| {z }
P

;PXPY| {z }
Q

;H�)

We don’t have samples from Q := PXPY , only pairs
f(xi ; yig

n
i=1

i:i:d:
� PXY

• Solution: simulate Q with pairs (xi ; yj ) for j 6= i .

What kernel � to use for the RKHS H�?
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MMD as a dependence measure
Kernel k on images with feature space F ,

Kernel l on captions with feature space G,
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MMD as a dependence measure
Kernel k on images with feature space F ,

Kernel l on captions with feature space G,

Kernel � on image-text pairs: are images and captions similar?
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MMD as a dependence measure

Given: Samples from a distribution PXY

Goal: Are X and Y independent?

MMD2( bPXY ; bPX bPY ;H�) :=
1
n2 trace(KL)

( K, L column centered)
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MMD as a dependence measure

Two questions:

Why the product kernel? Many ways to combine kernels - why not
eg a sum?

Is there a more interpretable way of defining this dependence
measure?
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Illustration: dependence 6=correlation

Given: Samples from a distribution PXY

Goal: Are X and Y dependent?

0 0.2 0.4 0.6 0.8 1
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Correlation: 0.88

38/71



Illustration: dependence 6=correlation

Given: Samples from a distribution PXY

Goal: Are X and Y dependent?

0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2
Correlation: 0.07

38/71



Illustration: dependence 6=correlation

Given: Samples from a distribution PXY

Goal: Are X and Y dependent?

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5
Correlation: 0.00

38/71



Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.
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Define two spaces, one for each witness

Function in F

f (x ) =
1X

j=1

fj'j (x )

Feature map

Kernel for RKHS F on X :

k(x ; x 0) = h'(x ); '(x 0)iF

Function in G

g(y) =
1X

j=1

gj�j (y)

Feature map

Kernel for RKHS G on Y:

l(x ; x 0) = h�(y); �(y 0)iG
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The constrained covariance
The constrained covariance is

COCO(PXY ) = sup
kf kF � 1
kgkG � 1

cov[f (x )g(y)]
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The constrained covariance
The constrained covariance is

COCO(PXY ) = sup
kf kF � 1
kgkG � 1

cov

240@ 1X
j=1

fj'j (x )

1A0@ 1X
j=1

gj�j (y)

1A35
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The constrained covariance
The constrained covariance is

COCO(PXY ) = sup
kf kF � 1
kgkG � 1

Exy

240@ 1X
j=1

fj'j (x )

1A0@ 1X
j=1

gj�j (y)

1A35

Fine print: feature mappings '(x ) and �(y) assumed to have zero mean.
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Exy
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j=1

fj'j (x )

1A0@ 1X
j=1

gj�j (y)

1A35

Fine print: feature mappings '(x ) and �(y) assumed to have zero mean.

Rewriting:

Exy [f (x )g(y)]

=

2664
f1
f2
...

3775
>

Exy

0BB@
2664
'1(x )
'2(x )

...

3775 h �1(y) �2(y) : : :
i1CCA

| {z }
C'(x)�(y)

2664
g1
g2
...

3775
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| {z }
C'(x)�(y)
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g2
...

3775

COCO: max singular value of feature covariance C'(x )�(y)
41/71



Computing COCO in practice
Given sample f(xi ; yi )g

n
i=1

i:i:d:
� PXY , what is empirical \COCO ?

kernels are computed with empirically centered features '(x )� 1
n

Pn
i=1 '(xi ) and

�(y)� 1
n

Pn
i=1 �(yi ).

G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis,

AISTATS’05
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n KL
1
n LK 0

# "
�

�

#
= 

"
K 0
0 L

# "
�

�

#
:

Kij = k(xi ; xj ) and Lij = l(yi ; yj ).

Witness functions (singular vectors):

f (x ) /
nX

i=1

�ik(xi ; x ) g(y) /
nX

i=1

�i l(yi ; y)

Fine print: kernels are computed with empirically centered features '(x )� 1
n

Pn
i=1 '(xi )

and �(y)� 1
n

Pn
i=1 �(yi ).

G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis,

AISTATS’05
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Empirical COCO: proof (1)
The Lagrangian is

L(f ; g ; �; ) =
1
n

nX
i=1

[f (xi )g(yi )]| {z }
covariance

�
�

2

�
kf k2F � 1

�
�


2

�
kgk2G � 1

�
| {z }

smoothness constraints

:

Fine print: f (xi )g(yi ) centered to have zero empirical mean.
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�
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:

Fine print: f (xi )g(yi ) centered to have zero empirical mean.

Assume (cf representer theorem):

f =
nX

i=1

�i'(xi ) g =
nX

i=1

�i (yi )

for centered '(xi ); �(yi ).
First step is smoothness constraint:

kf k2F � 1 = hf ; f iF � 1

=

* nX
i=1

�i'(xi );
nX

i=1

�i'(xi )

+
F
� 1

= �>K�� 1
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Proof sketch (2)
Second step is covariance:

1
n

nX
i=1

[f (xi )g(yi )] =
1
n

nX
i=1

hf ; '(xi )iF hg ; '(yi )iG

=
1
n

nX
i=1

* nX
`=1

�`'(x`); '(xi )

+
F
hg ; '(yi )iG

=
1
n
�>KL�
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Proof sketch (2)
Second step is covariance:

1
n

nX
i=1

[f (xi )g(yi )] =
1
n

nX
i=1

hf ; '(xi )iF hg ; '(yi )iG

=
1
n

nX
i=1

* nX
`=1

�`'(x`); '(xi )

+
F
hg ; '(yi )iG

=
1
n
�>KL�

where Kij = k(xi ; xj )=h'(xi ); '(xj )iF Lij = l(yi ; yj ).

The Lagrangian is now:

L(f ; g ; �; ) =
1
n
�>KL� �

�

2

�
�>K�� 1

�
�


2

�
�>L� � 1

�

44/71



What is a large dependence with COCO?
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Smooth density
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500 Samples, smooth density
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Rough density
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4

X

Y

500 samples, rough density

Density takes the form:

PXY / 1+sin(!x ) sin(!y)

Which of these is the more “dependent”?
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Finding covariance with smooth transformations

Case of ! = 1:
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Finding covariance with smooth transformations

Case of ! = 2:
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Finding covariance with smooth transformations

Case of ! = 3:
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Finding covariance with smooth transformations

Case of ! = 4:
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Finding covariance with smooth transformations

Case of ! =??:
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Finding covariance with smooth transformations

Case of ! = 0: uniform noise! (shows bias)
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Dependence largest when at “low” frequencies

As dependence is encoded at higher frequencies, the smooth
mappings f ; g achieve lower linear dependence.

Even for independent variables, COCO will not be zero at finite
sample sizes, since some mild linear dependence will be found by f,g
(bias)

This bias will decrease with increasing sample size.
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Can we do better than COCO?
A second example with zero correlation.
First singular value of feature covariance C'(x )�(y):
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: 0.11
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Can we do better than COCO?
A second example with zero correlation.
Second singular value of feature covariance C'(x )�(y):
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Can we do better than COCO?
A second example with zero correlation.
Second singular value of feature covariance C'(x )�(y):
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The Hilbert-Schmidt Independence Criterion

Writing the ith singular value of the feature covariance C'(x )�(y) as

i := COCOi (PXY ;F ;G);

define Hilbert-Schmidt Independence Criterion (HSIC)

HSIC 2(PXY ;F ;G) =
1X
i=1

2i :

G, Bousquet , Smola., and Schoelkopf, ALT05; G,., Fukumizu, Teo., Song., Schoelkopf., and Smola,
NIPS 2007,.
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The Hilbert-Schmidt Independence Criterion

Writing the ith singular value of the feature covariance C'(x )�(y) as

i := COCOi (PXY ;F ;G);

define Hilbert-Schmidt Independence Criterion (HSIC)

HSIC 2(PXY ;F ;G) =
1X
i=1

2i :

G, Bousquet , Smola., and Schoelkopf, ALT05; G,., Fukumizu, Teo., Song., Schoelkopf., and Smola,
NIPS 2007,.

HSIC is MMD with product kernel!

HSIC 2(PXY ;F ;G) = MMD2(PXY ;PXPY ;H�)

where �((x ; y); (x 0; y 0)) = k(x ; x 0)l(y ; y 0).
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Asymptotics of HSIC under independence

Given sample f(xi ; yig
n
i=1

i:i:d:
� PXY , what is empirical\HSIC ?

Empirical HSIC (biased)

\HSIC =
1
n2 trace(KL)

Kij = k(xi ; xj ) and Lij = l(yiyj ) (K and L computed with
empirically centered features)

Statistical testing: given PXY = PXPY , what is the threshold c�
such that P(\HSIC > c�) < � for small �?
Asymptotics of\HSIC when PXY = PXPY :

n\HSIC D
!

1X
l=1

�lz 2
l ; zl � N (0; 1)i:i:d:

where �l l (zj ) =
R

hijqr l (zi )dFi;q;r ; hijqr = 1
4!

P(i;j ;q;r)
(t;u;v ;w)

ktu ltu + ktu lvw � 2ktu ltv
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A statistical test

Given PXY = PXPY , what is the threshold c� such that
P(\HSIC > c�) < � for small � (prob. of false positive)?

Original time series:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

Permutation:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Y7 Y3 Y9 Y2 Y4 Y8 Y5 Y1 Y6 Y10

Null distribution via permutation
• Compute HSIC for fxi ; y�(i)gn

i=1 for random permutation � of indices
f1; : : : ;ng. This gives HSIC for independent variables.

• Repeat for many different permutations, get empirical CDF
• Threshold c� is 1� � quantile of empirical CDF 56/71
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Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

Permutation:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Y7 Y3 Y9 Y2 Y4 Y8 Y5 Y1 Y6 Y10

Null distribution via permutation
• Compute HSIC for fxi ; y�(i)gn

i=1 for random permutation � of indices
f1; : : : ;ng. This gives HSIC for independent variables.

• Repeat for many different permutations, get empirical CDF
• Threshold c� is 1� � quantile of empirical CDF 56/71



Application: dependence detection across languages
Testing task: detect dependence between English and French text

Les	ordres	de	gouvernements	
provinciaux	et	municipaux	
subissent	de	fortes	pressions

Honourable	senators,	I	have	a	
question	for	the	Leader	of	the	
Government	in	the	Senate

Text	from	the	aligned	hansards of	the	36th parliament	of	canada,
https://www.isi.edu/natural-language/download/hansard/

YX
Honorables	sénateurs,	ma	question	
s’adresse	au	leader	du	
gouvernement	au	Sénat

Au	contraire,	nous	avons	augmenté	
le	financement	fédéral	pour	le	
développement	des	jeunes	

No	doubt	there	is	great	pressure	
on	provincial	and	municipal	
governments	

In	fact,	we	have	increased	
federal	investments	for	early	
childhood	development.	

...
...

57/71



Application: dependence detection across languages
Testing task: detect dependence between English and French text
k -spectrum kernel, k = 10, sample size n = 10

\HSIC =
1
n2 trace(KL)

(K and L column centered) 58/71



Application:Dependence detection across languages

Results (for � = 0:05)

k-spectrum kernel: average Type II error 0

Bag of words kernel: average Type II error 0.18

Settings: Five line extracts, averaged over 300 repetitions, for
“Agriculture” transcripts. Similar results for Fisheries and
Immigration transcripts.

59/71



Testing higher order interactions
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Detecting higher order interaction

How to detect V-structures with pairwise weak individual
dependence?

X Y

Z
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Detecting higher order interaction
How to detect V-structures with pairwise weak individual
dependence?

X ?? Y ;Y ?? Z ;X ?? Z
X1 vs Y1 Y1 vs Z1

X1 vs Z1 X1*Y1 vs Z1

X Y

Z

X ;Y i:i:d:
� N (0; 1)

Z j X ;Y � sign(XY )Exp( 1p
2
)

Fine print: Faithfulness violated here!
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V-structure discovery

X Y

Z

Assume X ?? Y has been established.
V-structure can then be detected by:

Consistent CI test: H0 : X ?? Y jZ [Fukumizu et al. 2008, Zhang et al. 2011]

Factorisation test: H0 : (X ;Y ) ?? Z _ (X ;Z ) ?? Y _ (Y ;Z ) ?? X
(multiple standard two-variable tests)

How well do these work?
62/71



Detecting higher order interaction

Generalise earlier example to p dimensions

X ?? Y ;Y ?? Z ;X ?? Z
X1 vs Y1 Y1 vs Z1

X1 vs Z1 X1*Y1 vs Z1

X Y

Z

X ;Y i:i:d:
� N (0; 1)

Z j X ;Y � sign(XY )Exp( 1p
2
)

X2:p ;Y2:p ;Z2:p
i :i :d :
� N (0; Ip�1)

Fine print: Faithfulness violated here!
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V-structure discovery

CI test for X ?? Y jZ from Zhang et al. (2011), and a factorisation test,
n = 500
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Lancaster interaction measure
Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY
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Lancaster interaction measure

Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

X Y

Z

X Y

Z

X Y

Z

X Y

Z

PXY Z −PXPY Z −PY PXZ −PZPXY +2PXPY PZ

∆LP =
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Lancaster interaction measure
Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

X Y

Z

X Y

Z

X Y

Z

X Y

Z

PXY Z −PXPY Z −PXZPY −PXYPZ +2PXPY PZ

∆LP = 0

Case of PX ?? PYZ
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Lancaster interaction measure

Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

(X ;Y ) ?? Z _ (X ;Z ) ?? Y _ (Y ;Z ) ?? X ) �LP = 0:

...so what might be missed?
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Lancaster interaction measure
Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

�LP = 0; (X ;Y ) ?? Z _ (X ;Z ) ?? Y _ (Y ;Z ) ?? X

Example:

P(0; 0; 0) = 0:2 P(0; 0; 1) = 0:1 P(1; 0; 0) = 0:1 P(1; 0; 1) = 0:1
P(0; 1; 0) = 0:1 P(0; 1; 1) = 0:1 P(1; 1; 0) = 0:1 P(1; 1; 1) = 0:2
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A kernel test statistic using Lancaster Measure

Construct a test by estimating k�� (�LP)k2H�
; where � = k 
 l 
m :

k��(PXYZ � PXY PZ � � � � )k
2
H�

=

h��PXYZ ; ��PXYZ iH�
� 2 h��PXYZ ; ��PXY PZ iH�

� � �
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A kernel test statistic using Lancaster Measure

Table: V -statistic estimators of h���; ��� 0iH�

(without terms PXPY PZ ). H
is centering matrix I � n�1

Lancaster interaction statistic: Sejdinovic, G, Bergsma, NIPS13

k�� (�LP)k2H�
=

1
n2 (HKH �HLH �HMH )++ :

Empirical joint central moment in the feature space 67/71



A kernel test statistic using Lancaster Measure

Table: V -statistic estimators of h���; ��� 0iH�

(without terms PXPY PZ ). H
is centering matrix I � n�1

Lancaster interaction statistic: Sejdinovic, G, Bergsma, NIPS13

k�� (�LP)k2H�
=

1
n2 (HKH �HLH �HMH )++ :

Empirical joint central moment in the feature space 67/71



V-structure discovery

Lancaster test, CI test for X ?? Y jZ from Zhang et al. (2011), and a
factorisation test, n = 500 68/71



Interaction for D � 4

Interaction measure valid for all D :
(Streitberg, 1990)

�SP =
X
�

(�1)j�j�1 (j�j � 1)!J�P

• For a partition �, J� associates to the
joint the corresponding factorisation,
e.g., J13j2j4P = PX1X3PX2PX4 :
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Interaction for D � 4

Interaction measure valid for all D :
(Streitberg, 1990)

�SP =
X
�

(�1)j�j�1 (j�j � 1)!J�P

• For a partition �, J� associates to the
joint the corresponding factorisation,
e.g., J13j2j4P = PX1X3PX2PX4 :
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Questions?
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