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Abstract

Three simple and explicit procedures for testing the inddpace of two multi-dimensional random
variables are described. Two of the associated test stat(kt, log-likelihood) are defined when
the empirical distribution of the variables is restrictedfinite partitions. A third test statistic is
defined as a kernel-based independence measure. Two kinelst®fire provided. Distribution-
free strong consistent tests are derived on the basis @& tgiation bounds on the test statistics:
these tests make almost surely no Type | or Type Il error aftandom sample size. Asymptotically
o-level tests are obtained from the limiting distributiontloé test statistics. For the latter tests, the
Type | error converges to a fixed non-zero vaiyand the Type Il error drops to zero, for increasing
sample size. All tests reject the null hypothesis of indelegice if the test statistics become large.
The performance of the tests is evaluated experimentalyemchmark data.

Keywords: hypothesis test, independence, L1, log-likelihood, kemmethods, distribution-free
consistent test

1. Introduction

Consider a sample @9 x RY-valued random vectoréX,Y1), ..., (X, Ya) with independent and
identically distributed (i.i.d.) pairs defined on the same probability space. Ttrdodi®n of (X,Y)

is denoted by, while i andp, stand for the distributions of andY, respectively. We are interested
in testing the null hypothesis thAtandY are independent,

Ho v = X o, (1)

while making minimal assumptions regarding the distribution.

We consider two main approaches to independence testing. The first iitiopahe underly-
ing space, and to evaluate the test statistic on the resulting discrete empirisareseaonsistency
of the test must then be verified as the partition is refined for increasingesainp. Previous mul-
tivariate hypothesis tests in this framework, usinglthelivergence measure, include homogeneity
tests (to determine whether two random variables have the same distributidigwand Gprfi
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(2005); and goodness-of-fit tests (for whether a random variaseatparticular distribution), by
Gyorfi and van der Meulen (1990); Beirlant et al. (1994). The log-likedithdnas also been em-
ployed on discretised spaces as a statistic for goodness-of-fit tesfi@ydufi and Vajda (2002).
We provide generalizations of both theand log-likelihood based tests to the problem of testing in-
dependence, representing to our knowledge the first application eftéxg®iques to independence
testing.

We obtain two kinds of tests for each statistic: first, we desiveng consistertests—meaning
that both on# and on its complement the tests make a.s. no error after a random sample size
based on large deviation bounds. While such tests are not common in theatlagsistics litera-
ture, they are well suited to data analysis from streams, where we recsdegience of observations
rather than a sample of fixed size, and must return the best possible detisach time using only
current and past observations. Our strong consistent testlistrbution-free meaning they re-
guire no conditions on the distribution being tested; aniversal meaning the test threshold holds
independent of the distribution. Second, we obtain tests based on thetasgrdistribution of the
L, and log-likelihood statistics, which assume only thas nonatomic. Subject to this assump-
tion, the tests areonsistent for a given asymptotic error rate aHp, the probability of error on
7, drops to zero as the sample size increases. Moreover, the threshdlus &symptotic tests are
distribution-independent. We also present conjectures regardingrthedken by strong consistent
and asymptotic tests based on the Peapgostatistic, using the goodness-of-fit results ofo@y
and Vajda (2002) (further related test statistics include the power dimeegfamily of Read and
Cressie, 1988, although we do not study them here). We emphasizeithasts are explicit, easy
to carry out, and require very few assumptions on the partition sequences

Our second approach to independence testing is kernel-based. lagbjar test statistic has a
number of different interpretations: aslandistance between Parzen window estimates (Rosenblatt,
1975), as a smoothed difference between empirical characteristic fosdf@uerverger, 1993;
Kankainen, 1995; Ushakov, 1999), or as the Hilbert-Schmidt normapbss-covariance operator
mapping between functions of the random variables (Gretton et al., 2P088). Each test differs
from the others regarding the conditions on the kernels: the Parzenwvistddistic requires the
kernel bandwidth to decrease with increasing sample size, and hasramdiffeiting distribution
to the remaining two statistics; while the Hilbert-Schmidt approach uses a fixetiidth, and
can be thought of as a generalization of the characteristic functiontbeste We provide two new
results: a strong consistent test of independence based on a tighteatdargtion bound than that of
Gretton et al. (2005a), and an empirical comparison of the limiting distributibtiedernel-based
statistic for fixed and decreasing kernel bandwidth, as used in asympsific te

Additional independence testing approaches also exist in the statistics liteffabud = d’ = 1,
an early nonparametric test for independence, due to Hoeffding (1BK8n et al. (1961), is based

1. In other words, denoting ¥y (resp. P1) the probability under the null hypothesig$p. under the alternative), we
have
Po{rejecting#y for only finitely manyn} = 1 2
and
P1{acceptingHy for only finitely manyn} = 1. 3)

This concept relates to the definition of discernability introduced by DembdPares (1994): two ensemblés and
H, of probability measures oRK are said to be discernible if there exists a sequepce(RK)" — {0,1} of Borel
measurable functions achieving (2) and (3). Thus our test impliesrdeaiity of the set in (1) and the se#; of
dependent random variables.
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on the notion of differences between the joint distribution function and theyat of the marginals.
The associated independence test is consistent under appropnisigtsas. Two difficulties arise
when using this statistic in a test, however. First, quantiles of the null distribatewlifficult to
estimate. Second, and more importantly, the quality of the empirical distributictidarestimates
becomes poor as the dimensionality of the spa®andR? increases, which limits the utility of
the statistic in a multivariate setting. Further approaches to independencg tesiibe employed
when particular assumptions are made on the form of the distributions, fanaesthat they should
exhibit symmetry. We do not address these approaches in the presbnt stu

The current work is built on an earlier presentation by Gretton an@rG{2008). Compared
with this earlier work, the present study contains more detailed proofs ofdmetheorems, proofs
of secondary theorems omitted by Gretton and@y2008) due to space constraints, additional
experiments on higher dimensional benchmark data, and an experimengison with the boot-
strap approach for thie; and log-likelihood based tests (a similar comparison for the kernel-based
test was made by Gretton et al., 2008).

The paper is organized as follows. Section 2 describes the large devaatidmmit distribution
properties of the.;-test statistic. The large deviation result is used to formulate a distributien-fre
strong consistent test of independence, which rejects the null hymitibe test statistic becomes
large. The limit distribution is used in an asymptoticadlylevel test, which is consistent when
the distribution is nonatomic. Both a distribution-free strong consistent tesamamsymptotically
a-level test are presented for the log-likelihood statistic in Section 3. Sectimmtéins a review
of kernel-based independence statistics, and describes the assbygddukesis tests for both the
fixed-bandwidth and variable-bandwidth cases. Finally, a numerical @aosgm between the tests
is given in Section 5.

2. L1-based Statistic

Denote by v, pn1 and pno the empirical measures associated with the samples
(X1,Y1), ..., (X, Yn), X1, ..., Xn, andYi,..., Yy, respectively, so that

Vn(AxB) =n"1#{i: (X.,Y) e AxB,i=1,...,n},
i(A)=n"i: X cAi=1...,n}, and
2(B)=n"'#{i:Y €B,i=1,...,n},

for any Borel subseté andB. Given the finite partition®, = {An1,...,Anm,} Of RY andQ, =
{Bna,...,Bnm} Of RY, we define the; test statistic comparing, andpn 1 X tn 2 as

LolVn b1 X Ho2) = 5 5 V(A xB) ~na(A) thalB).
AcP, BeQn
In the following two sections, we derive the large deviation and limit distributiaperties of this
L, statistic, and the associated independence tests.

2.1 Strongly Consistent Test

For testing a simple hypothesis versus a composite alternativizfi@yd van der Meulen (1990)
introduced a related goodness of fit test statistidefined as

Lo(kn1, 1) = 5 [Mna(A) — e (A)].
Ac P,
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Beirlant, Devroye, Grfi, and Vajda (2001), and Biau and &y¥i (2005) proved that, for all & &,
P{Ln(Mn1, 1) > €} < Mhg—ne?/2, 4)
We now describe a similar result for oy independence statistic.

Theorem 1 Under %, for all 0 < €1, 0 < €, and0 < &3,
P{Ln(Vn, 1 X Pn2) > €1+ €+ €3} < 2™ he MEL/2 | DM Ne3/2 | pmhenes/2

Proof We boundL(Vn, Hn 1 X M 2) according to

La(Vn b1 X Hn2) = 3 > |[Vn(AXB)—Hna(A)-Hn2(B)]
AEan Be n
< S S (AxB)-v(AxB)
AETn Be n

+AGZ%B§>“ [V(Ax B) — p1(A) - k2(B)|

+ z % M (A) - h2(B) — “n,l(A) : Un72(B)|
AP, BEQn

Under the null hypothesi#, we have that
[V(Ax B) —py(A) - Ha(B)| = 0.
AcP,BeQn

Moreover

Z % IHe(A) - H2(B) — Hn1(A) - tn2(B)|
AcPBEQn
3, 3, A ) A e

+ 5 > W(A) Hn2(B) — tn1(A) - n2(B)]
A€ P, BeQn

- Bén’HZ(B)—Hn,z(B)H S (A — poa(A)

AP,
= Ln(Mn1, H1) + Ln(Mn2, K2)-

IN

Thus, (4) implies

P{Ln(Vn,Hn1 X Pn2) > €1+ €2+ €3}
P{Ln(vn,V) > €1} + P{Ln(Mn1,M1) > €2} + P{Ln(pn2, H2) > €3}
2mn~rd,efne§/2_’_2mnefn£§/2+ 2nf1efn£§/2_

IN A

Theorem 1 yields a strong consistent test of independence, whiclsrdjeanull hypothesis if
Ln(Vn,bn1 X Hn2) becomes large. The test is distribution-free, that is, the probability distritsutio
v, lp andp, are completely arbitrary; and the threshold is universal, that is, it daesgepend on
the distribution.
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Corollary 2 Consider the test which rejecf# when

Ln(Vn, Hn1 X Hn2) > C1 (WJr ﬁ+ ﬁ) ~ Clm’

where
c1>Vv2Iin2~ 1.177. (5)
Assume that conditions
jim ™™ _ o ©6)
n—oo n
and
im ™ o im ™ @
n—e NN n—e NN

are satisfied. Then undéiy, the test makes a.s. no error after a random sample size. Moreover, if

V # H1 X He,
and for any sphere S centered at the origin,
lim max diamA)=0 (8)

N—00 Ac B, ANS£0

and

lim max diamB)=0 9
N—o BeQy, BNS£0 m(B) ’ ©)

then after a random sample size the test makes a.s. no error.

Proof Under#p, we obtain from Theorem 1 a non-asymptotic bound for the tail of the disimitou
of Ln(Vn, ln1 X M 2), Namely

P{Ln(VmUml X tn2) > €1 <W+ \/T+ ﬁ> }

< ZW%e*C%Wm/Z + 2mn e*cimn/z + 2”‘167(:%”‘1/2
< e (d2namm, | o (/2 2m | o (E/2-h2m,

asn — oo, Therefore the conditions (7) imply

nilp{Ln(Vn,Un,l X Hn2) > C1 <W+ ﬁ+ ﬁ) } < o,

and the proof under the null hypothesis is completed by the Borel-Cantelli lemma
For the result under the alternative hypothesis, we first apply the triamegeality

Lo(Vn, b1 X Hn2) > 5 % V(A X B) — 1(A) - 2(B)|

AcP, B

|Vn(A>< B) —Vv(Ax B)|
AcP,Be

—B;n le(B) — Hn2(B)|

= > [l(A) = pna(A)-

AP,
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The condition in (6) implies the three last terms of the right hand side tend to Mareover, using
the technique from Barron, ®yfi, and van der Meulen (1992) we can prove that by conditions (8)
and (9),

> ZD V(A x B) — i (A) - o(B)| — 2supv(C) — iy x I12(C)| > 0
AEB, BEQ, c
asn — oo, where the last supremum is taken over all Borel subBesRY x Rd/, and therefore

Iinminf Ln(Vn, bn1 X Hn2) > 2supv(C) — g x 2(C)| > 0
— 00 c

a.s. [ |

2.2 Asymptotica-level Test
Beirlant, Gyorfi, and Lugosi (1994) proved, under conditions

. B LMy
limmy=c,  lim-==0, (10)
and
lim  max py(Anj) =0, (11)
n*’°°]:l,...,mn
that

VN (La(kn 1, M) — E{Ln(kn1,M1)}) /o 2 A(0,1),

whereZ indicates convergence in distribution astl= 1— 2/1 The technique of Beirlant, Gyfi,

and Lugosi (1994) involves a Poisson representation of the empiricaégs in conjunction with
Bartlett’s idea of partial inversion for obtaining characteristic functionsarfditional distributions
(see Bartlett, 1938). We apply these techniques in Appendix A to deriasyanptotic result for

Ln(Vn, Hn1 X Hn2)-

Theorem 3 Assume that conditions (6) and

lim ma A)=0, Ilimma B)=0 12
anAefi(Ul( ) =0, anBeQ)n‘“Z() : (12)

are satisfied. Then, undeip, there exists a centering sequeri€g)n>1 depending ow such that

VA(Ln(Vn, 1 X Pn2) = Cn) /o 2 2((0,2),

whereg? = 1—-2/Tt

Theorem 3 yields the asymptotic null distribution of a consistent indepeedest; which re-
jects the null hypothesis Ifn(Vn, pn1 X Hn,2) becomes large. In contrast to Corollary 2, and because
of condition (11), this new test isotdistribution-free: the measurgs andy, have to be nonatomic.
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Corollary 4 Leta € (0,1). Consider the test which rejec#% when

My o
Ln(Vn,Hn1 X Hn2) > C2 nm”r\m‘b Y(1-a)
~ mnm/n’
n

where
02=1-2/m and ©=/2/T~0.798

and ® denotes the standard normal distribution function. Then, under the consliitibTheorem 3,
the test has asymptotic significance leweMoreover, under the additional conditiof®) and (9),
the test is consistent.

Before proceeding to the proof, we examine how the above test differsthat in Corollary 2. In
particular, comparing, above withcy in (5), both tests behave identically with respec{ton,ny,/n
for large enoughm, butc; is smaller.

Proof According to Theorem 3, undeip,

P{V/A(Ln(Vn, bt X Bn2) —Cn) /0 < X} ~ P(X),
therefore the error probability with threshotds
a=1-d(x).
Thus thea-level test rejects the null hypothesis if

o
Ln(Vn, Bn1 X Hn2) > Cn + 7 o (1-a).

As C, depends on the unknown distribution, we apply an upper bound

Co< 2/ m”—:‘“
(see Equation (22) in Appendix A for the definition Gf, and Equation (23) for the bound), so
decreasing the error probability. |

3. Log-likelihood Statistic

In the literature on goodness-of-fit testing thdivergence statistidkullback-Leibler divergence
or log-likelihood statisti¢

Hn,1(An,j)
He(Anj)

plays an important role. For testing independence, the correspondifigdtigood test statistic is
defined as

m,
In(Mn1, M) = ) Hna(Anj)log
; j

vn(A X B)

n(Vn, X Pn2) = Vn(Ax B)log———————.
n(Vn, bn,1 X Hn,2) AgpnBén n( ) an,l(A)'pn’z(B>
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The large deviation and the limit distribution propertie$©tn, pn 1 X Hn2) can be derived from

the properties of
Vn(Ax B)

In(Vn,V) = Aez?n B%nvn(Ax B) Iogm.

We have that undet,

In(Vn,V) = In(Vn, Hn,1 X Hn2)
vn(Ax B)
= Vn(Ax B)log———-
Aez?n BeZ}n " V(AxB)

Vn(Ax B)
T2 o A B e ®)

_ Hn,1(A) - Bn2(B)
— AGZPH Bénvn(A x B)log —V(A <B)

_ Hn,1(A) - Hn2(B)
a AEZ%B;HVn(AxB)Iog H(A) - 2(B)

therefore

In(Vn;V) = In(Vn, Bn1 X bn2)
_ Hn.1(A) Hn2(B)
T e, AP (1oo ) +1o%i5) )

n1(A) Hn2(B)
A;nw,l(A) log (A +BénUn72(B) log 10(B)

= In(kn 1, ) + (Ko, )
> 0.

3.1 Strongly Consistent Test

We refer to Tusady (1977) and Barron (1989) who first discussed the exponehtahcter of the
tails ofl. Kallenberg (1985), and Quine and Robinson (1985) proved thad|ifer> 0,

P{ln(Mn1, 1) > €} < (n:hm_“l 1) e e < gmlog(n+my)—ne.

Note that using an alternative bound due to Barron (1989, Equatiorm&%)btain under (10) and
(11) that
P{In(pn1. ta) > £} = e "), (13)
such that 1
r!mﬁ logP{ln(bn,1, 1) > €} = —E€.

A large deviation based test can be introduced such that the test rejeictddpendence if

In(Vins Mot X Hn2) > mn"fw(log(n:‘r M) +1)
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Under #o, we obtain a non-asymptotic bound for the tail of the distributiot, 0fn, pn1 X P 2):

)5 Mologtn -+ 3

P{ln(VnaUn,l X Hn,2 n

< P{In(Vn V) > ma (log(n+ mnrm)Jrl)}
< , .
< emqrmlog(n-i-nhnﬁ])_nw

e ™mh,

Therefore condition (7) implies

00

> P{In(vn, Hn.1 X Hn,2
n=1

> Mologntm) £,
i ,

and by the Borel-Cantelli lemma we have strong consistency under the poliftesis.

Under the alternative hypothesis the proof of strong consistency foftowsthe inequality, also
called Pinsker’s inequality, which upper bounds theerror in terms of I-divergence (cf. Csimz
1967; Kemperman, 1969; Kullback, 1967),

Ln(Vn, lnt X Hn.2)% < 2ln(Vn, Hn.1 X Hn2)-

Therefore,

liminf 2In(Vn,pna X Hn2) > (liMinf Ln(Vn, b Hn2))?
> 4supv(C) —py x 12(C)|> >0
C

a.s., where the supremum is taken over all Borel sulsesR? x RY. In fact, under conditions
(8), (9), and
(v, g % p-Z) <,
one may get
lim In(Vn, bna X Bn2) = 1V, b X o) > O

a.s. (see Barron et al., 1992). Note that due to the form of the univetathreshold, strong
consistency undetf; requires the condition

fim ™

Nn—oo n

log(n+ myn,) =0,

as compared to (6).

3.2 Asymptotica-level Test

Concerning the limit distribution, Inglot et al. (1990), and d&y and Vajda (2002) proved that
under (10) and (11),
2nl JH1) — my
n(un,lz :}11) 2 a((0,1). (14)
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This implies that for any real valued under the conditions (6) and (12),

= 200 (Vn, Bn 1 X i 2) — Mo, > x < P 2nly(Vn,V mnr%
2mant, - - 2mnrr41

— 1-d(x),
which results in a test rejecting the independence if

2n|n(Vna l-ln,l X Un,Z) _ mWrm > q)fl(l_ G)
2m,m, N 7

or equivalently

“1(1—a)/2mam}, + myn,
2n '

Note that unlike thé.; case, the ratio of the strong consistent threshold to the asymptotic thresh-
old increases for increasing

|n(Vn7Un,1 X |Jn,2) >

4. Kernel-based Statistic

We now present a second class of approaches to independence, teasied on a kernel statistic.
We can derive this statistic in a number of ways. The most immediate interprefatiocuced by
Rosenblatt (1975), defines the statistic aslihidistance between the joint density estimate and the
product of marginal density estimates. lketandK’ be density functions (called kernels) defined
onRY and onR?, respectively. For the bandwidth> 0, define

Kh(x):h—ldK (E) and K (y) = h%” K’(%).

The Rosenblatt-Parzen kernel density estimates of the densi¥; 6§ andX are respectively

ZlKh X)K{,(y—Y:) and f, 1(x ZlKh (15)

with f,2(y) defined by analogy. Rosenblatt (1975) introduced the kernel-basegendence statis-
tic
To= [, ((xy) = Tna() foa(y) %dxdy
RdxRd
Alternatively, defining

:/ Kh(u)Kh(x—u)du:id K(uK(x—u)du
R hd Jrd

andLy,(y) by analogy, we may write the kernel test statistic

=% Z 131 Ln(X = Xp)LE(Yi = Yj)
— &3 (T La(X = X)) (Zog Lh(Yi = Y))
(33T b = X)) (2 2t XTa Lh(Yi = Y1) - (16)
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Note that at independence, the expected value of the statistic is notaero, b

E(T) = "t (Ln(0) — E{Ln(X ~ X)) (Lh(0) ~ E{LA(Y:—Y2))) an

< N p(0)LH(0) = (nhfhd) LK ]2|K/ |12

A second interpretation of the above statistic is as a smoothed differencedvetine joint char-
acteristic function and the product of the marginals (Feuerverger, X@8tkainen, 1995; Ushakov,
1999). The characteristic function and Rosenblatt-Parzen window statisticbe quite similar: in
fact, for appropriate smoothing and kernel choices faxet n they may be identical (Kankainen,
1995, p. 54, demonstrates this for a Gaussian kernel). That said, eenwhimportant differ-
ences exist between the characteristic function-based statistic and Rasearfblatt (1975). Most
crucially, the kernel bandwidth is kept fixed for the characteristic funeliased test, rather than
decreasing as rises (a decreasing bandwidth is needed to ensure consistency ofrieedensity
estimates), resulting in very different forms for the null distribution; andetra@e more restric-
tive conditions on the Rosenblatt-Parzen test statistic (Rosenblatt, 19%btians a.1-a.4). These
issues are discussed in detail by Feuerverger (1993, Section 5)aak@ikien (1995, Section 5.4).

A further generalization of the statistic is presented by Gretton et al. (2Q088), in terms of
covariances between feature mappings of the random variables tdueprg kernel Hilbert spaces
(RKHSSs). We now briefly review this interpretation, beginning with some s&ag terminology
and definitions. Leff be an RKHS, with the continuous feature mapppig) € ¥ for eachx € RY,
such that the inner product between the features is given by the paditidte kernel function
Ln(x,X) := (@(x),®(X)) #. Likewise, letG be a second RKHS dR?’ with kernelL,,(-,-) and feature
mapy(y). Following Baker (1973) and Fukumizu et al. (2004), the cross-éanee operatoC, :

G — F for the measure is defined such that for afl € # andg € G,

(.G = E(fX)-E(X)9(Y)—E(9Y))]).

The cross-covariance operator can be thought of as a generalieftiocross-covariance matrix
between the (potentially infinite dimensional) feature mappigigs andy(y).

To see how this operator may be used to test independence, we recalldhény characteri-
zation of independence (see, e.g., Jacod and Protter, 2000, Thi0rbe):

Theorem 5 The random variables X and Y are independent if and ordgvf f (X),g(Y)) = 0 for
any pair( f,g) of bounded, continuous functions.

While the bounded continuous functions are too rich a class to permit thérectien of a
covariance-based test statistic on a sample, Fukumizu et al. (2008)ipacu8tbudur et al. (2008)
show that wherf is the unit ball in acharacteristi@ RKHS ¥, andé the unit ball in a characteristic
RKHS G, then

sup E([f(X)—E(fX)][gY)~E@Y)) =0 <  v=jux}
feF,0eG

2. The reader is referred to Fukumizu et al. (2008) and Sriperuuattaidl. (2008) for conditions under which an RKHS
is characteristic. We note here that the Gaussian kerr&Pdras this property, and provide further discussion below.
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In other words, the spectral norm of the covariance ope@tdretween characteristic RKHSs is
zero only at independence. Rather than the maximum singular value, we saayel squared
Hilbert-Schmidt norm (the sum of the squared singular values), which pagpulation expression

Hv; F,G) = E{Ln(X1—Xz2)Ln(Y1 —Y2)} — 2E{E{Ln(X1 — X2)[Xe }E{Ln(Y2 —Y2)|Y1} }
+E{Ln(X1 — X2) }E{Lp(Y1—Y2)}

(see Gretton et al., 2005a, Lemma 1): we call this the Hilbert-Schmidt indepeacriterion
(HSIC).

The test statistic in (16) is then interpreted as a biased empirical estimate;of H7). Clearly,
whenKj, andK{/, are continuous and square integrable densities, the induced kegreetsiL{ are
continuous positive definite RKHS kernels. However, as IoﬂgmdLg are characteristic kernels,
then Hv; ¥, G) = 0 iff X andY independent. The Gaussian and Laplace kernels are characteristic
onRY (Fukumizu et al., 2008), and universal kernels (in the sense of Steijr2081) are character-
istic on compact domains (Gretton et al., 2005a, Theorem 6). Sriperumbtedl (2008) provide
a simple necessary and sufficient condition for a bounded continuasdatian invariant kernel to
be characteristic oRY: the Fourier spectrum of the kernel must be supported on the entire domain
Note that characteristic kernels need not be inner products of squegeahle probability density
functions: an example is the kernel

Lh(X1,X2) = exp(x{ x2/h)

from Steinwart (2001, Section 3, Example 1), which is universal, hehaeacteristic on compact
subsets oRY. Moreover, an appropriate choice of kernels allows testing of deperdamon-
Euclidean settings, such as distributions on strings and graphs (Gre&tbn2€08).

Finally, while we have focused on a kernel dependence measure twasbd covariance, al-
ternative kernel dependence measures exist based on the cawonieldtion. Dauxois and Nkiet
(1998) propose the canonical correlation between variables in a $@sed RKHS as a statistic for
an independence test: this dependence measure follows the sugge&enyif1959), but with a
more restrictive pair of function classes used to compute the correlatitre(than the set of all
square integrable functions). The variables are assumed in this casativdméate. Likewise, Bach
and Jordan (2002) use the canonical correlation between RKHSdeaappings as a measure of
dependence between pairs of random variables (although they daddretsa the problem of hy-
pothesis testing). Bach and Jordan employ a different regularizatidagstrim Dauxois and Nkiet,
however, which is a roughness penalty on the canonical correlatiest than projection on a finite
basis. For an appropriate rate of decay of the regularization with inogesample size, the empir-
ical estimate of the canonical correlation converges in probability (Lesrggal., 1993; Fukumizu
et al., 2007). Fukumizu et al. (2008) provide a consistent RKHS-bestadate of the mean-square
contingency, which is also based on the canonical correlation. Thisifidependence measure is
asymptotically independent of the kernel choice. When used as a statistiégridegpendence test,
the kernel contingency was found empirically to have power superior td#1€-based test.

4.1 Strongly Consistent Test

The empirical statistid@, was previously shown by Gretton et al. (2005a) to converge in probability
to its expectation with rate/4/n. Given 0< Ly(0)L;,(0) < 1, the corresponding result is

P(Ty— E(Tp) > €2) < 3e 024",
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which follows from the straightforward application of a bound by Hoeffdih963, p. 25). We now
provide a more refined bound which scales better wjthnd is thus tighter when the bandwidth
decreases.

We will obtain our results for the semi-statistic

T—n = [Ifn(,) — Efn(‘a‘)HZ»
since under the null hypothesis,
VTh 1fn( ) = fna() fa2()
[fn(,) —=Efa(, )+ [[fna() fa2() — Efaa(-)Efn2()|l
Va4 1f0a()(fa2() = Efaz() | + 1 (Faa() = Efaa(-)Efn2()]
= VTt 11Ol fa2() = Efa2() | + | far(-) — Efas() | IE faz()l]

var

Theorem 6 For anye > 0,
P {fn > (et E{ﬁ})z} < &/ @OL(0)

Proof We apply the McDiarmid inequality (cf. McDiarmid, 1989): L&{,...,Z, be independent
random variables taking values in a #eand assume thdt: A" — R satisfies

IN

IN

%

ZSUFZ)n |f(Zla'°'7Zn)_ f(Z]_,...,Zi,1,2|',,2i+]_,...,zn)| <, 1§ [ <n
L1se-94ns
ZeA

Then, for alle > 0,
P{HZi,... . Z0) —EF(Z1,..., Z0) > €} < e &/ 3l
Because of
T = [fn() =Efn(,o)]
= ’1_iKh(‘_xi)Kr/1('—Yi)—Efn(‘,-)”

< H*Kh( X1)Kq( Yl|+H*ZKh X)Kn(- = ¥5) = Efa(-,)l

we can apply McDiarmid inequality with

2 2
ClRn(- = X)Kq(- = Y1)l = =4/ La(O)L},(0) =i ¢ = ¢y,

where we note that thg are independent of and can be replaced by a single Thus,
(VE-e{Vi)2e) < e¥/m
— e/

o et/ / (2La(0)LH(0))

IN
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This implies

P{f > (e+E{ﬁ})2} < &/ @O (0)

From these inequalities we can derive a test of independence. Cheosk that
ne? /(2Ln(0)L},(0)) = 2Inn.

Because of
- L
E{Tn} ~ E{Tn} <

we choose the threshold

(\/Lh(O)Lg(0)4lnn+\/Lh(O)La(O)f: Lh(0>Lﬁ(0>(M+1)z
n n ’

n

that is, we reject the hypothesis of independence if

L
It follows from
P{Tnz \/4In +12}
N {f . (\/Lh 4Inn+\/Lh ) }
. {'T' . (\/Lh 0)LL(0 4|nn+\/ﬁ> }
< {T' > (\/Lh 4|nn { _|~_n ) }
< 2|nn

that this test of independence is strongly consistent.
Under the alternative hypothesis, there are two cases:

e If h— 0 and the density exists and is square integrable, then
Th— || f—f1f22>0

a.s. The strong consistency is not distribution-free, sinceust have a square integrable
density.
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¢ If his fixed, the strong law of large numbers implies

Tn — E{Ln(X1 —X2)Li(Y1 —Y2)} — 2E{E{Ln(X1 — X2) X1 }E{Lh(Y1 —Y2)|Y1}}
+E{Ln(X1 — X2) }E{Lp(Y1 —Y2)}
= HWV;¥,G)

If Kn andK{, are continuous and square integrable densities, the induced KefreeldL |, are
continuous positive definite kernels:(\H ¥, G) is then the squared Hilbert-Schmidt norm
of the covariance operator for We may replacén andL;, with any characteristic kernels

(in the sense of Fukumizu et al., 2008; Sriperumbudur et al., 2008), leoweawd retain the
property Hv; ¥, G) = 0 iff X andY independent. In this case, the strong consistency is
distribution-free.

4.2 Approximately a-level Tests

We now describe the asymptotic limit distribution of the test statiktin (16). We address two
cases: first, when the kernel bandwidth decreases, and secoswl jiwdamains fixed.

Let us consider the case whefg(x) andK/(y) are intended to be used in a Rosenblatt-Parzen
density estimator, as in (15). The corresponding density estimaligsai® mean square consistent
if h=h, such that

hh—0 and nhhd — o, (18)

Based on the results of Hall (1984), Cotterill and@® (1985) and Beirlant and Mason (1995), we
expect that, under these consistency conditions,
Tn — E{Tn} 2}

var(T,) N(0,D)-

We next calculate véT,) ~ var(T,). Under the null hypothesis,

To = [fa(,) —Efa(-,)1?
A 2
- :]- (Kh<'_Xi)Kr/1('_Yi)—E{Kh(-—X)Kr’](,_y)D

and therefore

n n n n

~ 1
Var(Tn) = FZI Zl.zl .leOV(Mh()(i,Yi,Xj,Yj),Mh()(i/,Yi’,Xj/7Yj/)).
i=1]=1i"=1j'=

One can check that
cov(Mh(Xi, Y, Xj,Yj),Mn(Xi, Yir, X, Yjr)) = 0
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unless(i, j) = (i’,j") or (i, j) = (j’,i’). Thus,

1
var(Tn) = F(nvar(Mh(Xl,Yl,Xl,Yl))+2n(n—1)var(Mh(X17Y1,X27Y2)))

%

2
?var(Mh(Xl,Yl, X2,Y2)).

If h— 0then

2 2|| (|
ﬁVar(Mh(xl;Yl;XZ;YZ))N L7l (19)

" n2hdhd”’
therefore a possible form for the asymptotic normal distribution is

nh®/2h9/2(T, — E{To}) /o 2 A(0,1),

where
o?=2||f|
Thus the asymptotia-level test rejects the null hypothesis if

o
nhd/2hd’/2

whereE{T,} may be replaced by its upper bound,

Tn > E{Tn}+ ¢71(1_G)7

Ln(O)LA(0)/n = [|K|[?[K'|?/(nth).

The only problem left is that the threshold is not distribution-freedepends on the unknowh
The simplest distribution-free bound for the variance,
2 _ IIKIHIK
0% < " Fradpad

is unsatisfactory since its performance as a functioh &f worse than the result (19). An im-
proved distribution-free bound on the variance (for both fixed ande@singh) is a topic for future
research: we give an empirical estimate below (Equation 20) for use imgstic hypothesis tests.

We now consider the case of fixed Following Feuerverger (1993); Serfling (1980), the distri-
bution of T,, under#4 is

nTn E) Z)“Z'Z,
=1

wherez ~ A((0,1) i.i.d., andA, are the solutions to an eigenvalue problem depending on the un-
known distribution ofX andY (see Gretton et al., 2008, Theorem 2 for details).

A difficulty in using the statistic (16) in a hypothesis test therefore arisesaltizge form of
the null distribution of the statistic, which is a function of the unknown distributieer X andy,
whether or not is fixed. In the case df decreasing according to (18), we may use an empirical
estimate of the variance af, under#{ due to Gretton et al. (2008, Theorem 4). Denoting-bthe
entrywise matrix product an&? the entrywise matrix power,

var(T,) = 1" (B —diag(B))1, (20)
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Samp:200, Kernel size:0.01 Samp:500, Kernel size:0.01
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Figure 1: Simulated cumulative distribution function®f (Emp under#g for n = 200 (left col-
umn) andn = 500 (right column), compared with the two-parameter Gamma distribution
(Gamma and the Normal distributionNormal). The empirical CDF was obtained em-
pirically using 5000 independent draws Bf Both the parametric approximations are
fit using the mean and variance in Equations (17) and (20). “Samp” is timpenn of
samples, and the bandwidthtis

where
B = ((HLH)® (HL'H))?,

L is a matrix with entriesn(X — Xj), L' is a matrix with entried (Y —Yj),H=1-n"111" isa
centering matrix, and ann x 1 vector of ones.

Two approaches have been proposed in the case oftfil@dbtain appropriate quantiles of the
null distribution for hypothesis testing: repeated shuffling of the sampleefiverger, 1993), and

1407



GRETTON AND GYORFI

approximation by a two-parameter Gamma density (Kankainen, 1995),

X0-1g~x/P
R )
_ (E{Tn})? _ nvar(Ty,)
where o= Ty’ B= E{T,}

andE{T,} is given in (17). This Gamma approximation was found by Gretton et al. {200&:r-
form identically on the Section 5 benchmark data to the more computationally Expepproach
of Feuerverger (1993). We emphasize, however, that this approximmataheuristic: no guaran-
tees are provided regarding the asymptotic performance of this approxiniatierms of Type I
error, nor is it established under what conditions the approximation fails.

We end this section with an empirical comparison between the Normal and tameter
Gamma null distribution approximations, and the null CDF generated by rebeatependent
samples ofT,. We choseX andY to be independent and univariate, wi¥hhaving a uniform
distribution andy being a symmetric bimodal mixture of Gaussians. Both variables had zero mean
and unit standard deviation. Results are plotted in Figure 1.

We observe that as the bandwidth increases, the Gamma approximafipio@tomes more
accurate (although it is always good for large quantiles, which is therregimst important to a
hypothesis test). The Normal approximation is very close to the Gamma apptiaxirfa small
bandwidths, but is less accurate (with respect to both the Gamma distributictheusimulated
CDF) for larger bandwidths. Finally, for the smallest bandwiditk=(0.01), both approximate null
distributions become more accurate for increasifigr larger kernel sizes, the effect is too small to
see on the plots). We will return to these points in the next section when angabts experimental
results.

5. Numerical Results

In comparing the independence tests, we made use of the multidimensionairiaekaata pro-
posed by Gretton et al. (2008). We tested the independence in twoafaligix dimensions (i.e.,
d € 1,2,3 andd = d’). The data were constructed as follows. First, we generagaanples of two
independent univariate random variables, each drawn at randomtfie ICA benchmark densities
of Bach and Jordan (2002, Figure 5): these included super-Gaussib-Gaussian, multimodal,
and unimodal distributions, with the common property of zero mean and uranea: The densi-
ties are described in Table 5, as reproduced from Gretton et al. (208ble 3). Second, we mixed
these random variables using a rotation matrix parametrised by an@vgleing from 0 tort/4 (a
zero angle meant the data were independent, while dependence bes@neietect as the angle
increased tat/4: see the two plots in Figure 2). Third, in the cades 2 andd = 3, independent
Gaussian noise of zero mean and unit variance was used to fill the remdimiagsions, and the
resulting vectors were multiplied by independent random two- or three-gimeal orthogonal ma-
trices, to obtain random vecto¥sandY dependent across all observed dimensions. We emphasise
that classical approaches (such as SpearnpaorsKendall'st) are unable to find this dependence,
since the variables are uncorrelated; nor can we recover the sebispatich the variables are
dependent using PCA, since this subspace has the same secondropaetigs as the noise. We
investigated sample sizes= 128 512 1024 and 2048.
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| Label [ Definition Kurtosis

a Student’s t distribution, 3 DOF oo

b Double exponential 3.00
c Uniform -1.20
d Students’d distribution, 5 DOF 6.00
e Exponential 6.00
f Mixture, 2 double exponentials -1.70
g Symmetric mixture 2 Gauss., multimodal -1.85
h Symmetric mixture 2 Gauss., transitional -0.75
i Symmetric mixture 2 Gauss., unimodal -0.50
i Asymm. mixture 2 Gauss., multimodal -0.57
k Asymm. mixture 2 Gauss., transitional -0.29
[ Asymm. mixture 2 Gauss., unimodal -0.20
m Symmetric mixture 4 Gauss., multimodal -0.91
n Symmetric mixture 4 Gauss., transitional -0.34
0 Symmetric mixture 4 Gauss., unimodal -0.40
p Asymm. mixture 4 Gauss., multimodal -0.67
q Asymm. mixture 4 Gauss., transitional -0.59
r Asymm. mixture 4 Gauss., unimodal -0.82

Table 1. Labels of distributions used in the independence test benchraadkgheir respective
kurtoses. All distributions have zero mean and unit variance.

We compared three different asymptotic independence testing appsdaaded on space par-
titioning: thel, test, denoted.1; the log likelihood testike; and a third testPears based on a
conjecture regarding the asymptotic distribution of the Peay$atatistic

(Vn(Ax B) — Hn1(A) - ki 2(B))?
Hn,1(A) - Hn2(B)

(see Appendix B for details, and for a further conjecture regardingoagly consistent test for
the x2 statistic). The number of discretisations per dimension was sek at ni, = 4, besides
in then =128 d = 2 case and thd = 3 cases, where it was setmt, = ml, = 3: for the latter
values ofn andd, there were too few samples per bin when a greater number of partitioes wer
used, causing poor performance. We divided our spR€esidR? into roughly equiprobable bins.
Further increases in the number of partitions per dimension, where suiffs@enples were present
to justify this (i.e., then =512 d = 1 case), resulted only in very minor shifts in performance.

We compared the partitioning approaches with the kernel approach fectio$ 4, using both
the GammaKer(g) and NormalKer(n) approximations to the null distribution. Our kernels were
Gaussian for bottX andY, with bandwidths set to the median distance between samples of the
respective variables. Note that a more sophisticated but computationally @pgroach to band-
width selection is described by Fukumizu et al. (2008), which involves majdhim closed-form
expression for the variance @©f in (20) with an estimate obtained by data shuffling.

Results are plotted in Figure 3 (average over 500 independent gensratithe data). Thg-
intercept on these plots corresponds to the acceptance r&gadvindependence, or-1(Type | erroy,

X%(VmUn,lxlln.,z) = z %
AcP,BeQy
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Rotation 6 = 178 Rotation 6 = 174
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1&‘; :y*x
-2 -2 ’
-3 -3
-2 0 2 -2 0 2
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Figure 2: Example data set fdr=d’ = 1, n = 200, and rotation anglés= 11/8 (left) andd = 11/4
(right). In this case, both sources are mixtures of two Gaussians é&@)rin Gretton
et al., 2005b, Table 3).

and should be close to the design parameter-ofil= 0.95. Elsewhere, the plots indicate accep-
tance of#y where the underlying variables are dependent, that is, the Type il erro

As expected, we observe dependence becomes easier to defeicicesases from 0 tar/4,
whenn increases, and whehdecreases. Although no tests are reliable for sfhalkveral tests do
well asB approaches/4 (besides the case pf= 128 d = 2). Thel; test has a lower Type Il error
than thex? test when the number of samples per partition is snme# (28 d =1, n= 128 d = 2,
andn = 1024 d = 3), but this advantage is lessened for larger numbers of samples peoparhe
log-likelihood test generally has the lowest Type Il error of the thregtjmar-based tests, however
it gives a Type | error larger than the design parameter.@b @vhen the number of samples per
bin is insufficient: this problem is severe in the case 1024 andd = 3, but can also be observed
atn=2048d = 3 (for larger sample sizes= 3072d = 3 andn = 4096 d = 3, the Type | error
of the log-likelihood test was at or below the design value). This suggestedhlikelihood test
is more susceptible to bias for small numbers of samples per bin thdn twedx? tests. In the
remaining cases, performance of the log-likelihood test and thest is comparable, besides in the
casen =512 d = 2, where the log-likelihood test has an advantage.

The superior performance of the log-likelihood test compared withxtheest (in the cases
d = 1 andd = 2) might arise due to the different convergence properties of the twatksgtics.
In particular, we note the superior convergence behaviour of thengssdof-fit statistic for the log
likelihood (Equation 13), as compared with tg@statistic (Equation 24 in Appendix B), in terms
of the dependence of the latter on the numipgiof partitions used. By analogy, we anticipate the
log-likelihood independence statistigVn, lin1 X pn 2) Will also converge faster than the Pearggn
independence statistj@(vn, Hn,1 X Hn2), and thus provide better test performance. A more formal
discussion of this behaviour is a topic for future research.

In all cases, the kernel-based test has the lowest Type [l &ffbiat said, one should bear in
mind the kernel test thresholds requiE¢T,} and vafT,), which are unknown and must be es-
timated from the data using Equations (17) and (20), respectively. Im oibrels, unlike thel;

3. Aside fromn = 1024 andd = 3, where the log-likelihood has a lower Type Il error: we disregard #ssilt since it
is due to the log-likelihood test being affected by bias, as discussed.above
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Figure 3: Rate of acceptance #&f for theKer(g), Ker(n), L1, Pears andLike tests. “Samp” is the
numbern of samples, and “dim” is the dimensiah= d’ of x andy. In the final row,
the performance of th&er(g) and Ker(n) tests is plotted for a large bandwidth= 3,
anda = 0.5, to illustrate the difference between the Normal and two-parameter Gamma
approximations to the null distribution.
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Figure 4: Rate of acceptance &f for the distribution-freeKree) and shuffling-basedshufj null
distribution quantiles, using the L1 test statistic. “Samp” is the numlzéisamples, and
“dim” is the dimensiord = d’ of x andy.

and log likelihood tests, the kernel test thresholds in our experiments ansehes finite sample
estimates (which we have not attempted to account for, and which could impaest perfor-
mance). Moreover, the Gamma approximation to the null distribution is simply &hkieuwith no
asymptotic guarantees.

It is of interest to further investigate the null distribution approximation streseigr the kernel
tests, and in particular to determine the effect on test performance of gesvalbions made in
Figure 1. Since the median distance between sample points was small enoughpire\aous
experiments for the Normal and Gamma estimates to be very similar, we used aiablytifiigh
kernel bandwidtth = 3. In addition, we employed a much low@k= 0.5, since this provided a more
visible performance difference. The final row of Figure 3 shows tkaltimg test performance. We
recall from Figure 1 that for large kernel sizes ane- 0.5, the Gaussian approximation returns a
larger threshold than the true CDF would require, and thus the Normal distrihas a lower Type
| error (the error for very small values afis in the opposite direction, but had a less pronounced
effect in our experiments). The large bandwidth required to observebéhiaviour results in a
substantial performance penalty on the Type Il error, however, anddmot be used in practice.

An alternative approach to obtaining null distribution quantiles for test liolds is via a shuf-
fling procedure: the ordering of thg, ..., Y, sample is permuted repeatedly while thakgf. .., X,
sample is kept fixed, and the-1a quantile is obtained from the resulting estimated cumulative
distribution function of the test statistic. Again, we emphasize that unlike thagtsyic L1 and
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Figure 5: Rate of acceptance &f for the distribution-freeKree) and shuffling-basedshufj null
distribution quantiles, using the log-likelihood test statistic. “Samp” is the numloér
samples, and “dim” is the dimensiah= d’ of x andy.

log-likelihood tests we have proposed, the resulting test threshold is anieahpstimate, and the
convergence behaviour of this estimate is not accounted for. In oliefipariments, we compared
the performance of our asymptotic tests fdrandLike with this shuffling approach, for the same
data as in our Figure 3 experimefitsVe usedp = 200 permutations in obtaining the approximation

to the null distribution. Results for tHel case are plotted in Figure 4, and those forlthe case in
Figure 5.

In the case of th&l statistic, we observe the distribution-free approach is conservativans ter
of the Type | error, generally setting it slightly lower than the target vallree §huffling approach
returns a lower Type Il error, however it is notable that the performalifterence is not particularly
large with respect to our distribution-free threshold, and that apam fio offset, the error as a
function of angle takes the same form. We should further bear in mind thahtifigéirey approach
has a substantially greater computational cpdirfies the cost of the distribution-free test). In the
case of thd.ike statistic, we observe similar behaviourltd in the casesl = 1 andd = 2. In the
d = 3 case, however, theke test gives too large a Type | error, and thus the Type Il performance
of the two approaches cannot be compared (althougim for2048, theLike test is observed to
approach the asymptotic regime, and the Type | performance is closer togbevialue).

4. This comparison was made for the kernel statistic on these data byrGeetb (2008), and no performance differ-
ence was found.
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6. Conclusion

We have described distribution-free strong consistent tests of indepesdand asymptoticalty-

level tests, based on three statistics: lthelistance, the log-likelihood, and a kernel-based distance.
The asymptotid.; and log-likelihood tests require that the distributions be non-atomic, but make
no assumptions apart from this: in particular, the test thresholdsafenctions of the distribu-
tion. The kernel statistic is interpretable as eithetamlistance between kernel density estimates
(if the kernel bandwidth shrinks for increasing sample size), or as thestifichmidt norm of a
covariance operator between reproducing kernel Hilbert spactwe(Kernel bandwidth is fixed).
We have provided a novel strong consistent test for the kernel statistiwell as reviewing two
asymptoticallya-level tests (for both fixed and shrinking kernel bandwidth). Unlikelthand log-
likelihood tests, the thresholds for the kernel asymptotic tests are distribigmendent. We also
gave conjectures regarding the strong consistent test and asymptatidellgl test for the Pearson

x? distance.

Our experiments showed the asymptotic tests to be capable of detecting elepehor both
univariate and multi-dimensional variables (of up to three dimensions eachjariables having
no linear correlation. The kernel tests had lower Type Il error thartlend log-likelihood tests
for a given Type | error, however we should bear in mind that the keéesethresholds were finite
sample estimates, and the resulting convergence issues have not bessedldThe log-likelihood
test appeared to suffer more from bias thanltheéest, in cases where there were few samples per
partition (this effect was most visible in high dimensions).

This study raises a number of questions for future research. Firsk’thests remain con-
jectures, and proofs should be established. Second, there is as gistritmition-free asymptotic
threshold for the kernel test, which could be based on a tighter boundeorattance of the test
statistic under the null distribution. Third, the asymptotic distribution of the kestagistic with
fixed bandwidth is presently a heuristic: it would therefore be of interestace this with a null
distribution estimate having appropriate convergence guarantees.
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Appendix A. Proof of Theorem 3

The main difficulty in proving Theorem 3 is that it states the asymptotic normaliby, @k, pin 1 <
Hn,2), which is a sum ofiependentandom variables. To overcome this problem, we use a “Pois-
sonization” argument originating from the fact that an empirical procesqual in distribution to
the conditional distribution of a Poisson process given the sample size@i@ on Poissonization
techniques, we refer the reader to Beirlantp@ly and Lugosi, 1994).

We begin by introducing the necessary terminology. For eaetL, denote byN, a Poisso(n)
random variable, defined on the same probability space as the sequ¥cesand (Y;)i>1, and

1414



CONSISTENTNONPARAMETRIC TESTS OFINDEPENDENCE

independent of these sequences. Denot@\y U, 1 and p, 2 the Poissonized version of the
empirical measures associated with the samfl¥sY;)}, {X } and{Y;}, respectively, so that

VNH(AXB)_#{l:(Xi,Yi)eA>r<]B,|:1,...,Nn}’
#i:XeAi=1...,N
) = HEXER =SB,
and
#{i:Y,eB,i=1,...,N
o o(B) = LN )

n

for any Borel subset8 andB. The Poissonized versid}h(vn, Hn1 X Hn2) Of Ln(Vn, Hn1 X Pn2) IS
then

Lo(Vn bt X o) = 5 VN, (A X B) — U, 1(A) - bing,2(B)]-

AcP,BEQn
Clearly,
nun,(Ax B) =#{i: (X.,Y)) e AxB,i=1,...,Np},
NN, 1(A) =#{i : X e Aii=1,...,Np},
and

ik, 2(B) = #{i Y € Bi = 1,...,Nn}

are Poisson random variables.
Key to the proof of Theorem 3 is the following property, which is a slight esien of the
proposition of Beirlant, Gyrfi, and Lugosi (1994, p. 311).

Proposition 7 Let ghjk (n> 1, j=1,...,my, k= 1,...,n1,) be real measurable functions, and let

m,
Z Gnjk (VN, (Anj X Bnk) — Mg, 1(Anj)Hn,. 2(Bnk))

||
HM§

Assume that, under the null hypothesis,

E{gnjk (VN, (Anj X Bnk) — KNy, 1(Anj) N, 2(Brk)) } = 0,

43 2~([3] 2 9)

as n— o, whereo is a positive constant andl/(m,C) is a normally distributed random variable
with meanm and covariance matri. Then

and that

)

E Z Gnik (Vn(Anj X Brid) — b1 (Anj)Hn2(Bri)) = AL(0, 1).

Q\IA
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Proof The proof is in sketch form, along the lines of Biau ando@iy(2005). Define the two

characteristic functions
Nh—n
D (t,v) :=E {exp<|tMn+ v im )}

Wh(t) :=E {exp(ﬂ

We begin with the result

and

M3

1

m,
kz Onjk (Vn(Anj x Bnk) — Un,l(Anj)Hn,z(Bnk))> } .
=]

E {exp(itMp + 1UN,) } = iE{exp(ltMn)\Nn =1} pu(l),
=

wherepy(l) is the probability distribution of the Poissantandom variabléN,,
pn(l) =P{N, =1} =& "nl/I1,

and
W, (t) = E{exp(itM)|N, = n}.

Taking the inverse Fourier transform,

E{exp(itMp)|N, = n} = 2npln(n)/_1elunE {exp(itM;, + 1uN,) } du.

We now replaca! with the Stirling approximation to obtain

2re "n" 21
21pn(n) = T ¥\, 8 noo

Then, substituting = u,/n, we get

1 m/n
Wnit) = -10n) [ enltvio

By assumption,
(Dn(t,V) - eftzcz/Zefvz/Z

asn — oo, The result follows from Rao (1973, p. 136). |

We now use Proposition 7 to prove

Y LW X tz) — E{EnlVibos o)) 2 A(0.2),

where we recalb® = 1— 2/t This provides the result in Theorem 3 with the centering constant

Co=E{ln(Vn bha xth2)} = Y Z} E{[Vn, (A% B) — kN, 1(A) - U, 2(B) [} (22)
A€ P, BeQn
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To apply Proposition 7, we must prove assumption (21) holds. Define

Injk(X) = v/N (X — E |V, (Anj X Brik) — g1 (Anj) Mg, 2(Br) |) -

Let

m, 1,
S =ty S ({an(Anj X Bnk) — by 1(Anj) My, 2(Brk) |
j=1k=1

—E |V, (Anj X Bnk) — “Nn,l(Anj)“Nn,Z(Bnk)D
+vy/n (’\rl]" — 1> :
Our goal is to prove the assumption in (21) holds. In particular, we redo@evariance of the

Poissonized statisti§,. After this variance is calculated, the asymptotic normality in (21) can be

proved by verifying the Lyapunov conditions as in Beirlant,0&y and Lugosi (1994). From the
definitions ofvy,, p1, andpy, we have

I\rl:_leénB;)nvN”(Ax B)- 5 3 m(A)(B),

AcP,BeQy

and thus the variance & is

vars) = tn'y ngafl\mn(A>< B) — My, 1(A) N, 2(B)|
AeP,BeQy

+ 2vny % E{ [V, (Ax B) — b, 1(A) b, 2(B))|
AcP,BeQn

- (Vn (A X B) — pu(A)p2(B)) }
+ VA

One can check that there exist standard normal random varidhlesZa, andZg such that

(A B) £ Zp, 0/ FHARE) ),

D A
o 1(A) 2 2oy [y
and
D B
U, 2(B) = Zg “251 ) + W2(B),
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which implies

VN, (A X B) — ln, 1(A) i, 2(B)

g ZaxB W+HI(A)“2(B)
N (zA ulr(]A) +u1(A)> (zs uzﬁ]B) +uz(B))
- Ill(A)nHz(B) (ZAxB —ZAZB\% - ZA\/W_ZB\/M>
~ ZpxB ul(A):Z(B)
Thus,
var(S,)
- i (A)re(B)
~ tnA;PnB;nvar ZaxB n
b1 (A)(B) Ha(A)Hz(B)

+ ZvnA;)nB;nE{ ZpxB T n '(ZAXB n)}
+

= t2 > %Var’ZAxB“fll(A)uZ(B)
AG?nBE n

+ vy % E{|Zaxs|ZaxB} H1(A)L2(B)

AcP,Be
+
= t’(1-2/m)+V2

Finally, we use the variablga.g in defining a distribution-free upper bound 6, which we
use in our asymptoticallg-level independence test,

Ch = > %E{’VNH(AX B) — N, 1(A) - M, 2(B) |}
AePBeQn

~ ZB;HE{yzAXsH kL (A)kz(B)/n

Ac P,
< am/ T (23)

Appendix B. Conjectured Large Sample Properties of the Pearsox? Statistic

For a real parametéy, thepower divergence statistis defined as

5 m b1 (Anj) )
D (M1, Ha) = m;“‘“m"*") [( ull(AnJJ) ) _1]
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providedA # 0 andA # 1 (cf. Read and Cressie, 1988). One can check that
)I\iLnODn,)\(Un,la M) = In(Hn,1, Ha)-

ForA = 1, we have the Pearsqg statistic:

Y2 (b1, 1) = D1 (.1, M1) = E (Hn1(Anj)) = Ha(An))?
e " - =1 M1 ’

(An.j)
For testing independence, we employ the Peaggdest statistic

(Vn(Ax B) — pn1(A) - Pn2(B))?
Hn1(A) - b 2(B) '

Xa(Vn,bn1x bh2) = Y Z:
AcP,BeQn

B.1 Strongly Consistent Test
Quine and Robinson (1985) proved that, forealt 0,

nlogmn

-1 — __nlo
P{X2(Hn1,H) > €} < <” Jrrmm‘_‘ ) )e Ve gmlog(nmy)~ 3 e "

A large deviation-based test can be introduced that rejects indepenifienc

2
2(mrm})*/2(log(n + mnnm+1>> |

2 >
Xn(Vn, Hn 1 X pn2) > ( nlog(mum,)

Under#, we conjecture a non-asymptotic bound for the tail of the distributiog of,, Hn,1 X Hn.2),

nlog(mynt,)

nlog(mnmfy) 2(mnmh)3/2(log(n+mnmh) +1)
2¢/mnt, nlog(mnmh)

P {X%(Vnu Hn1 X Hn2) > (2(”h”f1)3/2(|09(n+ mnt) +1) ) 2}

errhrrfnlog(nJrrrhnw—

= g™

Therefore the conditions (7) imply

- 2(mymy)*2(og(n-+ mum) + 1)\
nzlp {Xﬁ(vn, M1 X Fn2) > ( nlog(myn,) ) } -

and by the Borel-Cantelli lemma we have strong consistency under the polifiesis.
Under the alternative hypothesis the proof strong consistency follaws fhe proof for the
information divergence since

In(Vn, Mt X Mn2) /2 < XA(Vn, Bnt X Hn.2)
(cf. Gyorfi et al., 1998).
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B.2 Asymptotic a-level Test
Morris (1975), Inglot et al. (1990), and @xfi and Vajda (2002) proved that under (10) and (11),

NX3(kn1, ) — My 2
: — N (0,1),
o A(0,1)

which is the same asymptotic normality result as fiaf 2, 1, 1) (See Equation (14) in Section 3.2).
We conjecture that under the conditions (6) and (12),

NX3(Vn, a1 X Hn.2) — Ma, 2
2mym,

Thus, as for the log-likelihood statistic, the hypothesis of independenegeiged if

o Y(1—-a)\/2mm, + mnny
n

0,1).

X2(Vn, tn1 X Hn2) >
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