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Abstract
Three simple and explicit procedures for testing the independence of two multi-dimensional random
variables are described. Two of the associated test statistics (L1, log-likelihood) are defined when
the empirical distribution of the variables is restricted to finite partitions. A third test statistic is
defined as a kernel-based independence measure. Two kinds oftests are provided. Distribution-
free strong consistent tests are derived on the basis of large deviation bounds on the test statistics:
these tests make almost surely no Type I or Type II error aftera random sample size. Asymptotically
α-level tests are obtained from the limiting distribution ofthe test statistics. For the latter tests, the
Type I error converges to a fixed non-zero valueα, and the Type II error drops to zero, for increasing
sample size. All tests reject the null hypothesis of independence if the test statistics become large.
The performance of the tests is evaluated experimentally onbenchmark data.
Keywords: hypothesis test, independence, L1, log-likelihood, kernel methods, distribution-free
consistent test

1. Introduction

Consider a sample ofRd ×R
d′

-valued random vectors(X1,Y1), . . . ,(Xn,Yn) with independent and
identically distributed (i.i.d.) pairs defined on the same probability space. The distribution of (X,Y)
is denoted byν, whileµ1 andµ2 stand for the distributions ofX andY, respectively. We are interested
in testing the null hypothesis thatX andY are independent,

H0 : ν = µ1×µ2, (1)

while making minimal assumptions regarding the distribution.
We consider two main approaches to independence testing. The first is to partition the underly-

ing space, and to evaluate the test statistic on the resulting discrete empirical measures. Consistency
of the test must then be verified as the partition is refined for increasing sample size. Previous mul-
tivariate hypothesis tests in this framework, using theL1 divergence measure, include homogeneity
tests (to determine whether two random variables have the same distribution), by Biau and Gÿorfi
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(2005); and goodness-of-fit tests (for whether a random variable has a particular distribution), by
Györfi and van der Meulen (1990); Beirlant et al. (1994). The log-likelihood has also been em-
ployed on discretised spaces as a statistic for goodness-of-fit testing, by Györfi and Vajda (2002).
We provide generalizations of both theL1 and log-likelihood based tests to the problem of testing in-
dependence, representing to our knowledge the first application of these techniques to independence
testing.

We obtain two kinds of tests for each statistic: first, we derivestrong consistenttests—meaning
that both onH0 and on its complement the tests make a.s. no error after a random sample size1—
based on large deviation bounds. While such tests are not common in the classical statistics litera-
ture, they are well suited to data analysis from streams, where we receivea sequence of observations
rather than a sample of fixed size, and must return the best possible decision at each time using only
current and past observations. Our strong consistent tests aredistribution-free, meaning they re-
quire no conditions on the distribution being tested; anduniversal, meaning the test threshold holds
independent of the distribution. Second, we obtain tests based on the asymptotic distribution of the
L1 and log-likelihood statistics, which assume only thatν is nonatomic. Subject to this assump-
tion, the tests areconsistent: for a given asymptotic error rate onH0, the probability of error on
H1 drops to zero as the sample size increases. Moreover, the thresholds for the asymptotic tests are
distribution-independent. We also present conjectures regarding the form taken by strong consistent
and asymptotic tests based on the Pearsonχ2 statistic, using the goodness-of-fit results of Györfi
and Vajda (2002) (further related test statistics include the power divergence family of Read and
Cressie, 1988, although we do not study them here). We emphasize that our tests are explicit, easy
to carry out, and require very few assumptions on the partition sequences.

Our second approach to independence testing is kernel-based. In this case, our test statistic has a
number of different interpretations: as anL2 distance between Parzen window estimates (Rosenblatt,
1975), as a smoothed difference between empirical characteristic functions (Feuerverger, 1993;
Kankainen, 1995; Ushakov, 1999), or as the Hilbert-Schmidt norm of across-covariance operator
mapping between functions of the random variables (Gretton et al., 2005a,2008). Each test differs
from the others regarding the conditions on the kernels: the Parzen window statistic requires the
kernel bandwidth to decrease with increasing sample size, and has a different limiting distribution
to the remaining two statistics; while the Hilbert-Schmidt approach uses a fixed bandwidth, and
can be thought of as a generalization of the characteristic function-based test. We provide two new
results: a strong consistent test of independence based on a tighter large deviation bound than that of
Gretton et al. (2005a), and an empirical comparison of the limiting distributions of the kernel-based
statistic for fixed and decreasing kernel bandwidth, as used in asymptotic tests.

Additional independence testing approaches also exist in the statistics literature. Ford = d′ = 1,
an early nonparametric test for independence, due to Hoeffding (1948); Blum et al. (1961), is based

1. In other words, denoting byP0 (resp.P1) the probability under the null hypothesis (resp.under the alternative), we
have

P0{rejectingH0 for only finitely manyn} = 1 (2)

and
P1{acceptingH0 for only finitely manyn} = 1. (3)

This concept relates to the definition of discernability introduced by Dembo and Peres (1994): two ensemblesH0 and
H1 of probability measures onRk are said to be discernible if there exists a sequencefn : (Rk)n → {0,1} of Borel
measurable functions achieving (2) and (3). Thus our test implies discernability of the setH0 in (1) and the setH1 of
dependent random variables.
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on the notion of differences between the joint distribution function and the product of the marginals.
The associated independence test is consistent under appropriate assumptions. Two difficulties arise
when using this statistic in a test, however. First, quantiles of the null distributionare difficult to
estimate. Second, and more importantly, the quality of the empirical distribution function estimates
becomes poor as the dimensionality of the spacesR

d andR
d′

increases, which limits the utility of
the statistic in a multivariate setting. Further approaches to independence testing can be employed
when particular assumptions are made on the form of the distributions, for instance that they should
exhibit symmetry. We do not address these approaches in the present study.

The current work is built on an earlier presentation by Gretton and Györfi (2008). Compared
with this earlier work, the present study contains more detailed proofs of themain theorems, proofs
of secondary theorems omitted by Gretton and Györfi (2008) due to space constraints, additional
experiments on higher dimensional benchmark data, and an experimental comparison with the boot-
strap approach for theL1 and log-likelihood based tests (a similar comparison for the kernel-based
test was made by Gretton et al., 2008).

The paper is organized as follows. Section 2 describes the large deviationand limit distribution
properties of theL1-test statistic. The large deviation result is used to formulate a distribution-free
strong consistent test of independence, which rejects the null hypothesis if the test statistic becomes
large. The limit distribution is used in an asymptoticallyα-level test, which is consistent when
the distribution is nonatomic. Both a distribution-free strong consistent test and an asymptotically
α-level test are presented for the log-likelihood statistic in Section 3. Section 4contains a review
of kernel-based independence statistics, and describes the associatedhypothesis tests for both the
fixed-bandwidth and variable-bandwidth cases. Finally, a numerical comparison between the tests
is given in Section 5.

2. L1-based Statistic

Denote by νn, µn,1 and µn,2 the empirical measures associated with the samples
(X1,Y1), . . . ,(Xn,Yn), X1, . . . ,Xn, andY1, . . . ,Yn, respectively, so that

νn(A×B) = n−1#{i : (Xi ,Yi) ∈ A×B, i = 1, . . . ,n},
µn,1(A) = n−1#{i : Xi ∈ A, i = 1, . . . ,n}, and

µn,2(B) = n−1#{i : Yi ∈ B, i = 1, . . . ,n},
for any Borel subsetsA andB. Given the finite partitionsPn = {An,1, . . . ,An,mn} of R

d andQn =
{Bn,1, . . . ,Bn,m′

n
} of R

d′
, we define theL1 test statistic comparingνn andµn,1×µn,2 as

Ln(νn,µn,1×µn,2) = ∑
A∈Pn

∑
B∈Qn

|νn(A×B)−µn,1(A) ·µn,2(B)|.

In the following two sections, we derive the large deviation and limit distribution properties of this
L1 statistic, and the associated independence tests.

2.1 Strongly Consistent Test

For testing a simple hypothesis versus a composite alternative, Györfi and van der Meulen (1990)
introduced a related goodness of fit test statisticLn defined as

Ln(µn,1,µ1) = ∑
A∈Pn

|µn,1(A)−µ1(A)|.
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Beirlant, Devroye, Gÿorfi, and Vajda (2001), and Biau and Györfi (2005) proved that, for all 0< ε,

P{Ln(µn,1,µ1) > ε} ≤ 2mne−nε2/2. (4)

We now describe a similar result for ourL1 independence statistic.

Theorem 1 UnderH0, for all 0 < ε1, 0 < ε2 and0 < ε3,

P{Ln(νn,µn,1×µn,2) > ε1 + ε2 + ε3} ≤ 2mn·m′
ne−nε2

1/2 +2mne−nε2
2/2 +2m′

ne−nε2
3/2.

Proof We boundLn(νn,µn,1×µn,2) according to

Ln(νn,µn,1×µn,2) = ∑
A∈Pn

∑
B∈Qn

|νn(A×B)−µn,1(A) ·µn,2(B)|

≤ ∑
A∈Pn

∑
B∈Qn

|νn(A×B)−ν(A×B)|

+ ∑
A∈Pn

∑
B∈Qn

|ν(A×B)−µ1(A) ·µ2(B)|

+ ∑
A∈Pn

∑
B∈Qn

|µ1(A) ·µ2(B)−µn,1(A) ·µn,2(B)|.

Under the null hypothesisH0, we have that

∑
A∈Pn

∑
B∈Qn

|ν(A×B)−µ1(A) ·µ2(B)| = 0.

Moreover

∑
A∈Pn

∑
B∈Qn

|µ1(A) ·µ2(B)−µn,1(A) ·µn,2(B)|

≤ ∑
A∈Pn

∑
B∈Qn

|µ1(A) ·µ2(B)−µ1(A) ·µn,2(B)|

+ ∑
A∈Pn

∑
B∈Qn

|µ1(A) ·µn,2(B)−µn,1(A) ·µn,2(B)|

= ∑
B∈Qn

|µ2(B)−µn,2(B)|+ ∑
A∈Pn

|µ1(A)−µn,1(A)|

= Ln(µn,1,µ1)+Ln(µn,2,µ2).

Thus, (4) implies

P{Ln(νn,µn,1×µn,2) > ε1 + ε2 + ε3}
≤ P{Ln(νn,ν) > ε1}+P{Ln(µn,1,µ1) > ε2}+P{Ln(µn,2,µ2) > ε3}
≤ 2mn·m′

ne−nε2
1/2 +2mne−nε2

2/2 +2m′
ne−nε2

3/2.

Theorem 1 yields a strong consistent test of independence, which rejects the null hypothesis if
Ln(νn,µn,1×µn,2) becomes large. The test is distribution-free, that is, the probability distributions
ν, µ1 andµ2 are completely arbitrary; and the threshold is universal, that is, it does not depend on
the distribution.
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Corollary 2 Consider the test which rejectsH0 when

Ln(νn,µn,1×µn,2) > c1

(√
mnm′

n

n
+

√
mn

n
+

√
m′

n

n

)
≈ c1

√
mnm′

n

n
,

where
c1 >

√
2ln2≈ 1.177. (5)

Assume that conditions

lim
n→∞

mnm′
n

n
= 0, (6)

and

lim
n→∞

mn

lnn
= ∞, lim

n→∞

m′
n

lnn
= ∞, (7)

are satisfied. Then underH0, the test makes a.s. no error after a random sample size. Moreover, if

ν 6= µ1×µ2,

and for any sphere S centered at the origin,

lim
n→∞

max
A∈Pn,A∩S6=0

diam(A) = 0 (8)

and
lim
n→∞

max
B∈Qn,B∩S6=0

diam(B) = 0, (9)

then after a random sample size the test makes a.s. no error.

Proof UnderH0, we obtain from Theorem 1 a non-asymptotic bound for the tail of the distribution
of Ln(νn,µn,1×µn,2), namely

P

{
Ln(νn,µn,1×µn,2) > c1

(√
mnm′

n

n
+

√
mn

n
+

√
m′

n

n

)}

≤ 2mnm′
ne−c2

1mnm′
n/2 +2mne−c2

1mn/2 +2m′
ne−c2

1m′
n/2

≤ e−(c2
1/2−ln2)mnm′

n +e−(c2
1/2−ln2)mn +e−(c2

1/2−ln2)m′
n

asn→ ∞. Therefore the conditions (7) imply

∞

∑
n=1

P

{
Ln(νn,µn,1×µn,2) > c1

(√
mnm′

n

n
+

√
mn

n
+

√
m′

n

n

)}
< ∞,

and the proof under the null hypothesis is completed by the Borel-Cantelli lemma.
For the result under the alternative hypothesis, we first apply the triangleinequality

Ln(νn,µn,1×µn,2) ≥ ∑
A∈Pn

∑
B∈Qn

|ν(A×B)−µ1(A) ·µ2(B)|

− ∑
A∈Pn

∑
B∈Qn

|νn(A×B)−ν(A×B)|

− ∑
B∈Qn

|µ2(B)−µn,2(B)|

− ∑
A∈Pn

|µ1(A)−µn,1(A)|.

1395



GRETTON AND GYÖRFI

The condition in (6) implies the three last terms of the right hand side tend to 0 a.s.Moreover, using
the technique from Barron, Györfi, and van der Meulen (1992) we can prove that by conditions (8)
and (9),

∑
A∈Pn

∑
B∈Qn

|ν(A×B)−µ1(A) ·µ2(B)| → 2sup
C

|ν(C)−µ1×µ2(C)| > 0

asn→ ∞, where the last supremum is taken over all Borel subsetsC of R
d ×R

d′
, and therefore

liminf
n→∞

Ln(νn,µn,1×µn,2) ≥ 2sup
C

|ν(C)−µ1×µ2(C)| > 0

a.s.

2.2 Asymptoticα-level Test

Beirlant, Gÿorfi, and Lugosi (1994) proved, under conditions

lim
n→∞

mn = ∞, lim
n→∞

mn

n
= 0, (10)

and

lim
n→∞

max
j=1,...,mn

µ1(An j) = 0, (11)

that √
n(Ln(µn,1,µ1)−E{Ln(µn,1,µ1)})/σ D→N (0,1),

where
D→ indicates convergence in distribution andσ2 = 1−2/π. The technique of Beirlant, Györfi,

and Lugosi (1994) involves a Poisson representation of the empirical process in conjunction with
Bartlett’s idea of partial inversion for obtaining characteristic functions ofconditional distributions
(see Bartlett, 1938). We apply these techniques in Appendix A to derive anasymptotic result for
Ln(νn,µn,1×µn,2).

Theorem 3 Assume that conditions (6) and

lim
n→∞

max
A∈Pn

µ1(A) = 0, lim
n→∞

max
B∈Qn

µ2(B) = 0, (12)

are satisfied. Then, underH0, there exists a centering sequence(Cn)n≥1 depending onν such that

√
n(Ln(νn,µn,1×µn,2)−Cn)/σ D→N (0,1),

whereσ2 = 1−2/π.

Theorem 3 yields the asymptotic null distribution of a consistent independence test, which re-
jects the null hypothesis ifLn(νn,µn,1×µn,2) becomes large. In contrast to Corollary 2, and because
of condition (11), this new test isnotdistribution-free: the measuresµ1 andµ2 have to be nonatomic.
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Corollary 4 Let α ∈ (0,1). Consider the test which rejectsH0 when

Ln(νn,µn,1×µn,2) > c2

√
mnm′

n

n
+

σ√
n

Φ−1(1−α)

≈ c2

√
mnm′

n

n
,

where
σ2 = 1−2/π and c2 =

√
2/π ≈ 0.798,

andΦ denotes the standard normal distribution function. Then, under the conditions of Theorem 3,
the test has asymptotic significance levelα. Moreover, under the additional conditions(8) and (9),
the test is consistent.

Before proceeding to the proof, we examine how the above test differs from that in Corollary 2. In
particular, comparingc2 above withc1 in (5), both tests behave identically with respect to

√
mnm′

n/n
for large enoughn, butc2 is smaller.
Proof According to Theorem 3, underH0,

P{
√

n(Ln(νn,µn,1×µn,2)−Cn)/σ ≤ x} ≈ Φ(x),

therefore the error probability with thresholdx is

α = 1−Φ(x).

Thus theα-level test rejects the null hypothesis if

Ln(νn,µn,1×µn,2) > Cn +
σ√
n

Φ−1(1−α).

As Cn depends on the unknown distribution, we apply an upper bound

Cn ≤
√

2/π
√

mnm′
n

n

(see Equation (22) in Appendix A for the definition ofCn, and Equation (23) for the bound), so
decreasing the error probability.

3. Log-likelihood Statistic

In the literature on goodness-of-fit testing theI -divergence statistic, Kullback-Leibler divergence,
or log-likelihood statistic,

In(µn,1,µ1) =
mn

∑
j=1

µn,1(An, j) log
µn,1(An, j)

µ1(An, j)
,

plays an important role. For testing independence, the corresponding log-likelihood test statistic is
defined as

In(νn,µn,1×µn,2) = ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

µn,1(A) ·µn,2(B)
.
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The large deviation and the limit distribution properties ofIn(νn,µn,1×µn,2) can be derived from
the properties of

In(νn,ν) = ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

ν(A×B)
.

We have that underH0,

In(νn,ν)− In(νn,µn,1×µn,2)

= ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

ν(A×B)

− ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

µn,1(A) ·µn,2(B)

= ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
µn,1(A) ·µn,2(B)

ν(A×B)

= ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
µn,1(A) ·µn,2(B)

µ1(A) ·µ2(B)
,

therefore

In(νn,ν)− In(νn,µn,1×µn,2)

= ∑
A∈Pn

∑
B∈Qn

νn(A×B)

(
log

µn,1(A)

µ1(A)
+ log

µn,2(B)

µ2(B)

)

= ∑
A∈Pn

µn,1(A) log
µn,1(A)

µ1(A)
+ ∑

B∈Qn

µn,2(B) log
µn,2(B)

µ2(B)

= In(µn,1,µ1)+ In(µn,1,µ1)

≥ 0.

3.1 Strongly Consistent Test

We refer to Tusńady (1977) and Barron (1989) who first discussed the exponential character of the
tails of In. Kallenberg (1985), and Quine and Robinson (1985) proved that, forall ε > 0,

P{In(µn,1,µ1) > ε} ≤
(

n+mn−1
mn−1

)
e−nε ≤ emn log(n+mn)−nε.

Note that using an alternative bound due to Barron (1989, Equation 3.5),we obtain under (10) and
(11) that

P{In(µn,1,µ1) > ε} = e−n(ε+o(1)), (13)

such that

lim
n→∞

1
n

logP{In(µn,1,µ1) > ε} = −ε.

A large deviation based test can be introduced such that the test rejects theindependence if

In(νn,µn,1×µn,2) ≥
mnm′

n(log(n+mnm′
n)+1)

n
.
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UnderH0, we obtain a non-asymptotic bound for the tail of the distribution ofIn(νn,µn,1×µn,2):

P
{

In(νn,µn,1×µn,2) >
mnm′

n(log(n+mnm′
n)+1)

n

}

≤ P
{

In(νn,ν) >
mnm′

n(log(n+mnm′
n)+1)

n

}

≤ emnm′
n log(n+mnm′

n)−nmnm′
n(log(n+mnm′

n)+1)
n

= e−mnm′
n.

Therefore condition (7) implies

∞

∑
n=1

P
{

In(νn,µn,1×µn,2) >
mnm′

n(log(n+mnm′
n)+1)

n

}
< ∞,

and by the Borel-Cantelli lemma we have strong consistency under the null hypothesis.
Under the alternative hypothesis the proof of strong consistency followsfrom the inequality, also

called Pinsker’s inequality, which upper bounds theL1 error in terms of I-divergence (cf. Csiszár,
1967; Kemperman, 1969; Kullback, 1967),

Ln(νn,µn,1×µn,2)
2 ≤ 2In(νn,µn,1×µn,2).

Therefore,

liminf
n→∞

2In(νn,µn,1×µn,2) ≥ (liminf
n→∞

Ln(νn,µn,1×µn,2))
2

≥ 4sup
C

|ν(C)−µ1×µ2(C)|2 > 0

a.s., where the supremum is taken over all Borel subsetsC of R
d ×R

d′
. In fact, under conditions

(8), (9), and
I(ν,µ1×µ2) < ∞,

one may get
lim
n→∞

In(νn,µn,1×µn,2) = I(ν,µ1×µ2) > 0

a.s. (see Barron et al., 1992). Note that due to the form of the universal test threshold, strong
consistency underH1 requires the condition

lim
n→∞

mnm′
n

n
log(n+mnm′

m) = 0,

as compared to (6).

3.2 Asymptoticα-level Test

Concerning the limit distribution, Inglot et al. (1990), and Györfi and Vajda (2002) proved that
under (10) and (11),

2nIn(µn,1,µ1)−mn√
2mn

D→N (0,1). (14)
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This implies that for any real valuedx, under the conditions (6) and (12),

P

{
2nIn(νn,µn,1×µn,2)−mnm′

n√
2mnm′

n

≥ x

}
≤ P

{
2nIn(νn,ν)−mnm′

n√
2mnm′

n

≥ x

}

→ 1−Φ(x),

which results in a test rejecting the independence if

2nIn(νn,µn,1×µn,2)−mnm′
n√

2mnm′
n

≥ Φ−1(1−α),

or equivalently

In(νn,µn,1×µn,2) ≥
Φ−1(1−α)

√
2mnm′

n +mnm′
n

2n
.

Note that unlike theL1 case, the ratio of the strong consistent threshold to the asymptotic thresh-
old increases for increasingn.

4. Kernel-based Statistic

We now present a second class of approaches to independence testing, based on a kernel statistic.
We can derive this statistic in a number of ways. The most immediate interpretation,introduced by
Rosenblatt (1975), defines the statistic as theL2 distance between the joint density estimate and the
product of marginal density estimates. LetK andK′ be density functions (called kernels) defined
onR

d and onR
d′

, respectively. For the bandwidthh > 0, define

Kh(x) =
1
hd K

(x
h

)
and K′

h(y) =
1

hd′ K
′
(y

h

)
.

The Rosenblatt-Parzen kernel density estimates of the density of(X,Y) andX are respectively

fn(x,y) =
1
n

n

∑
i=1

Kh(x−Xi)K
′
h(y−Yi) and fn,1(x) =

1
n

n

∑
i=1

Kh(x−Xi), (15)

with fn,2(y) defined by analogy. Rosenblatt (1975) introduced the kernel-based independence statis-
tic

Tn =
Z

Rd×Rd′
( fn(x,y)− fn,1(x) fn,2(y))

2dxdy.

Alternatively, defining

Lh(x) =
Z

Rd
Kh(u)Kh(x−u)du=

1
hd

Z

Rd
K(u)K(x−u)du

andL′
h(y) by analogy, we may write the kernel test statistic

Tn = 1
n2 ∑n

i=1 ∑n
j=1Lh(Xi −Xj)L′

h(Yi −Yj)

− 2
n3 ∑n

i=1

(
∑n

j=1Lh(Xi −Xj)
)(

∑n
j=1L′

h(Yi −Yj)
)

+
(

1
n2 ∑n

i=1 ∑n
j=1Lh(Xi −Xj)

)(
1
n2 ∑n

i=1 ∑n
j=1L′

h(Yi −Yj)
)
. (16)
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Note that at independence, the expected value of the statistic is not zero, but

E{Tn} =
n−1

n2 (Lh(0)−E{Lh(X1−X2)})
(
L′

h(0)−E{L′
h(Y1−Y2)}

)
(17)

≤ n−1Lh(0)L′
h(0) = (nhdhd′

)−1‖K‖2‖K′‖2

A second interpretation of the above statistic is as a smoothed difference between the joint char-
acteristic function and the product of the marginals (Feuerverger, 1993; Kankainen, 1995; Ushakov,
1999). The characteristic function and Rosenblatt-Parzen window statistics can be quite similar: in
fact, for appropriate smoothing and kernel choices andfixed n, they may be identical (Kankainen,
1995, p. 54, demonstrates this for a Gaussian kernel). That said, a number of important differ-
ences exist between the characteristic function-based statistic and that ofRosenblatt (1975). Most
crucially, the kernel bandwidth is kept fixed for the characteristic function-based test, rather than
decreasing asn rises (a decreasing bandwidth is needed to ensure consistency of the kernel density
estimates), resulting in very different forms for the null distribution; and there are more restric-
tive conditions on the Rosenblatt-Parzen test statistic (Rosenblatt, 1975, conditions a.1-a.4). These
issues are discussed in detail by Feuerverger (1993, Section 5) and Kankainen (1995, Section 5.4).

A further generalization of the statistic is presented by Gretton et al. (2005a, 2008), in terms of
covariances between feature mappings of the random variables to reproducing kernel Hilbert spaces
(RKHSs). We now briefly review this interpretation, beginning with some necessary terminology
and definitions. LetF be an RKHS, with the continuous feature mappingφ(x)∈F for eachx∈R

d,
such that the inner product between the features is given by the positivedefinite kernel function
Lh(x,x′) := 〈φ(x),φ(x′)〉F . Likewise, letG be a second RKHS onRd′

with kernelL′
h(·, ·) and feature

mapψ(y). Following Baker (1973) and Fukumizu et al. (2004), the cross-covariance operatorCν :
G → F for the measureν is defined such that for allf ∈ F andg∈ G ,

〈 f ,Cνg〉F = E([ f (X)−E( f (X))] [g(Y)−E(g(Y))]) .

The cross-covariance operator can be thought of as a generalisationof a cross-covariance matrix
between the (potentially infinite dimensional) feature mappingsφ(x) andψ(y).

To see how this operator may be used to test independence, we recall the following characteri-
zation of independence (see, e.g., Jacod and Protter, 2000, Theorem10.1e):

Theorem 5 The random variables X and Y are independent if and only ifcov( f (X),g(Y)) = 0 for
any pair( f ,g) of bounded, continuous functions.

While the bounded continuous functions are too rich a class to permit the construction of a
covariance-based test statistic on a sample, Fukumizu et al. (2008) and Sriperumbudur et al. (2008)
show that wheñF is the unit ball in acharacteristic2 RKHSF , andG̃ the unit ball in a characteristic
RKHSG , then

sup
f∈F̃ ,g∈G̃

E([ f (X)−E( f (X))] [g(Y)−E(g(Y))]) = 0 ⇐⇒ ν = µ1×µ2.

2. The reader is referred to Fukumizu et al. (2008) and Sriperumbudur et al. (2008) for conditions under which an RKHS
is characteristic. We note here that the Gaussian kernel onR

d has this property, and provide further discussion below.
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In other words, the spectral norm of the covariance operatorCν between characteristic RKHSs is
zero only at independence. Rather than the maximum singular value, we may use the squared
Hilbert-Schmidt norm (the sum of the squared singular values), which hasa population expression

H(ν;F ,G) = E{Lh(X1−X2)L
′
h(Y1−Y2)}−2E{E{Lh(X1−X2)|X1}E{Lh(Y1−Y2)|Y1}}

+E{Lh(X1−X2)}E{L′
h(Y1−Y2)}

(see Gretton et al., 2005a, Lemma 1): we call this the Hilbert-Schmidt independence criterion
(HSIC).

The test statistic in (16) is then interpreted as a biased empirical estimate of H(ν;F ,G). Clearly,
whenKh andK′

h are continuous and square integrable densities, the induced kernelsLh andL′
h are

continuous positive definite RKHS kernels. However, as long asLh andL′
h are characteristic kernels,

then H(ν;F ,G) = 0 iff X andY independent. The Gaussian and Laplace kernels are characteristic
onR

d (Fukumizu et al., 2008), and universal kernels (in the sense of Steinwart, 2001) are character-
istic on compact domains (Gretton et al., 2005a, Theorem 6). Sriperumbudur et al. (2008) provide
a simple necessary and sufficient condition for a bounded continuous translation invariant kernel to
be characteristic onRd: the Fourier spectrum of the kernel must be supported on the entire domain.
Note that characteristic kernels need not be inner products of square integrable probability density
functions: an example is the kernel

Lh(x1,x2) = exp(xT
1 x2/h)

from Steinwart (2001, Section 3, Example 1), which is universal, hencecharacteristic on compact
subsets ofRd. Moreover, an appropriate choice of kernels allows testing of dependence in non-
Euclidean settings, such as distributions on strings and graphs (Gretton etal., 2008).

Finally, while we have focused on a kernel dependence measure basedon the covariance, al-
ternative kernel dependence measures exist based on the canonicalcorrelation. Dauxois and Nkiet
(1998) propose the canonical correlation between variables in a spline-based RKHS as a statistic for
an independence test: this dependence measure follows the suggestion ofRényi (1959), but with a
more restrictive pair of function classes used to compute the correlation (rather than the set of all
square integrable functions). The variables are assumed in this case to beunivariate. Likewise, Bach
and Jordan (2002) use the canonical correlation between RKHS feature mappings as a measure of
dependence between pairs of random variables (although they do not address the problem of hy-
pothesis testing). Bach and Jordan employ a different regularization strategy to Dauxois and Nkiet,
however, which is a roughness penalty on the canonical correlates, rather than projection on a finite
basis. For an appropriate rate of decay of the regularization with increasing sample size, the empir-
ical estimate of the canonical correlation converges in probability (Leurgans et al., 1993; Fukumizu
et al., 2007). Fukumizu et al. (2008) provide a consistent RKHS-basedestimate of the mean-square
contingency, which is also based on the canonical correlation. This finalindependence measure is
asymptotically independent of the kernel choice. When used as a statistic in an independence test,
the kernel contingency was found empirically to have power superior to theHSIC-based test.

4.1 Strongly Consistent Test

The empirical statisticTn was previously shown by Gretton et al. (2005a) to converge in probability
to its expectation with rate 1/

√
n. Given 0≤ Lh(0)L′

h(0) ≤ 1, the corresponding result is

P(Tn−E(Tn) ≥ ε2) ≤ 3e−0.24nε4
,
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which follows from the straightforward application of a bound by Hoeffding (1963, p. 25). We now
provide a more refined bound which scales better withε, and is thus tighter when the bandwidthh
decreases.

We will obtain our results for the semi-statistic

T̃n = ‖ fn(·, ·)−E fn(·, ·)‖2,

since under the null hypothesis,
√

Tn = ‖ fn(·, ·)− fn,1(·) fn,2(·)‖
≤ ‖ fn(·, ·)−E fn(·, ·)‖+‖ fn,1(·) fn,2(·)−E fn,1(·)E fn,2(·)‖
≤

√
T̃n +‖ fn,1(·)( fn,2(·)−E fn,2(·))‖+‖( fn,1(·)−E fn,1(·))E fn,2(·)‖

=
√

T̃n +‖ fn,1(·)‖‖ fn,2(·)−E fn,2(·)‖+‖ fn,1(·)−E fn,1(·)‖‖E fn,2(·)‖
≈

√
T̃n.

Theorem 6 For anyε > 0,

P
{

T̃n ≥
(

ε+E
{√

T̃n

})2
}
≤ e−nε2

/
(2Lh(0)L′

h(0)).

Proof We apply the McDiarmid inequality (cf. McDiarmid, 1989): LetZ1, . . . ,Zn be independent
random variables taking values in a setA and assume thatf : An → R satisfies

sup
z1,...,zn,

z′i∈A

| f (z1, . . . ,zn)− f (z1, . . . ,zi−1,z
′
i ,zi+1, . . . ,zn)| ≤ ci , 1≤ i ≤ n.

Then, for allε > 0,

P{ f (Z1, . . . ,Zn)−E f (Z1, . . . ,Zn) ≥ ε} ≤ e−2ε2
/

∑n
i=1 c2

i .

Because of
√

T̃n = ‖ fn(·, ·)−E fn(·, ·)‖

= ‖1
n

n

∑
i=1

Kh(·−Xi)K
′
h(·−Yi)−E fn(·, ·)‖

≤ ‖1
n

Kh(·−X1)K
′
h(·−Y1)‖+‖1

n

n

∑
i=2

Kh(·−Xi)K
′
h(·−Yi)−E fn(·, ·)‖

we can apply McDiarmid inequality with

2
n
‖Kh(·−X1)K

′
h(·−Y1)‖ =

2
n

√
Lh(0)L′

h(0) =: ci = c1,

where we note that theci are independent ofi, and can be replaced by a singlec1. Thus,

P
{√

T̃n−E
{√

T̃n

}
≥ ε
}

≤ e−2ε2
/

∑n
i=1 c2

i

= e−2ε2
/

(nc2
1)

≤ e−nε2
/

(2Lh(0)L′
h(0)).
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This implies

P
{

T̃n ≥
(

ε+E
{√

T̃n

})2
}
≤ e−nε2

/
(2Lh(0)L′

h(0)).

From these inequalities we can derive a test of independence. Chooseε such that

nε2/(2Lh(0)L′
h(0)) = 2lnn.

Because of

E{T̃n} ≈ E{Tn} ≤
Lh(0)L′

h(0)

n
,

we choose the threshold

(√
Lh(0)L′

h(0)4lnn

n
+

√
Lh(0)L′

h(0)

n

)2

=
Lh(0)L′

h(0)

n
(
√

4lnn+1)2,

that is, we reject the hypothesis of independence if

Tn >
‖K‖2‖K′‖2

nhdhd′ (
√

4lnn+1)2.

It follows from

P
{

Tn ≥
Lh(0)L′

h(0)

n
(
√

4lnn+1)2
}

≈ P



T̃n ≥

(√
Lh(0)L′

h(0)4lnn

n
+

√
Lh(0)L′

h(0)

n

)2




≤ P



T̃n ≥

(√
Lh(0)L′

h(0)4lnn

n
+
√

E{T̃n}
)2




≤ P



T̃n ≥

(√
Lh(0)L′

h(0)4lnn

n
+E

{√
T̃n

})2




≤ e−2lnn

that this test of independence is strongly consistent.
Under the alternative hypothesis, there are two cases:

• If h→ 0 and the densityf exists and is square integrable, then

Tn →‖ f − f1 f2‖2 > 0

a.s. The strong consistency is not distribution-free, sinceν must have a square integrable
density.
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• If h is fixed, the strong law of large numbers implies

Tn → E{Lh(X1−X2)L
′
h(Y1−Y2)}−2E{E{Lh(X1−X2)|X1}E{Lh(Y1−Y2)|Y1}}

+E{Lh(X1−X2)}E{L′
h(Y1−Y2)}

=: H(ν;F ,G)

If Kh andK′
h are continuous and square integrable densities, the induced kernelsLh andL′

h are
continuous positive definite kernels: H(ν;F ,G) is then the squared Hilbert-Schmidt norm
of the covariance operator forν. We may replaceLh andL′

h with anycharacteristic kernels
(in the sense of Fukumizu et al., 2008; Sriperumbudur et al., 2008), however, and retain the
property H(ν;F ,G) = 0 iff X andY independent. In this case, the strong consistency is
distribution-free.

4.2 Approximately α-level Tests

We now describe the asymptotic limit distribution of the test statisticTn in (16). We address two
cases: first, when the kernel bandwidth decreases, and second, when it remains fixed.

Let us consider the case whereKh(x) andK′
h(y) are intended to be used in a Rosenblatt-Parzen

density estimator, as in (15). The corresponding density estimates inTn are mean square consistent
if h = hn such that

hn → 0 and nhd
nhd′

n → ∞. (18)

Based on the results of Hall (1984), Cotterill and Csörgő (1985) and Beirlant and Mason (1995), we
expect that, under these consistency conditions,

Tn−E{Tn}√
var(Tn)

D→N (0,1).

We next calculate var(Tn) ≈ var(T̃n). Under the null hypothesis,

T̃n = ‖ fn(·, ·)−E fn(·, ·)‖2

=

∥∥∥∥∥
1
n

n

∑
i=1

(Kh(·−Xi)K
′
h(·−Yi)−E{Kh(·−X)K′

h(·−Y)})
∥∥∥∥∥

2

=
1
n2

n

∑
i=1

n

∑
j=1

(
(Kh(·−Xi)K

′
h(·−Yi)−E{Kh(·−X)K′

h(·−Y)})×

(Kh(·−Xj)K
′
h(·−Yj)−E{Kh(·−X)K′

h(·−Y)})
)

=:
1
n2

n

∑
i=1

n

∑
j=1

Mh(Xi ,Yi ,Xj ,Yj),

and therefore

var(T̃n) =
1
n4

n

∑
i=1

n

∑
j=1

n

∑
i′=1

n

∑
j ′=1

cov(Mh(Xi ,Yi ,Xj ,Yj),Mh(Xi′ ,Yi′ ,Xj ′ ,Yj ′)).

One can check that
cov(Mh(Xi ,Yi ,Xj ,Yj),Mh(Xi′ ,Yi′ ,Xj ′ ,Yj ′)) = 0
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unless(i, j) = (i′, j ′) or (i, j) = ( j ′, i′). Thus,

var(T̃n) =
1
n4 (nvar(Mh(X1,Y1,X1,Y1))+2n(n−1)var(Mh(X1,Y1,X2,Y2)))

≈ 2
n2var(Mh(X1,Y1,X2,Y2)).

If h→ 0 then
2
n2var(Mh(X1,Y1,X2,Y2)) ≈

2‖ f‖2

n2hdhd′ , (19)

therefore a possible form for the asymptotic normal distribution is

nhd/2hd′/2(Tn−E{Tn})/σ D→N (0,1),

where
σ2 = 2‖ f‖2.

Thus the asymptoticα-level test rejects the null hypothesis if

Tn > E{Tn}+
σ

nhd/2hd′/2
Φ−1(1−α),

whereE{Tn} may be replaced by its upper bound,

Lh(0)L′
h(0)/n = ‖K‖2‖K′‖2/(nhdhd′

).

The only problem left is that the threshold is not distribution-free:σ depends on the unknownf .
The simplest distribution-free bound for the variance,

σ2 ≤ ‖K‖4‖K′‖4

n2h2dh2d′

is unsatisfactory since its performance as a function ofh is worse than the result (19). An im-
proved distribution-free bound on the variance (for both fixed and decreasingh) is a topic for future
research: we give an empirical estimate below (Equation 20) for use in asymptotic hypothesis tests.

We now consider the case of fixedh. Following Feuerverger (1993); Serfling (1980), the distri-
bution ofTn underH0 is

nTn
D→

∞

∑
l=1

λl z
2
l ,

wherezl ∼ N (0,1) i.i.d., andλl are the solutions to an eigenvalue problem depending on the un-
known distribution ofX andY (see Gretton et al., 2008, Theorem 2 for details).

A difficulty in using the statistic (16) in a hypothesis test therefore arises dueto the form of
the null distribution of the statistic, which is a function of the unknown distributionoverX andY,
whether or noth is fixed. In the case ofh decreasing according to (18), we may use an empirical
estimate of the variance ofTn underH0 due to Gretton et al. (2008, Theorem 4). Denoting by⊙ the
entrywise matrix product andA·2 the entrywise matrix power,

var(Tn) = 1⊤ (B−diag(B))1, (20)
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Figure 1: Simulated cumulative distribution function ofTn (Emp) underH0 for n = 200 (left col-
umn) andn = 500 (right column), compared with the two-parameter Gamma distribution
(Gamma) and the Normal distribution (Normal). The empirical CDF was obtained em-
pirically using 5000 independent draws ofTn. Both the parametric approximations are
fit using the mean and variance in Equations (17) and (20). “Samp” is the numbern of
samples, and the bandwidth ish.

where

B =
(
(HLH )⊙

(
HL ′H

))·2
,

L is a matrix with entriesLh(Xi −Xj), L ′ is a matrix with entriesL′
h(Yi −Yj), H = I −n−111⊤ is a

centering matrix, and1 ann×1 vector of ones.
Two approaches have been proposed in the case of fixedh to obtain appropriate quantiles of the

null distribution for hypothesis testing: repeated shuffling of the sample (Feuerverger, 1993), and
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approximation by a two-parameter Gamma density (Kankainen, 1995),

nTn ∼
xα−1e−x/β

βαΓ(α)

where α =
(E{Tn})2

var(Tn)
, β =

nvar(Tn)

E{Tn}
,

andE{Tn} is given in (17). This Gamma approximation was found by Gretton et al. (2008) to per-
form identically on the Section 5 benchmark data to the more computationally expensive approach
of Feuerverger (1993). We emphasize, however, that this approximation is a heuristic: no guaran-
tees are provided regarding the asymptotic performance of this approximation in terms of Type II
error, nor is it established under what conditions the approximation fails.

We end this section with an empirical comparison between the Normal and two-parameter
Gamma null distribution approximations, and the null CDF generated by repeated independent
samples ofTn. We choseX andY to be independent and univariate, withX having a uniform
distribution andY being a symmetric bimodal mixture of Gaussians. Both variables had zero mean
and unit standard deviation. Results are plotted in Figure 1.

We observe that as the bandwidth increases, the Gamma approximation ofTn becomes more
accurate (although it is always good for large quantiles, which is the region most important to a
hypothesis test). The Normal approximation is very close to the Gamma approximation for small
bandwidths, but is less accurate (with respect to both the Gamma distribution and the simulated
CDF) for larger bandwidths. Finally, for the smallest bandwidth (h = 0.01), both approximate null
distributions become more accurate for increasingn (for larger kernel sizes, the effect is too small to
see on the plots). We will return to these points in the next section when analysing our experimental
results.

5. Numerical Results

In comparing the independence tests, we made use of the multidimensional benchmark data pro-
posed by Gretton et al. (2008). We tested the independence in two, four,and six dimensions (i.e.,
d ∈ 1,2,3 andd = d′). The data were constructed as follows. First, we generatedn samples of two
independent univariate random variables, each drawn at random from the ICA benchmark densities
of Bach and Jordan (2002, Figure 5): these included super-Gaussian, sub-Gaussian, multimodal,
and unimodal distributions, with the common property of zero mean and unit variance. The densi-
ties are described in Table 5, as reproduced from Gretton et al. (2005b, Table 3). Second, we mixed
these random variables using a rotation matrix parametrised by an angleθ, varying from 0 toπ/4 (a
zero angle meant the data were independent, while dependence became easier to detect as the angle
increased toπ/4: see the two plots in Figure 2). Third, in the casesd = 2 andd = 3, independent
Gaussian noise of zero mean and unit variance was used to fill the remainingdimensions, and the
resulting vectors were multiplied by independent random two- or three-dimensional orthogonal ma-
trices, to obtain random vectorsX andY dependent across all observed dimensions. We emphasise
that classical approaches (such as Spearman’sρ or Kendall’sτ) are unable to find this dependence,
since the variables are uncorrelated; nor can we recover the subspace in which the variables are
dependent using PCA, since this subspace has the same second order properties as the noise. We
investigated sample sizesn = 128,512,1024, and 2048.
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Label Definition Kurtosis

a Student’s t distribution, 3 DOF ∞
b Double exponential 3.00
c Uniform -1.20
d Students’st distribution, 5 DOF 6.00
e Exponential 6.00
f Mixture, 2 double exponentials -1.70
g Symmetric mixture 2 Gauss., multimodal -1.85
h Symmetric mixture 2 Gauss., transitional -0.75
i Symmetric mixture 2 Gauss., unimodal -0.50
j Asymm. mixture 2 Gauss., multimodal -0.57
k Asymm. mixture 2 Gauss., transitional -0.29
l Asymm. mixture 2 Gauss., unimodal -0.20
m Symmetric mixture 4 Gauss., multimodal -0.91
n Symmetric mixture 4 Gauss., transitional -0.34
o Symmetric mixture 4 Gauss., unimodal -0.40
p Asymm. mixture 4 Gauss., multimodal -0.67
q Asymm. mixture 4 Gauss., transitional -0.59
r Asymm. mixture 4 Gauss., unimodal -0.82

Table 1: Labels of distributions used in the independence test benchmarks, and their respective
kurtoses. All distributions have zero mean and unit variance.

We compared three different asymptotic independence testing approaches based on space par-
titioning: theL1 test, denotedL1; the log likelihood testLike; and a third test,Pears, based on a
conjecture regarding the asymptotic distribution of the Pearsonχ2 statistic

χ2
n(νn,µn,1×µn,2) = ∑

A∈Pn

∑
B∈Qn

(νn(A×B)−µn,1(A) ·µn,2(B))2

µn,1(A) ·µn,2(B)

(see Appendix B for details, and for a further conjecture regarding a strongly consistent test for
the χ2

n statistic). The number of discretisations per dimension was set atmn = m′
n = 4, besides

in the n = 128,d = 2 case and thed = 3 cases, where it was set atmn = m′
n = 3: for the latter

values ofn andd, there were too few samples per bin when a greater number of partitions were
used, causing poor performance. We divided our spacesR

d andR
d′

into roughly equiprobable bins.
Further increases in the number of partitions per dimension, where sufficient samples were present
to justify this (i.e., then = 512,d = 1 case), resulted only in very minor shifts in performance.

We compared the partitioning approaches with the kernel approach from Section 4, using both
the GammaKer(g) and NormalKer(n) approximations to the null distribution. Our kernels were
Gaussian for bothX andY, with bandwidths set to the median distance between samples of the
respective variables. Note that a more sophisticated but computationally costly approach to band-
width selection is described by Fukumizu et al. (2008), which involves matching the closed-form
expression for the variance ofTn in (20) with an estimate obtained by data shuffling.

Results are plotted in Figure 3 (average over 500 independent generations of the data). They-
intercept on these plots corresponds to the acceptance rate ofH0 at independence, or 1−(Type I error),
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Figure 2: Example data set ford = d′ = 1, n = 200, and rotation anglesθ = π/8 (left) andθ = π/4
(right). In this case, both sources are mixtures of two Gaussians (source (g) in Gretton
et al., 2005b, Table 3).

and should be close to the design parameter of 1−α = 0.95. Elsewhere, the plots indicate accep-
tance ofH0 where the underlying variables are dependent, that is, the Type II error.

As expected, we observe dependence becomes easier to detect asθ increases from 0 toπ/4,
whenn increases, and whend decreases. Although no tests are reliable for smallθ, several tests do
well asθ approachesπ/4 (besides the case ofn= 128, d = 2). TheL1 test has a lower Type II error
than theχ2 test when the number of samples per partition is small (n = 128,d = 1, n = 128,d = 2,
andn= 1024,d = 3), but this advantage is lessened for larger numbers of samples per partition. The
log-likelihood test generally has the lowest Type II error of the three partition-based tests, however
it gives a Type I error larger than the design parameter of 0.05 when the number of samples per
bin is insufficient: this problem is severe in the casen = 1024 andd = 3, but can also be observed
at n = 2048,d = 3 (for larger sample sizesn = 3072,d = 3 andn = 4096,d = 3, the Type I error
of the log-likelihood test was at or below the design value). This suggests the log-likelihood test
is more susceptible to bias for small numbers of samples per bin than theL1 andχ2 tests. In the
remaining cases, performance of the log-likelihood test and theL1 test is comparable, besides in the
casen = 512,d = 2, where the log-likelihood test has an advantage.

The superior performance of the log-likelihood test compared with theχ2 test (in the cases
d = 1 andd = 2) might arise due to the different convergence properties of the two teststatistics.
In particular, we note the superior convergence behaviour of the goodness-of-fit statistic for the log
likelihood (Equation 13), as compared with theχ2 statistic (Equation 24 in Appendix B), in terms
of the dependence of the latter on the numbermn of partitions used. By analogy, we anticipate the
log-likelihood independence statisticIn(νn,µn,1×µn,2) will also converge faster than the Pearsonχ2

independence statisticχ2
n(νn,µn,1×µn,2), and thus provide better test performance. A more formal

discussion of this behaviour is a topic for future research.
In all cases, the kernel-based test has the lowest Type II error.3 That said, one should bear in

mind the kernel test thresholds requireE{Tn} and var(Tn), which are unknown and must be es-
timated from the data using Equations (17) and (20), respectively. In other words, unlike theL1

3. Aside fromn = 1024 andd = 3, where the log-likelihood has a lower Type II error: we disregard this result since it
is due to the log-likelihood test being affected by bias, as discussed above.
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Figure 3: Rate of acceptance ofH0 for theKer(g), Ker(n), L1, Pears, andLike tests. “Samp” is the
numbern of samples, and “dim” is the dimensiond = d′ of x andy. In the final row,
the performance of theKer(g) andKer(n) tests is plotted for a large bandwidthh = 3,
andα̃ = 0.5, to illustrate the difference between the Normal and two-parameter Gamma
approximations to the null distribution.
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Figure 4: Rate of acceptance ofH0 for the distribution-free (Free) and shuffling-based (Shuff) null
distribution quantiles, using the L1 test statistic. “Samp” is the numbern of samples, and
“dim” is the dimensiond = d′ of x andy.

and log likelihood tests, the kernel test thresholds in our experiments are themselves finite sample
estimates (which we have not attempted to account for, and which could impacton test perfor-
mance). Moreover, the Gamma approximation to the null distribution is simply a heuristic, with no
asymptotic guarantees.

It is of interest to further investigate the null distribution approximation strategies for the kernel
tests, and in particular to determine the effect on test performance of the observations made in
Figure 1. Since the median distance between sample points was small enough in our previous
experiments for the Normal and Gamma estimates to be very similar, we used an artificially high
kernel bandwidthh= 3. In addition, we employed a much lowerα̃ = 0.5, since this provided a more
visible performance difference. The final row of Figure 3 shows the resulting test performance. We
recall from Figure 1 that for large kernel sizes andα̃ = 0.5, the Gaussian approximation returns a
larger threshold than the true CDF would require, and thus the Normal distribution has a lower Type
I error (the error for very small values ofα is in the opposite direction, but had a less pronounced
effect in our experiments). The large bandwidth required to observe thisbehaviour results in a
substantial performance penalty on the Type II error, however, and would not be used in practice.

An alternative approach to obtaining null distribution quantiles for test thresholds is via a shuf-
fling procedure: the ordering of theY1, . . . ,Yn sample is permuted repeatedly while that ofX1, . . . ,Xn

sample is kept fixed, and the 1−α quantile is obtained from the resulting estimated cumulative
distribution function of the test statistic. Again, we emphasize that unlike the asymptotic L1 and
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Figure 5: Rate of acceptance ofH0 for the distribution-free (Free) and shuffling-based (Shuff) null
distribution quantiles, using the log-likelihood test statistic. “Samp” is the numbern of
samples, and “dim” is the dimensiond = d′ of x andy.

log-likelihood tests we have proposed, the resulting test threshold is an empirical estimate, and the
convergence behaviour of this estimate is not accounted for. In our final experiments, we compared
the performance of our asymptotic tests forL1 andLike with this shuffling approach, for the same
data as in our Figure 3 experiments.4 We usedp= 200 permutations in obtaining the approximation
to the null distribution. Results for theL1 case are plotted in Figure 4, and those for theLikecase in
Figure 5.

In the case of theL1 statistic, we observe the distribution-free approach is conservative in terms
of the Type I error, generally setting it slightly lower than the target value. The shuffling approach
returns a lower Type II error, however it is notable that the performance difference is not particularly
large with respect to our distribution-free threshold, and that apart from an offset, the error as a
function of angle takes the same form. We should further bear in mind that the shuffling approach
has a substantially greater computational cost (p times the cost of the distribution-free test). In the
case of theLike statistic, we observe similar behaviour toL1 in the casesd = 1 andd = 2. In the
d = 3 case, however, theLike test gives too large a Type I error, and thus the Type II performance
of the two approaches cannot be compared (although forn = 2048, theLike test is observed to
approach the asymptotic regime, and the Type I performance is closer to the target value).

4. This comparison was made for the kernel statistic on these data by Gretton et al. (2008), and no performance differ-
ence was found.
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6. Conclusion

We have described distribution-free strong consistent tests of independence, and asymptoticallyα-
level tests, based on three statistics: theL1 distance, the log-likelihood, and a kernel-based distance.
The asymptoticL1 and log-likelihood tests require that the distributions be non-atomic, but make
no assumptions apart from this: in particular, the test thresholds arenot functions of the distribu-
tion. The kernel statistic is interpretable as either anL2 distance between kernel density estimates
(if the kernel bandwidth shrinks for increasing sample size), or as the Hilbert-Schmidt norm of a
covariance operator between reproducing kernel Hilbert spaces (ifthe kernel bandwidth is fixed).
We have provided a novel strong consistent test for the kernel statistic,as well as reviewing two
asymptoticallyα-level tests (for both fixed and shrinking kernel bandwidth). Unlike theL1 and log-
likelihood tests, the thresholds for the kernel asymptotic tests are distribution dependent. We also
gave conjectures regarding the strong consistent test and asymptoticallyα-level test for the Pearson
χ2 distance.

Our experiments showed the asymptotic tests to be capable of detecting dependence for both
univariate and multi-dimensional variables (of up to three dimensions each),for variables having
no linear correlation. The kernel tests had lower Type II error than theL1 and log-likelihood tests
for a given Type I error, however we should bear in mind that the kernel test thresholds were finite
sample estimates, and the resulting convergence issues have not been addressed. The log-likelihood
test appeared to suffer more from bias than theL1 test, in cases where there were few samples per
partition (this effect was most visible in high dimensions).

This study raises a number of questions for future research. First, theχ2 tests remain con-
jectures, and proofs should be established. Second, there is as yet nodistribution-free asymptotic
threshold for the kernel test, which could be based on a tighter bound on the variance of the test
statistic under the null distribution. Third, the asymptotic distribution of the kernel statistic with
fixed bandwidth is presently a heuristic: it would therefore be of interest toreplace this with a null
distribution estimate having appropriate convergence guarantees.
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Appendix A. Proof of Theorem 3

The main difficulty in proving Theorem 3 is that it states the asymptotic normality ofLn(νn,µn,1×
µn,2), which is a sum ofdependentrandom variables. To overcome this problem, we use a “Pois-
sonization” argument originating from the fact that an empirical process isequal in distribution to
the conditional distribution of a Poisson process given the sample size (formore on Poissonization
techniques, we refer the reader to Beirlant, Györfi, and Lugosi, 1994).

We begin by introducing the necessary terminology. For eachn≥ 1, denote byNn a Poisson(n)
random variable, defined on the same probability space as the sequences(Xi)i≥1 and(Yi)i≥1, and
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independent of these sequences. Denote byνNn, µNn,1 and µNn,2 the Poissonized version of the
empirical measures associated with the samples{(Xi ,Yi)}, {Xi} and{Yi}, respectively, so that

νNn(A×B) =
#{i : (Xi ,Yi) ∈ A×B, i = 1, . . . ,Nn}

n
,

µNn,1(A) =
#{i : Xi ∈ A, i = 1, . . . ,Nn}

n
,

and

µNn,2(B) =
#{i : Yi ∈ B, i = 1, . . . ,Nn}

n

for any Borel subsetsA andB. The Poissonized versioñLn(νn,µn,1×µn,2) of Ln(νn,µn,1×µn,2) is
then

L̃n(νn,µn,1×µn,2) = ∑
A∈Pn

∑
B∈Qn

|νNn(A×B)−µNn,1(A) ·µNn,2(B)|.

Clearly,

nνNn(A×B) = #{i : (Xi ,Yi) ∈ A×B, i = 1, . . . ,Nn},

nµNn,1(A) = #{i : Xi ∈ A, i = 1, . . . ,Nn},

and

nµNn,2(B) = #{i : Yi ∈ B, i = 1, . . . ,Nn}

are Poisson random variables.
Key to the proof of Theorem 3 is the following property, which is a slight extension of the

proposition of Beirlant, Gÿorfi, and Lugosi (1994, p. 311).

Proposition 7 Let gn jk (n≥ 1, j = 1, . . . ,mn, k = 1, . . . ,m′
n) be real measurable functions, and let

Mn :=
mn

∑
j=1

m′
n

∑
k=1

gn jk (νNn(An j ×Bnk)−µNn,1(An j)µNn,2(Bnk)) .

Assume that, under the null hypothesis,

E{gn jk (νNn(An j ×Bnk)−µNn,1(An j)µNn,2(Bnk))} = 0,

and that (
Mn,

Nn−n√
n

)
D→N

([
0
0

]
,

[
σ2 0
0 1

])
(21)

as n→ ∞, whereσ is a positive constant andN (m,C) is a normally distributed random variable
with meanm and covariance matrixC. Then

1
σ

mn

∑
j=1

m′
n

∑
k=1

gn jk (νn(An j ×Bnk)−µn,1(An j)µn,2(Bnk))
D→N (0,1).
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Proof The proof is in sketch form, along the lines of Biau and Györfi (2005). Define the two
characteristic functions

Φn(t,v) := E
{

exp

(
ıtMn + ıv

Nn−n√
n

)}

and

Ψn(t) := E

{
exp

(
ıt

mn

∑
j=1

m′
n

∑
k=1

gn jk (νn(An j ×Bnk)−µn,1(An j)µn,2(Bnk))

)}
.

We begin with the result

E{exp(ıtMn + ıuNn)} =
∞

∑
l=0

E{exp(ıtMn)|Nn = l}eıul pn(l),

wherepn(l) is the probability distribution of the Poisson(n) random variableNn,

pn(l) = P{Nn = l} = e−nnl/l !,

and
Ψn(t) = E{exp(ıtMn)|Nn = n}.

Taking the inverse Fourier transform,

E{exp(ıtMn)|Nn = n} =
1

2πpn(n)

Z π

−π
e−ıunE{exp(ıtMn + ıuNn)}du.

We now replacen! with the Stirling approximation to obtain

2πpn(n) =
2πe−nnn

n!
≈
√

2π
n

as n→ ∞.

Then, substitutingv = u
√

n, we get

Ψn(t) =
1√
2π

(1+o(1))
Z π

√
n

−π
√

n
Φn(t,v)dv.

By assumption,
Φn(t,v) → e−t2σ2/2e−v2/2

asn→ ∞. The result follows from Rao (1973, p. 136).

We now use Proposition 7 to prove

√
n

σ
(Ln(νn,µn,1×µn,2)−E{L̃n(νn,µn,1×µn,2)}) D→N (0,1),

where we recallσ2 = 1−2/π. This provides the result in Theorem 3 with the centering constant

Cn = E{L̃n(νn,µn,1×µn,2)} = ∑
A∈Pn

∑
B∈Qn

E{|νNn(A×B)−µNn,1(A) ·µNn,2(B)|}. (22)
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To apply Proposition 7, we must prove assumption (21) holds. Define

gn jk(x) =
√

n
(
|x|−E

∣∣νNn(An j ×Bnk)−µNn,1(An j)µNn,2(Bnk)
∣∣) .

Let

Sn := t
√

n
mn

∑
j=1

m′
n

∑
k=1

(∣∣νNn(An j ×Bnk)−µNn,1(An j)µNn,2(Bnk)
∣∣

−E
∣∣νNn(An j ×Bnk)−µNn,1(An j)µNn,2(Bnk)

∣∣
)

+v
√

n

(
Nn

n
−1

)
.

Our goal is to prove the assumption in (21) holds. In particular, we requirethe variance of the
Poissonized statisticSn. After this variance is calculated, the asymptotic normality in (21) can be
proved by verifying the Lyapunov conditions as in Beirlant, Györfi, and Lugosi (1994). From the
definitions ofνNn, µ1, andµ2, we have

Nn

n
−1 = ∑

A∈Pn

∑
B∈Qn

νNn(A×B)− ∑
A∈Pn

∑
B∈Qn

µ1(A)µ2(B),

and thus the variance ofSn is

var(Sn) = t2n ∑
A∈Pn

∑
B∈Qn

var|νNn(A×B)−µNn,1(A)µNn,2(B)|

+ 2tvn ∑
A∈Pn

∑
B∈Qn

E
{
|νNn(A×B)−µNn,1(A)µNn,2(B)|

·(νNn(A×B)−µ1(A)µ2(B))
}

+ v2.

One can check that there exist standard normal random variablesZA×B, ZA, andZB such that

νNn(A×B)
D≈ ZA×B

√
µ1(A)µ2(B)

n
+µ1(A)µ2(B),

µNn,1(A)
D≈ ZA

√
µ1(A)

n
+µ1(A),

and

µNn,2(B)
D≈ ZB

√
µ2(B)

n
+µ2(B),
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which implies

νNn(A×B)−µNn,1(A)µNn,2(B)

D≈ ZA×B

√
µ1(A)µ2(B)

n
+µ1(A)µ2(B)

−
(

ZA

√
µ1(A)

n
+µ1(A)

)(
ZB

√
µ2(B)

n
+µ2(B)

)

=

√
µ1(A)µ2(B)

n

(
ZA×B−ZAZB

1√
n
−ZA

√
µ2(B)−ZB

√
µ1(A)

)

≈ ZA×B

√
µ1(A)µ2(B)

n
.

Thus,

var(Sn)

≈ t2n ∑
A∈Pn

∑
B∈Qn

var

∣∣∣∣∣ZA×B

√
µ1(A)µ2(B)

n

∣∣∣∣∣

+ 2tvn ∑
A∈Pn

∑
B∈Qn

E

{∣∣∣∣∣ZA×B

√
µ1(A)µ2(B)

n

∣∣∣∣∣ ·
(

ZA×B

√
µ1(A)µ2(B)

n

)}

+ v2

= t2 ∑
A∈Pn

∑
B∈Qn

var|ZA×B|µ1(A)µ2(B)

+ 2tv ∑
A∈Pn

∑
B∈Qn

E{|ZA×B|ZA×B}µ1(A)µ2(B)

+ v2

= t2(1−2/π)+v2.

Finally, we use the variableZA×B in defining a distribution-free upper bound onCn, which we
use in our asymptoticallyα-level independence test,

Cn = ∑
A∈Pn

∑
B∈Qn

E{|νNn(A×B)−µNn,1(A) ·µNn,2(B)|}

≈ ∑
A∈Pn

∑
B∈Qn

E{|ZA×B|}
√

µ1(A)µ2(B)/n

≤
√

2/π
√

mnm′
n

n
(23)

Appendix B. Conjectured Large Sample Properties of the Pearson χ2 Statistic

For a real parameterλ, thepower divergence statisticis defined as

Dn,λ(µn,1,µ1) =
2

λ(λ+1)

mn

∑
j=1

µn,1(An, j)

[(
µn,1(An, j)

µ1(An, j)

)λ
−1

]
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providedλ 6= 0 andλ 6= 1 (cf. Read and Cressie, 1988). One can check that

lim
λ→0

Dn,λ(µn,1,µ1) = In(µn,1,µ1).

For λ = 1, we have the Pearsonχ2 statistic:

χ2
n(µn,1,µ1) = Dn,1(µn,1,µ1) =

mn

∑
j=1

(µn,1(An, j))−µ1(An, j))
2

µ1(An, j)
.

For testing independence, we employ the Pearsonχ2 test statistic

χ2
n(νn,µn,1×µn,2) = ∑

A∈Pn

∑
B∈Qn

(νn(A×B)−µn,1(A) ·µn,2(B))2

µn,1(A) ·µn,2(B)
.

B.1 Strongly Consistent Test

Quine and Robinson (1985) proved that, for allε > 0,

P{χ2
n(µn,1,µ1) > ε} ≤

(
n+mn−1

mn−1

)
e−

nlogmn
2
√

mn

√
ε ≤ emn log(n+mn)− nlogmn

2
√

mn

√
ε
. (24)

A large deviation-based test can be introduced that rejects independence if

χ2
n(νn,µn,1×µn,2) ≥

(
2(mnm′

n)
3/2(log(n+mnm′

n)+1)

nlog(mnm′
n)

)2

.

UnderH0, we conjecture a non-asymptotic bound for the tail of the distribution ofχ2
n(νn,µn,1×µn,2),

P



χ2

n(νn,µn,1×µn,2) >

(
2(mnm′

n)
3/2(log(n+mnm′

n)+1)

nlog(mnm′
n)

)2




≤ e
mnm′

n log(n+mnm′
n)− nlog(mnm′

n)

2
√

mnm′
n

2(mnm′
n)3/2(log(n+mnm′

n)+1)

nlog(mnm′
n)

= e−mnm′
n.

Therefore the conditions (7) imply

∞

∑
n=1

P



χ2

n(νn,µn,1×µn,2) >

(
2(mnm′

n)
3/2(log(n+mnm′

n)+1)

nlog(mnm′
n)

)2


< ∞,

and by the Borel-Cantelli lemma we have strong consistency under the null hypothesis.
Under the alternative hypothesis the proof strong consistency follows from the proof for the

information divergence since

In(νn,µn,1×µn,2)/2≤ χ2
n(νn,µn,1×µn,2)

(cf. Györfi et al., 1998).
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B.2 Asymptotic α-level Test

Morris (1975), Inglot et al. (1990), and Györfi and Vajda (2002) proved that under (10) and (11),

nχ2
n(µn,1,µ1)−mn√

2mn

D→N (0,1),

which is the same asymptotic normality result as for 2In(µn,1,µ1) (see Equation (14) in Section 3.2).
We conjecture that under the conditions (6) and (12),

nχ2
n(νn,µn,1×µn,2)−mnm′

n√
2mnm′

n

D→N (0,1).

Thus, as for the log-likelihood statistic, the hypothesis of independence is rejected if

χ2
n(νn,µn,1×µn,2) ≥

Φ−1(1−α)
√

2mnm′
n +mnm′

n

n
.
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J. Beirlant, L. Gÿorfi, and G. Lugosi. On the asymptotic normality of thel1- and l2-errors in his-
togram density estimation.Canadian Journal of Statistics, 22:309–318, 1994.
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