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ABSTRACT

Motivation: Identifying significant genes among thousands of

sequences on a microarray is a central challenge for cancer research

in bioinformatics. The ultimate goal is to detect the genes that are

involved in disease outbreak and progression. A multitude of

methods have been proposed for this task of feature selection,

yet the selected gene lists differ greatly between different methods.

To accomplish biologically meaningful gene selection from micro-

array data, we have to understand the theoretical connections and

the differences between these methods. In this article, we define a

kernel-based framework for feature selection based on the Hilbert–

Schmidt independence criterion and backward elimination, called

BAHSIC. We show that several well-known feature selectors are

instances of BAHSIC, thereby clarifying their relationship.

Furthermore, by choosing a different kernel, BAHSIC allows us to

easily define novel feature selection algorithms. As a further

advantage, feature selection via BAHSIC works directly on multiclass

problems.

Results: In a broad experimental evaluation, the members of the

BAHSIC family reach high levels of accuracy and robustness when

compared to other feature selection techniques. Experiments show

that features selected with a linear kernel provide the best

classification performance in general, but if strong non-linearities

are present in the data then non-linear kernels can be more suitable.

Availability: Accompanying homepage is http://www.dbs.ifi.lmu.de/

�borgward/BAHSIC

Contact: kb@dbs.ifi.lmu.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Gene selection from microarray data is clearly one of the most

popular topics in bioinformatics. To illustrate this, the database

for ‘Bibliography on Microarray Data Analysis’ (Li, 2006) has

grown from less than 100 articles in 2000 to 1690 articles in

January 2007. What are the reasons for this huge interest in

feature selection?
There are two main reasons for this popularity, the first

biological, the second statistically motivated. First, by selecting

genes from a microarray that result in good separation between

healthy and diseased patients, one hopes to find the significant

genes affected by the disease, or even causing it. This is a central

step towards understanding the underlying biological process.

Second, classifiers on microarray data tend to overfit due to

the low number of patients and the high number of observed

genes. This means that they achieve high accuracy levels on

the training data, but do not generalize to new data. The

underlying problem is that if sample size is much smaller than

the number of genes, one can distinguish different classes of

patients based on the noise present in these measurements,

rather than on distinct biological characteristics of their gene

expression levels. Via feature selection, one aims to reduce the

number of genes by removing meaningless features.

Although feature selection on microarrays is popular, gene

selection methods suffer from several problems. First of all, they

lack robustness. In Ein-Dor et al. (2006), prognostic cancer gene

lists selected from microarrays differ significantly between

different methods, and even for different subsets of the same

microarray datasets. The authors conclude that thousands of

samples are needed for robust gene selection. Given that clinical

studies almost exclusively deal with comparatively low sample

sizes, this is a very pessimistic view of clinical microarray data

analysis. At the other end of the spectrum are recent results in

sparse decoding (Candes and Tao, 2005; Wainwright, 2006)

which suggest that for a very well defined family of inverse

problems, asymptotically only nð1þ log dÞ observations are

needed to recover n features accurately from d dimensions.
Besides small sample size and high dimensionality, another

crucial problem arises from the plethora of feature selection

methods for microarray data. Each approach is endowed with

its own theoretical analysis, and the connections between them

are so far poorly understood (Stolovitzky, 2003). This makes

it difficult to explain why different algorithms generate different

prognostic gene lists on the same set of cancer microarray data.

A unifying framework for feature selection algorithms would

help to understand these relations and to clarify which feature

selection algorithms are most helpful for gene selection.

In this article, we present such a unifying framework called

BAHSIC. BAHSIC defines a class of backward (BA) elimina-

tion feature selection algorithms that make use of (i) kernels

and (ii) the Hilbert–Schmidt independence criterion (HSIC)

(Gretton et al., 2005). We show that BAHSIC includes several

well-known feature selection methods, namely Pearson’s

correlation coefficient (Ein-Dor et al., 2006; van ’t Veer et al.,

2002), t-test (Tusher et al., 2001), signal-to-noise ratio (Golub

et al., 1999), Centroid (Bedo et al., 2006; Hastie et al., 2001),

Shrunken Centroid (Tibshirani et al., 2002, 2003) and ridge

regression (Li and Yang, 2005).

By choosing different kernels, one may define new types of

feature selection algorithm. We show that several well-known

feature selection methods merely differ in their choice of kernel.*To whom correspondence should be addressed.
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Furthermore, BAHSIC can be extended in a principled

fashion to multiclass and regression problems, in contrast to

most competing methods which are exclusively geared towards

two-class problems.
In a broad experimental evaluation, we compare feature

selection methods that are instances of BAHSIC to several

competing approaches, with respect to both the robustness of

the selected features and the resulting classification accuracy.

Our unified framework assists us in explaining how the kernel

used by a particular feature selector determines which genes

are preferred. Our experiments show that features selected

with a linear kernel provide the best classification performance

in general, but if strong non-linearities are present in the

gene expression data then non-linear kernels can be more

suitable.

2 FEATURE SELECTION AND BAHSIC

The problem of feature selection can be cast as a combinatorial

optimization problem. We denote by S the full set of features,

which in our case corresponds to expression levels of various

genes. We use these features to predict a particular outcome, for

instance the presence of cancer: clearly, only a subset T of

features will be relevant. Suppose the relevance of a feature

subset to the outcome is given by a quality measure QðTÞ,

which is evaluated by restricting the data to the dimensions in

T. Feature selection can then be formulated as

T0 ¼ argmax
T�S
QðTÞ s:t: jTj � t, ð1Þ

where j � j computes the cardinality of a set and t upper bounds

the number of selected features. Two important aspects of

problem (1) are the choice of the criterion QðTÞ and the

selection algorithm. We therefore begin with a description of

our criterion, and later introduce the feature selection

algorithm based on this criterion.
To describe our feature selection criterion, we begin with the

simple example of linear dependence detection, which we then

extend to the detection of more general kinds of dependence.

Consider spaces X � R
d and Y � R

l, on which we jointly

sample observations (x, y) from a distribution Prxy. We may

define a covariance matrix

Cxy ¼ Exyðxy
>Þ � ExðxÞEyðy

>Þ, ð2Þ

where Exy is the expectation with respect to Prxy, Ex is the

expectation with respect to the marginal distribution Prx,

and x> is the transpose of x. The covariance matrix encodes all

second order dependence between the random variables.

A statistic that efficiently summarizes the content of this

matrix is its Hilbert–Schmidt norm: denoting by gi the singular
values of Cxy, the square of this norm is

kCxyk
2
HS :¼

X
i

g2i :

This quantity is zero if and only if there exists no second order

dependence between x and y. The Hilbert–Schmidt norm is

limited in several respects, however, of which we mention two:

first, dependence can exist in forms other than that detectable

via covariance (and even when a second order relation exists,

the full extent of the dependence between x and y may only

be apparent when non-linear effects are included). Second,

the restriction to subsets of R
d and R

l excludes many

interesting kinds of variables, such as strings and class

labels. We wish therefore to generalize the notion of

covariance to non-linear relationships, and to a wider range

of data types.
We now define X and Y more broadly as two domains from

which we draw samples (x, y) as before: these may be real

valued, vector valued, class labels, strings (Lodhi et al., 2002),

graphs (Gärtner et al., 2003) and so on (see Schölkopf et al.,

2004) for further examples in bioinformatics). We define a

(possibly non-linear) mapping �ðxÞ 2 F from each x 2 X to a

feature space F, such that the inner product between the

features is given by a kernel function kðx, x0Þ :¼ h�ðxÞ,�ðx0Þi:
F is called a reproducing kernel Hilbert space (RKHS).1

Likewise, let G be a second RKHS on Y with kernel lð�, �Þ and

feature map  (y). We may now define a cross-covariance

operator between these feature maps, which is analogous to the

covariance matrix in (2): this is a linear operator Cxy : G ��! F

such that

Cxy ¼ Exy½ð�ðxÞ � �xÞ � ð ðyÞ � �yÞ�, ð3Þ

where � is the tensor product (see Baker, 1973; Fukumizu et al.

2004 for more detail). The square of the Hilbert–Schmidt norm

of the cross-covariance operator HSIC, kCxyk
2
HS, is then used

as our feature selection criterion QðTÞ. HSIC was shown in

Gretton et al. (2005) to be expressible in terms of kernels as

HSICðF,G, PrxyÞ ¼ kCxyk
2
HS

¼ Exx0yy0 ½kðx, x
0Þlðy, y0Þ� þ Exx0 ½kðx, x

0Þ�Eyy0 ½lðy, y
0Þ�

� 2Exy½Ex0 ½kðx, x
0Þ�Ey0 ½lðy, y

0Þ��,

ð4Þ

where Exx0yy0 is the expectation over both ðx, yÞ � Prxy and an

additional pair of variables ðx0, y0Þ � Prxy drawn independently

according to the same law. Given a sample

Z ¼ fðx1, y1Þ, . . . , ðxm, ymÞg of size m drawn from Prxy, an

empirical estimator of HSIC was shown in Gretton et al. (2005)

to be

HSICðF,G,ZÞ ¼ ðm� 1Þ�2Tr ðKHLHÞ, ð5Þ

where Tr is the trace (the sum of the diagonal entries),

K,L 2 R
m	m are the kernel matrices for the data and the

labels, respectively, and Hij ¼ �ij �m�1 centres the data and the

label features (�ij ¼ 1 when i¼ j, and zero otherwise). See

Feuerverger (1993) for a different interpretation of a related

criterion used in independence testing.
We now describe two theorems from Gretton et al. (2005)

which support our using HSIC as a feature selection criterion.

The first (Gretton et al., 2005, Theorem 3) shows that the

empirical HSIC converges in probability to its population

counterpart with rate 1=
ffiffiffiffi
m
p

. This implies that if the empirical

1A note on the non-linear mapping: if X ¼ R
d, then this could be as

simple as a set of polynomials of order up to t in the components of x,
with kernel k(x, x0) ¼ (hx, x0i þ c)t. Other kernels, like the Gaussian
RBF kernel k(x, x0) ¼ exp (�0.5��2||x�x0||2), correspond to infinitely
large feature spaces. We need never evaluate these feature representa-
tions explicitly, however.
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HSIC is large, then given sufficient samples it is very probable
that the population HSIC is also large; likewise, a small
empirical HSIC likely corresponds to a small population HSIC.
Moreover, the same features should consistently be selected to

achieve high dependence if the data is repeatedly drawn from
the same distribution. The second result (Gretton et al., 2005,
Theorem 4) states that when F,G are RKHSs with universal

(Steinwart, 2002) kernels k , l on respective compact domains X
and Y, then HSICðF,G, PrxyÞ ¼ 0 if and only if x and y are
independent. In terms of our microarray setting, using a

universal kernel such as the Gaussian RBF kernel or the
Laplace kernel, HSIC is zero if gene expression levels and class
labels are independent; clearly we want to reach the opposite

result, namely strong dependence between expression levels and
class labels. Hence, we try to select genes that maximize HSIC.

2.1 BAHSIC

Having defined our feature selection criterion, we now describe
an algorithm that conducts feature selection on the basis of this
dependence measure. Using HSIC, we can perform both

forward and backward selection of the features. In particular,
when we use a linear kernel on both the data and labels,
forward selection and backward selection are equivalent: the

objective function decomposes into individual coordinates, and
thus feature selection can be done without recursion in one go.
In the case of more general kernels, forward selection is

computationally more efficient, however, backward elimination
(BA) in general yields better features, since the quality of the
features is assessed within the context of all other features.

Hence, we present the BA version of our algorithm here.
Our feature selection algorithm BAHSIC appends the

features from S to the end of a list Sy so that the elements
towards the end of Sy have higher relevance to the learning

task. The feature selection problem in (1) can be solved by
simply taking the last t elements from Sy. Our algorithm
produces Sy recursively, eliminating the least relevant features

from S and adding them to the end of Sy at each iteration.
In describing the algorithm, we modify our notation for HSIC
to make clearer its dependence on the set of features chosen.

Thus, we replace the definition in (5) with HSICð�, SÞ, where S
are the features used in computing the data kernel matrix K,
and � 2� is the parameter for the data kernel kðx, x0Þ (for

instance, this might be the size of a Gaussian kernel, or the
degree of a polynomial kernel). The set � denotes all possible
kernel parameters.

Algorithm 1 Feature selection via backward elimination

Input: The full set of features S

Output: An ordered set of features Sy

1: Sy  Ø

2: repeat

3: �0  argmax� HSICð�, SÞ, � 2 �

4: I argmaxI
P

j2I HSICð�0, S n fjgÞ, I � S

5: S S n I

6: Sy  Sy [ I

7: until S ¼ Ø

Step 3 of the algorithm optimizes over the set �. For

this reason � is restricted so as to make this search practical

(the nature of the restriction depends on both the data

and the kernel: for instance, in the case of the size parameter

of a Gaussian kernel, we consider an interval of the form

� ¼ ½10�8; 102�). If we have no prior knowledge regarding

the nature of the non-linearity in the data, then optimizing

over � is essential: it allows us to adapt to the scale of

the nonlinearity present in the (feature-reduced) data. If

we have prior knowledge about the type of non-linearity,

we can use a kernel with fixed parameters for BAHSIC. In this

case, Step 3 can be omitted since there will be no parameter

to tune.

Step 4 of the algorithm is concerned with the selection of a set

I of features to eliminate. While one could choose a single

element of S, this would be highly inefficient when there are a

large number of irrelevant features. On the other hand,

removing too many features at once risks the loss of relevant

features. In our experiments, we found a good compromise

between speed and feature quality was to remove 10% of the

current features at each iteration.

3 FEATURE SELECTORS THAT ARE
INSTANCES OF BAHSIC

In this section, we will show that several feature selection

criteria are special cases of BAHSIC, and thus BAHSIC is

capable of finding and exploiting dependence of a much more

general nature (for instance, dependence between data and

labels with graph and string values).
We first define the symbols used in the following sections. Let

X be the full data matrix with each row a sample and each

column a feature, x be a column of X and xi be the entries in x.

Let y be the vector of labels with entries yi. When the labels are

multidimensional, we express them as a matrix Y, with each

row a datum and each column a dimension. The kth column of

Y is then YðkÞ.
Suppose the number of data points is m. We denote the mean

of a particular feature of the data as �x, and its SD as sx.

For two-class data, let the number of the positive and negative

samples be mþ and m�, respectively (m ¼ mþ þm�). In this

case, denote the mean of the samples from the positive and the

negative classes by �xþ and �x�, respectively, and the corre-

sponding SD by sxþ and sx�. For multiclass data, we let mi be

the number of samples in class i, where i 2 N
 and m ¼
P

i mi.

Finally, let 1k be a column vector of all ones with length k and

0k be a column vector of all zeros.

3.1 Pearson’s correlation

Pearson’s correlation is commonly used in microarray

analysis (Ein-Dor et al., 2006; van ’t Veer et al., 2002), and is

defined as

rxy ¼

Pm
i¼1ðxi � �xÞðyi � �yÞ

sxsy
, ð6Þ

for each column x of X (scores are computed separately for

each feature). The link between HSIC and Pearson’s correlation

is straightforward: we first normalize the data and the labels by
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sx and sy, respectively, and apply a linear kernel in both

domains. HSIC then becomes

TrðKHLHÞ ¼ Trðxx>Hyy>HÞ ¼ ððHxÞ>ðHyÞÞ2

¼
Xm
i¼1

xi
sx
�

�x

sx

� �
yi
sy
�

�y

sy

� � !2

¼

Pm
i¼1ðxi � �xÞðyi � �yÞ

sxsy

� �2

:

ð7Þ

The above equation is just the square of Pearson’s correlation

(pc). Using Pearson’s correlation for feature selection is then

equivalent to BAHSIC with the above normalization and linear

kernels.

3.2 Mean difference and its variants

The difference between the sample means of the positive and

negative classes, ð �xþ � �x�Þ, is useful for selecting discriminative

features. With different normalization of the data and labels,

many variants can be derived. For example, the centroid (lin)

(Bedo et al., 2006), t-score (t) (Hastie et al., 2001), moderated

t-score (m-t), signal-to-noise ratio (snr) and B-statistics (lods)

(Smyth, 2004) all belong to this subfamily.

We will start by showing that ð �xþ � �x�Þ
2 is a special case

of HSIC. This is straightforward if we assign 1
mþ

as the labels

to the positive samples and �1
m�

to the negative samples.

Applying a linear kernel on both domains leads to the

equivalence

TrðKHLHÞ ¼ Trðxx>yy>Þ ¼ ðx>yÞ2

¼
1

mþ

Xmþ
i¼1

xi �
1

m�

Xm�
i¼1

xi

 !2

¼ ð �xþ � �x�Þ
2:

ð8Þ

Note that the centring matrix H disappears because the labels

are already centred (i.e. y>1m ¼ 0, and thus HLH ¼ L).

The t-test is defined as t ¼ �xþ� �x�
�s , where �s ¼

s2xþ
mþ
þ

s2x�
m�

� �1
2

. The

square of the t-test is equivalent to HSIC if the data is

normalised by
s2xþ
mþ
þ

s2x�
m�

� �1
2

. The signal-to-noise ratio, moderated

t-test, and B-statistics are three variants of the t-test. They differ

only in their respective denominators, and are thus special cases

of HSIC if we normalize the data accordingly. For example,

we obtain the signal-to-noise ratio if the data are normalized

by ðsxþ þ sx�Þ.

3.3 Shrunken centroid

The shrunken centroid (pam) method (Tibshirani et al., 2002,

2003) performs feature ranking using the differences from the

class centroids to the centroid of all the data. This is also

related to HSIC if specific preprocessing of the data and

labels is performed. Here we will focus on constructing

appropriate labels, as the normalization of the data is similar

to the previous section. For two-class problems, we use the 2D

label matrix

Y ¼

1mþ
mþ
�

1mþ
m , �

1mþ
m

�
1m�
m , 1m�

m�
�

1m�
m

0
@

1
A

m	2

: ð9Þ

The labels are centred (i.e. Y>1m ¼ 02), and thus

TrðKHLHÞ ¼ Trðxx>YY>Þ

¼ Yð1Þ>xx>Yð1Þ þ Yð2Þ>xx>Yð2Þ

¼
1

mþ

Xmþ
i¼1

xi �
1

m

Xm
i¼1

xi

 !2

þ
1

m�

Xm�
i¼1

xi �
1

m

Xm
i¼1

xi

 !2

¼ ð �xþ � �xÞ2 þ ð �x � �xÞ2:

ð10Þ

This is in essence the information used by the shrunken centroid

method.

3.4 Multiclass

In addition to scoring features for two-class data, our method

can readily be applied to multiclass data, by constructing an

appropriate label space kernel using the class label assignments.

For instance, we can score a feature for the multiclass

classification problem by applying linear kernels to the

following label feature vectors (3-class example):

Y ¼

1m1

m1

1m1

m2�m

1m1

m3�m

1m2

m1�m

1m2

m2

1m2

m3�m

1m3

m1�m

1m3

m2�m

1m3

m3

0
BBB@

1
CCCA or ð11Þ

Y ¼

1m1ffiffiffiffiffi
m1
p 0m1

0m1

0m2

1m2ffiffiffiffiffi
m2
p 0m2

0m3
0m3

1m3ffiffiffi
m
p

3

0
BBBB@

1
CCCCA: ð12Þ

The Y on the top is equivalent to one-versus-the-rest scoring of

the features, while that on the bottom is geared towards

selecting features that recover the block structure of the kernel

matrix in the data space.

3.5 Regression

BAHSIC can also be used to select features for regression

problems, except that in this case the labels are continuous

variables. Again, we can use different kernels on both the data

and the labels and apply BAHSIC. In this context, feature

selection using ridge regression can also be viewed as a special

case of BAHSIC. In ridge regression (Hastie et al., 2001), we

predict the outputs y using the predictor Vw by minimizing the

objective function R ¼ ðy� VwÞ2 þ �kwk2, where the second

term is known as the regularizer. Our discussion encompasses

two cases: first, the linear model, in which V ¼ X; and second,

the non-linear case, in which each of the m rows of V is a vector

of non-linear features of a particular observation xi, and

fðxiÞ ¼
P

j wjvjðxiÞ. Recursive feature elimination combined as

an embedded method with ridge regression removes the feature

which causes the smallest increase in R. Equivalently, after

minimizingR, this is the feature which has the smallest absolute

weight jwij.
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The minimum of this objective function with respect to w is

R
 ¼ y>y� y>VðV>Vþ �IÞ�1V>y

¼ y>y� TrðVðV>Vþ �IÞ�1V>yy>Þ:
ð13Þ

Therefore, recursively removing the feature which minimises

the increase in R* is equivalent to maximizing the HSIC, when
using K ¼ VðV>Vþ �IÞ�1V> as the kernel matrix on the data

and the linear kernel on the labels.
The final case we consider is kernel ridge regression, which

differs from the above in that the space of non-linear features of
the input may be infinite dimensional, and the regularizer

becomes a smoothness constraint on the functions from
this space to the output. Specifically, the inputs are mapped

to a different feature space H with kernel k̂ðx, x0Þ, in which a
linear prediction is made of the label y. Without going into

further detail, we use standard kernelisation methods
(Schölkopf and Smola, 2002) to obtain that the minimum

objective is R
 ¼ y>y� y>ðK̂þ �IÞ�1K̂y. This is equivalent to
defining a feature space F with kernel ðK̂þ �IÞ�1K̂ on the data,

and then selecting features by maximising HSIC.

4 ALGORITHMS UNRELATED TO BAHSIC

In addition to the feature selection algorithms that are related
to BAHSIC, we compare against three methods that are not

members of the BAHSIC family: mutual information (mi),
recursive feature elimination SVM (rfe) and ‘1-SVM for feature

selection (l1).
The mutual information is a measure of statistical depen-

dence between two random variables (Cover and Thomas,
1991), and is zero if and only if the variables are independent.

To use the mutual information in a filter method for feature
selection, Zaffalon and Hutter (2002) compute it between each

feature and the labels: the features that correspond to the
highest mutual information are selected. Variants of this

method can consider several features at a time, but the resulting
density estimation problem becomes much harder for increased

dimensions. This method is applicable to both two-class and
multiclass datasets.
Recursive feature elimination SVM (Guyon et al., 2002) is an

embedded method for feature selection. It aims to optimize the
performance of a linear SVM by eliminating the least useful

features for SVM classification in a backwards greedy fashion.
Initially, an SVM using all features is trained. The least

important features, estimated by the absolute value of the
trained weights, are then dropped from the model and the SVM

retrained. The process is carried out recursively until the desired
number of features is reached.

The ‘1-SVM (Tibshirani,1994) is also an embedded method
for feature selection. Using an ‘1 norm as the regularizer in an

SVM results in sparse weight vectors (Fan and Li, 2001), where
the number of non-zero weights depends on the amount of

regularization. It is not easy to specify the exact sparsity of the
solution, but in our experiments the typical number of features

selected was below 50.

5 DATASETS

We ran our experiments on 28 microarray datasets of gene

expression levels, of which 15 are two-class datasets and 13 are

multiclass datasets. Samples within one class represent one

common phenotype or a subtype thereof. The 28 datasets are

assigned a reference number for convenience. Two-class

datasets have a reference number less than or equal to 15,

and multiclass datasets have reference numbers of 16 and

above. Only one dataset, yeast, has feature dimension less than

1000 (79 features), i.e. it contains expression levels for less than

1000 genes. All other datasets have dimensions ranging from

�2000 to 25 000. The number of samples varies between �50

and 300 samples. A summary of the datasets and their sources

is as follows:

� Six datasets studied in (Ein-Dor et al., 2006). Three

deal with breast cancer (van ’t Veer et al., 2002;

van de Vijver et al., 2002; Wang et al., 2005) (numbered

1, 2 and 3), two with lung cancer (Bhattacharjee et al.,

2001; Beer et al., 2002) (4, 5), and one with hepatocellular

carcinoma (Iizuka et al., 2003) (6). The B cell lymphoma

dataset (Rosenwald et al., 2002) is not used because none

of the tested methods produce classification errors lower

than 40%.

� Six datasets studied in (Warnat et al., 2005). Two deal with

prostate cancer (Dhanasekaran et al., 2001; Welsh et al.,

2001) (7, 8), two with breast cancer (Gruvberger et al.,

2001; West et al., 2001) (9, 10), and two with

leukaemia (Bullinger et al., 2004; Valk et al., 2004) (16, 17).

� Five commonly used bioinformatics benchmark datasets

on colon cancer (Alon et al., 1999) (11), ovarian

cancer (Berchuck et al., 2005) (12), leukaemia (Golub

et al., 1999) (13), lymphoma (Alizadeh et al., 2000) (18),

and yeast (Brown et al., 2000) (19).

� Nine datasets from the NCBI GEO database. The GDS

IDs and reference numbers for this article are GDS1962

(20), GDS330 (21), GDS531 (14), GDS589 (22), GDS968

(23), GDS1021 (24), GDS1027 (25), GDS1244 (26),

GDS1319 (27), GDS1454 (28) and GDS1490 (15),

respectively.

6 EXPERIMENTS

6.1 Classification error and robustness of genes

We used stratified 10-fold cross-validation and SVMs to

evaluate the predictive performance of the top 10 features

selected by each method. For two-class datasets, a non-linear

SVM with a Gaussian RBF kernel, kðx, x0Þ ¼ exp �kx�x
0k2

2�2

� �
,

was used. The regularization constant C and the kernel width �
were tuned on a grid of f0:1, 1, 10, 102, 103g 	 f1, 10, 102, 103g.
Classification performance is measured as the fraction

of misclassified samples. For multiclass datasets, all procedures

are the same except that we used the SVM in a one-

versus-the-rest fashion. Two new BAHSIC methods are

included in the comparison, with kernels exp �kx�x
0k

2�2

� �
(RBF)

and kx� x0k�1 (dis) on the data.
The classification results for binary and multiclass datasets

are reported in Tables 1 and 2, respectively. In addition to the

error rate, we also report the overlap between the top 10 gene

lists created in each fold. The multiclass results are presented
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separately since some older members of the BAHSIC family,

and some competitors, are not naturally extensible to multiclass

datasets. Our next two sections contain the analysis of these

results: in Section 6.2, we discuss the consistency of each

method across the various types of data, and in Section 6.3, we

analyse the effect of kernel choice on performance, with a

particular focus on linear versus non-linear kernels.

6.2 Performance of feature selectors across datasets

When comparing the overall performance of various gene

selection algorithms, it is of primary interest to choose a

method which works well everywhere, rather than one which

sometimes works well and sometimes performs catastrophi-

cally. It turns out that the linear kernel (lin) outperforms all

other methods in this regard, both for binary and multiclass

problems.

To show this, we measure how the various methods compare

with the best-performing one in each dataset in Tables 1 and 2.

The deviation between algorithms is taken as the square of the

difference in performance. This measure is chosen because gene

expression data is relatively expensive to obtain, and we want

an algorithm to select the best genes. If an algorithm selects

genes that are far inferior to the best possible among all

algorithms (catastrophic case), we downgrade the algorithm

more heavily. Squaring the performance difference achieves

exactly this effect, by penalizing larger differences more heavily.

In other words, we want to choose an algorithm that performs

homogeneously well in all datasets. To provide a concise

summary, we add these deviations over the datasets and take

Table 1. Two-class datasets: classification error (%) and number of common genes (overlap) for 10-fold cross-validation using the top 10 selected

features

BAHSIC family Others

Reference numbers pc snr pam t m-t lods lin RBF dis rfe l1 mi

1 12.7|3 11.4|3 11.4|4 12.9|3 12.9|4 12.9|4 15.5|3 19.1|1 13.9|2 14.3|0 7.7|0 26.1|0

2 33.2|1 33.9|2 33.9|1 29.5|1 29.5|1 27.8|1 32.9|2 31.5|3 32.8|2 34.2|0 32.5|1 29.9|0

3 37.4|0 37.4|0 37.4|0 34.6|6 34.6|6 34.6|6 37.4|1 37.4|0 37.4|0 37.4|0 37.4|0 36.4|0

4 41.6|0 38.8|0 41.6|0 40.7|1 40.7|0 37.8|0 41.6|0 41.6|0 39.7|0 41.6|0 41.6|0 40.6|0

5 27.8|0 26.7|0 27.8|0 26.7|2 26.7|2 26.7|2 27.8|0 27.8|0 27.6|0 27.8|0 27.8|0 27.8|0

6 30.0|2 25.0|0 31.7|0 25.0|5 25.0|5 25.0|5 30.0|0 31.7|0 30.0|1 30.0|0 33.3|0 33.3|0

7 2.0|6 2.0|5 2.0|5 28.7|4 26.3|4 26.3|4 2.0|3 2.0|4 30.0|0 2.0|0 2.0|0 2.0|2

8 3.3|3 0.0|4 0.0|4 0.0|4 3.3|6 3.3|6 3.3|2 3.3|1 6.7|2 0.0|0 3.3|0 6.7|1

9 10.0|6 10.0|6 8.7|4 34.0|5 37.7|6 37.7|6 12.0|3 10.0|5 12.0|1 10.0|0 17.0|1 12.0|3

10 16.0|2 18.0|2 14.0|2 14.0|8 22.0|9 22.0|9 16.0|2 16.0|0 18.0|0 32.5|0 14.0|0 20.5|1

11 12.9|5 12.9|5 12.9|5 19.5|0 22.1|0 33.6|0 11.2|4 9.5|6 16.0|4 19.0|0 17.4|0 11.2|4

12 30.3|2 36.0|2 31.3|2 26.7|3 35.7|0 35.7|0 18.7|1 35.0|0 33.0|1 29.7|0 30.0|0 23.0|2

13 8.4|5 11.1|0 7.0|5 22.1|3 27.9|6 15.4|1 7.0|2 9.6|0 11.1|0 4.3|1 5.5|2 7.0|4

14 20.8|1 20.8|1 20.2|0 20.8|3 20.8|3 20.8|3 20.8|0 20.2|0 19.7|0 20.8|0 20.8|1 19.1|1

15 0.0|7 0.7|1 0.0|5 4.0|1 0.7|8 0.7|8 0.0|3 0.0|2 2.0|2 0.0|1 0.0|1 0.0|7

best 5|2 7|1 6|1 6|6 4|10 5|9 6|0 6|2 4|0 6|0 6|0 6|0

‘2 16.9 20.9 17.3 43.5 50.5 50.3 13.2 22.9 35.4 26.3 19.7 23.5

Each row shows the results for a dataset, and each column is a method. Each entry in the table contains two numbers separated by ‘|’: the first number is the classification

error and the second number is the number of overlaps. For classification error, the best result, and those results not significantly worse than it, are highlighted in bold

(one-sided Welch t-test with 95% confidence level; a table containing the standard errors is provided in the Supplementary Material). For the overlap, largest overlaps for

each dataset are highlighted (no significance test is performed). The second last row summarizes the number of times a method was the best. The last row contains the ‘2
distance of the error vectors between a method and the best performing method on each dataset.

Note: pc¼Pearson’s correlation, snr¼ signal-to-noise ratio, pam¼ shrunken centroid, t¼ t-statistics, m-t¼moderated t-statistics, lods¼B-statistics, lin¼ centroid,

RBF¼ expð� kx�x
0 k

2�2
Þ, dis¼kx� x0k�1, rfe¼ svm recursive feature elimination and l1¼ ‘1 norm svm and mi¼mutual information. The standard error in classification

performance is given in the Supplementary Material

Table 2. Multiclass datasets: in this case columns are the datasets, and rows are the methods. The remaining conventions follow Table 1

Reference numbers 16 17 18 19 20 21 22 23 24 25 26 27 28 best ‘2

lin 36.7|1 0.0|3 5.0|3 10.5|6 35.0|3 37.5|6 18.6|1 40.3|3 28.1|3 26.6|6 5.6|6 27.9|7 45.1|1 7|6 32.4

RBF 33.3|3 5.1|4 1.7|3 7.2|9 33.3|0 40.0|1 22.1|0 72.5|0 39.5|0 24.7|4 5.6|6 22.1|10 21.5|3 6|5 37.9

dis 29.7|2 28.8|5 6.7|0 8.2|9 29.4|7 38.3|4 43.4|4 66.1|0 40.8|0 38.9|4 7.6|1 8.2|8 31.6|3 5|4 51.0

mi 42.0|1 11.4|3 1.7|2 7.7|8 39.4|4 38.3|3 30.3|1 57.3|2 37.6|1 40.8|2 6.5|6 22.6|3 23.3|6 5|2 37.0

The standard error in classification performance is given in the Supplementary Material
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the square root as the measure of goodness. These scores

(the ‘2 distances) are listed in Tables 1 and 2. In general, the

smaller the ‘2 distance, the better the method. It can be seen

that the linear kernel has the smallest ‘2 distance on both the

binary and multiclass datasets.

6.3 Impact of kernel on gene selection

In Section 3, we unified several feature selection algorithms in

one common framework. In our feature selection evaluation

experiment, we showed the linear kernel selects the genes

leading to the best classification accuracies on average. From a

biological perspective, the interesting questions to ask are: why

does the linear kernel select the best genes on average? Why are

there datasets on which it does not perform best? Finally, which

genes are selected by a linear kernel-based feature selector, and

which by a Gaussian kernel-based selector? In this section, we

conduct experimental analyses to come up with answers to

these questions. These findings have deep implications, because

they help us to understand which genes will be selected by

which algorithm. We summarize these implications in two rules

of thumb at the end of the section.

6.3.1 Artificial genes To demonstrate the effect of different
kernels on gene selection, and the preference of certain kernels

for certain genes, we created ten artificial genes and inserted

them into two breast cancer datasets (datasets 9 and 10).

The genes were created such that the signal-to-noise ratio was

higher than those of the real genes. In a sense, we used the

original microarray data as realistic noise, and we expect a

feature selector to rank the artificial genes on top.

We experimented with both non-linearly and linearly separable

artificial genes, as shown in Figure 1. To illustrate the

differences between these two types of genes, linear separability

should arise when different phenotypic classes are clearly linked

with certain high or low levels of expression for a group of

genes (Fig. 1a). Non-linear separability might occur when one

of the phenotypic classes consists of subtypes, such that both

subtypes show gene expression levels different from that of a

healthy patient, but one subgroup has lower expression levels

and the other higher (Fig. 1b).
We used the median rank of the 10 artificial genes as our

measure of ranking performance. This provides an estimate

of the utility of the kernel for selecting the genes with high

signal-to-noise ratios. We deem a feature selector competent for

the task if this measure is less than 10. Table 3 lists the results of

this experiment. We are particularly interested in the two new

variants, RBF and dis, of the BAHSIC family. From the table,

we observe that

(1) RBF and dis perform comparably to existing BAHSIC

members, such as pc and snr, in detecting artificial genes

that are linearly separable. Most methods rank the 10

inserted genes on the top.

(2) RBF and dis perform much better in detecting artificial

genes that are separable only non-linearly. They rank the

10 artificial genes on top in at least 9 out of the 10 folds,

while other methods (except mi) fall short.

Unlike many existing methods, RBF and dis neither assume

independence of the genes nor the linearly separability of the

two classes. Hence, we expect them to detect relevant genes in

unconventional cases where genes are interacting with each

other in a non-linear way. A natural question is whether this

situation happens in practise. In the next section, we will show

that, in some real microarray data, RBF and dis are indeed

useful.

6.3.2 Subtype discrimination using non-linear kernels We
now investigate why it is that non-linear kernels (RBF and

dis) provide better genes for classification in three datasets

from Table 2 [datasets 18 (Alizadeh et al., 2000) 27 (GDS1319),

and 28 (GDS1454)]. These datasets all represent multiclass

problems, where at least two of the classes are subtypes with

respect to the same supertype.2 Ideally, the selected genes

should contain information discriminating the classes.

To visualize this information, we plot in Figure 2 the expression

value of the top-ranked gene against that of a second gene

ranked in the top 10. This second gene is chosen so that it has

minimal correlation with the first gene. We use colours and

shapes to distinguish data from different classes (datasets

18 and 28 each contain 3 classes, therefore we use 3 different

colour and shape combinations for them; dataset 27 has

4 classes, so we use 4 such combinations).
We found that genes selected using non-linear kernels

provide better separation between the two classes that

correspond to the same supertype (red dots and green

diamonds), while the genes selected with the linear kernel

do not separate these subtypes well. In the case of dataset 27,

the increased discrimination between red and green comes at

the cost of a greater number of errors in another class

(black triangle), however, these mistakes are less severe than

the errors made between the two subtypes by the linear kernel.

This eventually leads to better classification performance for

the non-linear kernels (see Table 2).

Fig. 1. First two dimensions of the artificial genes that are (a) linearly

separable and (b) separable only non-linearly. In both subplots, red dots

represent data from the positive class, and blue squares data from the

negative class. Each small cluster is generated by a 10D normal

distribution with diagonal covariance matrix 0:25I.

2For dataset 18, the 3 subtypes are diffuse large B-cell lymphoma and
leukaemia, follicular lymphoma and chronic lymphocytic leukaemia;
for dataset 27, the 4 subtypes are various C blastomere mutant
embryos: wild type, pie� 1, pie� 1þ pal� 1 and mex� 3þ skn� 1; for
dataset 28, the 3 subtypes are normal cell, IgV unmutated B-cell and
IgV mutated B-cell.
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The principal characteristic of the datasets is that the blue

square class is clearly separated from the rest, while the

difference between the two subtypes (red dots and green

diamonds) is less clear. The first gene provides information that

distinguishes the blue square class, however, it provides almost

no information about the separation between the two subtypes.

The linear kernel does not search for information complemen-

tary to the first gene, whereas non-linear kernels are able to

incorporate complementary information. In fact, the second

gene that distinguishes the two subtypes (red dots and green

diamonds) does not separate all classes. From this gene alone,

the blue square class is heavily mixed with other classes.

However, combining the two genes together results in better

separation between all classes.

6.3.3 Rules of thumb and implication to gene activity To
conclude our experiments, considering the fact that the linear

kernel performed best in our feature selection evaluation, yet

also taking into account the existence of non-linear interactions

between genes (as demonstrated in Section 6.3.2), we can derive

the following two rules of thumb for gene selection:

(1) always apply the linear kernel for general purpose gene

selection;

(2) apply a Gaussian kernel if non-linear effects are present,

such as multimodality or complementary effects of

different genes.

This result should come as no surprise, due to the high

dimensionality of microarray datasets, but we make the point

clear by a broad experimental evaluation. These experiments

also imply a desirable property of gene activity as a whole: it

correlates well with the observed outcomes. Multimodal and

highly non-linear situations exist, where a non-linear feature

selector is needed (as can be seen in the outcomes on datasets

18, 27 and 28), yet they occur relatively rarely in practise.

7 DISCUSSION

In this article, we have defined the class of BAHSIC feature

selection algorithms. We have shown that this family includes

several well-known feature selection methods, which differ

only in the choice of the preprocessing and the kernel function.

Our experiments show that the BAHSIC family of feature

selection algorithms performs well in practise, both in terms of

accuracy and robustness. In particular, the linear kernel

(centroid feature selector) performs best in general, and is

thus a reliable first choice that provides good baseline results.
In the artificial gene experiments, we demonstrated non-

linear RBF and dis kernels can select better features when there

Table 3. Median rank of the 10 artificial genes selected by different instances of BAHSIC over 10-fold cross-validation

BAHSIC family Others

References numbers pc snr pam t m-t lods lin RBF dis rfe l1 mi

Linear 9 6 6 6 6 6 6 6 6 6 6 6 6

10 6 6 6 6 6 6 6 6 6 6 6 6

Nonlinear 9 1937 1869 1935 260 221 221 1934 6 6 1721 30 6

10 2043 2004 2043 2172 516 516 2041 7 6 1802 33 6

The upper half of the table contains results for the linearly separable case. The lower half contains results for the non-linearly separable case.

Fig. 2. Non-linear kernels (RBF and dis) select genes that discriminate

subtypes (red dots and green diamonds) where the linear kernel fails.

The two genes in the left column are representative of those selected by

the linear kernel, while those in the right column are produced with a

nonlinear kernel for the corresponding datasets. Different colours and

shapes represent data from different classes. (a) dataset 18 using lin;

(b) dataset 18 using RBF; (c) dataset 28 using lin; (d) dataset 28 using

RBF; (e) dataset 27 using lin and (f) dataset 27 using dis.
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are non-linear interactions. Furthermore, we showed on real
multiclass datasets that non-linear kernels can select better
genes for discriminating between subtypes. This indicates that
non-linear kernels are potentially useful for finding better

prognostic markers and for subtype discovery.
The BAHSIC family represents a step towards establishing

theoretical links between the huge set of feature selection

algorithms in the bioinformatics literature. Only if we fully
understand these theoretical connections can we hope to
explain why different methods select different genes, and to

choose feature selection methods that yield the most biologi-
cally meaningful results.
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