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Abstract

We introduce a nonparametric representation
for graphical model on trees which expresses
marginals as Hilbert space embeddings and
conditionals as embedding operators. This
formulation allows us to define a graphi-
cal model solely on the basis of the feature
space representation of its variables. Thus,
this nonparametric model can be applied to
general domains where kernels are defined,
handling challenging cases such as discrete
variables with huge domains, or very com-
plex, non-Gaussian continuous distributions.
We also derive kernel belief propagation, a
Hilbert-space algorithm for performing infer-
ence in our model. We show that our method
outperforms state-of-the-art techniques in a
cross-lingual document retrieval task and a
camera rotation estimation problem.

1 Introduction

Probabilistic graphical models have become a key tool
for representing structured dependencies between ran-
dom variables in challenging tasks in social networks,
computational biology, natural language processing,
computer vision, and beyond. Unfortunately, most
successful applications of graphical models rely on sit-
uations where each random variable can take on only
a relatively small number of values, or, in continuous
domains, where their joint distributions are Gaussians.
In this paper, we present a novel nonparametric rep-
resentation for tree-structured graphical models that
allows us to concisely represent distributions and con-
duct inference in highly non-Gaussian continuous set-
tings, and in discrete settings where variables can take
on a huge number of assignments.
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At the core of our approach, we exploit the success
of kernel methods, which are able to determine non-
linear relations and make predictions from complex
and structured data (such as documents, strings, and
images; see Schölkopf et al., 2004). These results
have been achieved by applying linear techniques on
data mapped to a reproducing kernel Hilbert space
(RKHS). To date, probabilistic models using RKHS
approaches have generally been very simple, with just
two variables connected by an edge (e.g., the inputs X
and labels Y , drawn i.i.d. from a distribution PXY ).
In this paper, we are able to apply such kernel-based
techniques to any tree-structured graphical model.

In the context of graphical models, kernels have thus
far been used to represent complex structure in ob-
served variables, but the relationship between unob-
served variables has remained simple (c.f., Taskar
et al., 2004). In contrast, we define a new rep-
resentation for graphical model on trees, based on
RKHS embeddings of both the node marginals and
the conditionals associated with edges between vari-
ables. We make use of recent work in formulating em-
beddings (Berlinet & Thomas-Agnan, 2003; Gretton
et al., 2007; Smola et al., 2007; Sriperumbudur et al.,
2008) and conditional embeddings (Song et al., 2009)
of probabilities into reproducing kernel Hilbert spaces.
These embeddings characterize the probabilities solely
on the basis of their feature space representations, thus
allowing us to deal easily with distributions on vari-
ables with complex structure and in high dimensions.

Inference (for instance, determining conditional prob-
abilities and marginals) is key to making predictions
using graphical models, and may be conducted using
messages passed between the variables along the edges.
Such message passing approaches work well when each
node can take a small and finite set of values, or
where the distribution conforms to a known paramet-
ric model (e.g., jointly Gaussian, in the case of Weiss
& Freeman, 2001). More recently, there has been a
focus on formulating more flexible message passing al-
gorithms on graphical models, however these rely on
either a mixture model (Sudderth et al., 2003) or a
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set of samples (Ihler & McAllester, 2009) to represent
the messages, and thus do not easily generalize to high
dimensions or structured data.

In addition to our kernel representation of the node
marginals and conditionals, we also derive kernel be-

lief propagation, a Hilbert space version of the belief
propagation algorithm (Pearl, 1988) required for effi-
cient inference. Unlike Ihler & McAllester (2009), for
example, who assume that the node and edge poten-
tials are given in advance and that they can sample
from certain distributions associated with these po-
tentials, we learn the model representation from data,
do not require sampling in the inference procedure,
and study the sample complexity of inference based
on models we learn. Our experiments on two do-
mains, cross-language document retrieval and learning
camera orientation from images, demonstrate signifi-
cant improvements of our methods over state-of-the-
art techniques.

2 Inference on trees

We begin by introducing undirected tree graphical
models, and describe the elimination algorithm for in-
ferring beliefs on the marginals. Our new approach,
Kernel Belief Propagation, will later be used to express
this algorithm in terms of RKHS covariance operators.

2.1 Tree graphical models

Let T be a tree consisting of nodes V = {1, . . . , n}
and edges E , and denote by Γs = {t|(s, t) ∈ E} the
set of neighbors of node s in T . In a probabilistic
graphical model each node s ∈ V is associated with
a random variable Xs taking on values in domain Xs

This model can be compactly represented as a set of
marginals P(Xs), one for each node s, and a set of
joints P(Xs, Xt), each associated with an edge (s, t).
The joint distribution for all nodes is

P({Xs}
n
s=1) =

∏

(s,t)∈E

P(Xs, Xt)
∏

s∈V

P(Xs)
1−ds ,

where ds := |Γs| is the cardinality of Γs. An interest-
ing property of this undirected tree graphical model
is that one can always re-root the tree, and express
P({Xs}

d
s=1) using the root marginal P(Xr) and a set

of conditionals P(Xs|Xπ(s)) corresponding to directed
edges from node π(s) to node s,

P({Xs}
n
s=1) = P(Xr)

∏

s∈V\t

P(Xs|Xπ(s)), (1)

where we choose node r as the root and denote the
parent of a node s by π(s). Given evidence x̄t in a set
L ⊆ V \ r of leaf nodes, and a set I := V \ L \ r of

internal nodes, the marginal of the root node r is

P(Xr, {x̄t}t∈L) = (2)
∫

Xs∈X ,s∈I

P(Xr)
∏

t∈L

P(x̄t|Xπ(t))
∏

s∈I

P(Xs|Xπ(s)).

If a particular piece of evidence is not on a leaf node,
then all of the descendants of this node (both observed
and unobserved) can be pruned for the inference step.
After pruning, this node will now be a leaf, and the
result of inference will be unchanged.

2.2 Belief propagation

The expression (2) can be computed efficiently by be-
lief propagation (Pearl, 1988);(Jordan, 2002, Ch. 3,4).
This is done by passing messages mts from nodes t to
s, starting from the leaves and progressing up to the
root. Messages to the target node s are functions on
the state space of Xs, and are defined recursively,

mts(xs) = EXt|xs




∏

u∈Γt\s

mut(xt)





= EXt|xs
[Mts(Xt)] (3)

where Mts(Xt) :=
∏

u∈Γt\s mut(Xt) is the “pre-
message”. If t is a leaf node where a particular obser-
vation x̄t is provided, then it simply sends the message
mts(xs) = P(x̄t|xs). The belief of the root node Xr is:

Br(xr) = P(xr)
∏

s∈Γr

msr(xr) = P(xr)Mrs(xr)msr(xr)

(4)
for any s ∈ Γr. Note that mts may be normalized to
a unit sum for numerical stability, but this is not re-
quired for the analysis. In the case where the domains
X is discrete with small cardinality |X |, or X is contin-
uous but the random variables are Gaussians (Weiss
& Freeman, 2001), computing the above marginal can
be carried out efficiently using the sum-product algo-
rithm. For general continuous domains or discrete do-
mains where |X | is too large to enumerate, however,
the expectation in (3) becomes intractable.

A number of approaches have been used to define be-
lief propagation in higher dimensional spaces, and for
more complex probability models. Minka (2001) pro-
poses the expectation-propagation algorithm, where
only certain moments of the messages are estimated.
Unfortunately, this method does not address distribu-
tions that cannot be well-characterized by the first few
moments. To address this problem, Sudderth et al.
(2003) represent messages as mixtures of Gaussians,
however the number of mixture components grows ex-
ponentially as the message is propagated: they al-
leviate this problem through subsampling. Ihler &
McAllester (2009) propose a particle BP approach,
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where messages are expressed as functions of a distri-
bution of particles at each node, and the expectation
in (3) becomes sums over the particles. In this work,
however, the marginals P(Xs) and joint distribution
P(Xs, Xt) are both assumed known. Furthermore, Ih-
ler & McAllester assume the ability to efficiently ob-
tain samples from the space of outgoing messages given
the incoming message, which is not viable for very
complex distributions.

The key idea of our algorithm is that we use RKHS
functions to express the messages mts(xs) between
pairs of nodes. As a result of this representation, the
messages mut(xt) from nodes u ∈ Γt \ s can be com-
bined in a straightforward linear operation in feature
space that implements the sum and product steps,
producing a new message mts(xs) that remains an
RKHS function. Being defined in RKHSs, our method
has no difficulty in propagating messages on struc-
tured objects or in high dimensions. Moreover, un-
like Ihler & McAllester (2009), we are not given the
marginals P(Xs) and joint distribution P(Xs, Xt) in
advance and we do not need to perform sampling.
Rather, all functions needed for the algorithm are
learned non-parametrically from data, and thus can
represent very complex, high-dimensional probability
models efficiently. We provide convergence guarantees
on the beliefs of the nodes, demonstrating that our
approach converges to the true beliefs in the limit of
increasing samples used to learn the RKHS represen-
tations of the conditional probabilities.

3 Hilbert space embeddings

In the present section, we define basic terms from
RKHS theory, and introduce some necessary concepts
from functional analysis. In our inference procedure on
trees, we will represent both the messages and the be-
liefs as functions in Hilbert spaces. Let F be an RKHS
on the separable1 metric space X , with a continuous
feature mapping ϕ(x) ∈ F for each x ∈ X . The inner
product between feature mappings is given by the posi-
tive definite kernel function k(x, x′) := 〈ϕ(x), ϕ(x′)〉F ,
and for all f ∈ F and x ∈ X we have 〈f, ϕ(x)〉F =
f(x). Examples of kernels include the Gaussian RBF

kernel k(x, x′) = exp(−σ ‖x − x′‖
2
), however kernel

functions have also been defined on graphs, time se-
ries, dynamical systems, images, and other structured
objects (Schölkopf et al., 2004).

We next define the embedding of a probability distri-
bution in an RKHS. Let P be the set of Borel prob-
ability measures on X , and define as X the random
variable with distribution P ∈ P (samples will be

1A Hilbert space is separable iff it has a countable or-
thonormal basis, which will be needed when defining singu-
lar value decompositions of infinite dimensional operators.

Table 1: Table of Notation

random variable X Y
domain X Y

observation x y
kernel k(x, x′) l(y, y′)

kernel matrix K L
feature map ϕ(x), k(x, ·) φ(y), l(y, ·)

feature matrix Υ Φ
feature column kx = Υ⊤ϕ(x) ly = Φ⊤φ(y)

RKHS F G

written in lowercase). Following Berlinet & Thomas-
Agnan (2003); Fukumizu et al. (2004); Gretton et al.
(2007); Smola et al. (2007), we define the mapping
to F of P ∈ P as the expectation of ϕ(x) with re-
spect to P, or µX := EX(ϕ(X)). We refer to µX

as the mean map. For all f ∈ F , we may write
EX∼Pf(X) = 〈f, µX〉F . We may think of the mean
map by analogy with a mean vector in a finite di-
mensional space: if F = R

d, then f ∈ R
d is some

fixed vector, X is a random vector defined on R
d with

mean2 µX , and EX∼P 〈f, X〉F = f⊤µX . A character-
istic RKHS is one for which the mean map is injective:
that is, distributions have a unique embedding (Sripe-
rumbudur et al., 2008). This property holds for many
commonly used kernels on R

d, including the Gaussian,
Laplace, and B-spline kernels.

Given a sample DX := {xi}
m

i=1, an empiri-
cal estimate of the mean map is straightforward:
µ̂X := m−1

∑m

i=1 ϕ(xi) = m−1Υ1m, where Υ :=
[ϕ(x1) . . . ϕ(xm)] is an arrangement of feature space
mappings into columns (this is a slight abuse of no-
tation, as the mappings may be infinite dimensional),
and 1m is an m × 1 column of ones.

Consider now the case where we have a joint distribu-
tion P(X, Y ) over two random variables X on X and
Y on Y. In defining a feature space characterization
of the relation between X and Y , we relate the feature
space mapping of X to F with the feature space map
of Y to a second RKHS G on Y with kernel l(y, y′) (see
Table 1 for a summary of notation). The idea is to ex-
press the dependence between the feature maps of X
and Y using a generalization of covariance to feature
spaces.

A definition of covariance between RKHSs requires a
generalization of the outer product, since if x ∈ R

d and
y ∈ R

d′

, the (uncentered) covariance matrix between
random vectors X and Y is CXY := E(X Y ⊤). We
thus introduce the rank one operator f ⊗ g : G → F
such that

f ⊗ g(h) = 〈g, h〉G f. (5)

2There is a subtlety in that the mean vector must be
shown to exist when the feature space is infinite dimen-
sional: see (Sriperumbudur et al., 2008, Theorem 3).
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This can be understood by analogy with the finite di-
mensional case: if x ∈ R

d and y, z are vectors in R
d′

,
then (x y⊤)z = x(y⊤z). Following (Baker, 1973; Fuku-
mizu et al., 2004), we define the uncentered covariance

operator CXX : F → F such that for all f ∈ F ,

〈f, CXXf〉F = EX 〈f, ϕ(X) ⊗ ϕ(X)f〉F

= EX

[
(f(X))

2
]
;

and the uncentered cross-covariance operator CXY :
G → F , where for all f ∈ F and g ∈ G,

〈f, CXY g〉F := EXY [f(X)g(Y )]

Empirical estimates may again be obtained by substi-
tuting sample averages: for example,

〈
f, ĈXY g

〉

F
=

1

m

m∑

i=1

f(xi)g(yi).

4 Conditional Embeddings

We now provide two main results: first, we review
the concept of the conditional distribution embedding
from Song et al. (2009), although with the addition of
a new convergence result (Theorem 1). We then apply
Bayes’ law to express the likelihood in terms of RKHS
covariance operators. These two results will form the
basis for our belief propagation algorithm in Sec. 5.

4.1 Embedding conditional distributions

By analogy with the mean embedding in an RKHS,
Song et al. represent the conditional distribution
P(Y |x) via a conditional embedding µY |x, such that
for all g ∈ G,

〈
g, µY |x

〉
G

= EY |x[g(Y )].

A case of particular interest is when g is a Parzen win-
dow with fixed bandwidth, for which case we obtain a
(smoothed) conditional density estimate. We empha-
size that µY |x now traces out a set of mean embeddings
in G, with each element corresponding to a particular
value of x. The conditional mean mapping is defined
via a conditional embedding operator UY |X : F 7→ G

µY |x = UY |Xϕ(x) = CY XC−1
XXϕ(x). (6)

Given dataset DXY = {(xi, yi)}
m

i=1 drawn i.i.d. from
P(X, Y ), the conditional embedding operator UY |X has
the finite sample estimate

ÛY |X = ΦΥ⊤

m
(ΥΥ⊤

m
+ λI)−1 = Φ(K + λmI)−1Υ⊤, (7)

where (with some regrettable notation) we have de-
fined the kernel matrix K := Υ⊤Υ with (i, j)th entry
k(xi, xj), and the columns of Φ contain the mappings
φ(yi). Note that we have added an additional regular-
izing term λ, to avoid overfitting (in much the same

way as is done for kernel canonical correlation anal-
ysis: see Fukumizu et al., 2007). A novel result of
the present work is the consistency of this estimator,
which is proved in the appendix.

Theorem 1 Assume CY XC
− 3

2

XX is Hilbert-Schmidt.3

Then ‖ÛY |X − UY |X‖HS = Op(λ
1

2 + λ− 3

2 m− 1

2 ). If the

regularization term λ satisfies λ → 0 and mλ3 → ∞,

then ‖ÛY |X − UY |X‖HS converges in probability.

Writing kx := Υ⊤ϕ(x), then µ̂Y |x becomes

ÛY |Xφ(x) = Φ(K + λmI)−1kx =
∑m

i=1 βx(yi)φ(yi),
with βx(yi) ∈ R. This estimator resembles the em-
pirical estimate µ̂X of the unconditional mean embed-
ding, but with the uniform weights 1

m
replaced by non-

uniform weights βx(yi).

4.2 Bayes rule via embeddings

In the previous section, we used an RKHS function
µY |x ∈ G to represent P(Y |x), the posterior distribu-
tion of Y given some observed x. For the purpose of
conducting inference on graphs, we will also need to
represent the likelihood P(x|Y ) of x given Y . We now
present a kernel-based estimate of this quantity, under
the assumption P(x|Y ) ∈ G. Consider Bayes’ law,

P(Y |x) = P(x|Y )P(Y ) (P(x))
−1

.

Multiplying both sides by φ(Y ) and integrating over
Y yields

EY |x[φ(Y )] = EY [φ(Y )P(x|Y )] (P(x))
−1

.

We now define an RKHS function representing the
unnormalized likelihood of x given Y , fx(·) :=

P(x|·) (P(x))
−1

, where we assume fx(·) ∈ G: under
this assumption, fx(Y ) = 〈fx, φ(Y )〉G . Our assump-
tion follows directly from P(x|Y ) ∈ G, given P(x) is
constant with respect to Y . We emphasize that while
fx(·) represents the unnormalized likelihood of x, it
should be thought of a function in G indexed by x which
takes Y as an argument. Note that while fx(Y ) differs
from our original goal of P(x|Y ) by a factor P(x), this
is immaterial in the BP algorithm, where the messages
being passed need not be normalized probabilities.

To obtain an expression for fx(·) in terms of covari-
ance operators (and hence an empirical estimate), we
replace EY |x[φ(Y )] = UY |Xϕ(x), using the conditional
embedding operator from the previous section. Then

UY |Xϕ(x) = EY

[
〈fx, φ(Y )〉G φ(Y )

]

= EY [φ(Y ) ⊗ φ(Y )] fx(·) = CY Y fx(·),

where in the middle line we used the definition of
the tensor product from (5). Defining AY X :=
C−1

Y Y CY XC−1
XX , we obtain fx := AY Xϕ(x).

3The Hilbert-Schmidt norm of an operator is the square
root of the sum of the squared singular values. A formal
definition is given in the appendix.
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For finite samples, AY X has the empirical expression

ÂY X = (ΥΥ⊤

m
+ λI)−1 ΥΦ⊤

m
(ΦΦ⊤

m
+ λI)−1

= mΥ((L + λmI)(K + λmI))−1Φ⊤, (8)

where we have used the matrix inversion lemma in
the second equality, and L := Φ⊤Φ has (i, j)th entry
l(yi, yj). As with the empirical ÛY |X , we apply a reg-
ularization with scaling λ. Our next theorem, which
is again proved in the appendix, shows the empirical
estimator to be consistent.

Theorem 2 Assume C
− 3

2

Y Y CY XC
− 3

2

XX is Hilbert-

Schmidt. Then ‖ÂY X − AY X‖HS = Op(λ
1

2 +

λ−2m− 1

2 ). If λ → 0, and λ4m → ∞, then

‖ÂY X −AY X‖HS converges in probability.

The function value fx(y) can be estimated
as 〈φ(y), ÂY Xϕ(x)〉G = mk⊤

x ((L + λmI)(K +
λmI))−1ly =

∑
i γx(yi)l(yi, y) with γx(yi) ∈ R.

5 BP with RKHS embeddings

We now describe our RKHS version of the belief prop-
agation algorithm in Section 2.2. The key idea is to
represent the messages as functions in the RKHS, and
propagate the messages via conditional embedding op-
erators. We need three main steps: First, we must
define RKHS functions representing the initial mes-
sages from the observed leaf nodes. Second, to imple-
ment the recursion in (3), we must express a message
mts ∈ Fs from t to s in terms of the incoming messages
mut ∈ Ft of the remaining neighbours of t, where the
subscript on a feature space designates its correspond-
ing node.4 Third, we must be able to compute the
belief at the root node r as a function of all its incom-
ing messages. We now address each of these points in
turn.

The kernel expression for the message sent from a leaf
node t to a node s is straightforward: recall from
Section 2.2 that this message is simply mts(xs) =
P(x̄t|xs). Consequently, we use the result from Sec-
tion 4.2 that P(x̄t|·)/P(x̄t) = Astϕ(x̄t) ∈ Fs, and de-
fine mts(·) := Astϕ(x̄t) ∈ Fs (the scaling by 1/P(x̄t) is
immaterial, as we do not normalize the intermediate
messages when running the algorithm). The empiri-
cal estimate of mts is thus given by m̂ts = Υs((Lt +
λI)(Ls + λI))−1Υ⊤

t ϕ(x̄t) = Υsβts, where we have fur-
ther defined βts := ((Lt + λI)(Ls + λI))−1Υ⊤

t ϕ(x̄t).

The recursion for internal nodes in the tree is more
complex. Recall that

mts(xs) = EXt|xs

[∏
u∈Γt\s

mut(Xt)

]
.

4The identity of a feature mapping ϕ is specified by the
node of its argument.

Each of messages mut(·) is a function in Ft, hence we
may write mut(Xt) = 〈mut, ϕ(Xt)〉.

To combine these messages, we begin by defining the
notion of inner product between an arbitrary operator
A from G to F , 〈f ⊗ g,A〉HS = 〈Ag, f〉F , (see sup-
plement for the formal definition of this inner prod-
uct). In particular, from (5), 〈a ⊗ b, u ⊗ v〉HS =
〈a, u〉F 〈b, v〉G . Since we now consider the interaction
between more than two variables, we must generalize
this concept to higher dimensions. Given the tensor
product space ⊗nF and functions ai ∈ F and bi ∈ F
for i ∈ {1, . . . , n},

〈
n⊗

i=1

ai,

n⊗

i=1

bi

〉

⊗nF

=

n∏

i=1

〈ai, bi〉F . (9)

We can then write

mts(xs) = EXt|xs

〈
⊗

u∈Γt\s

mut,
⊗

dt−1

ϕ(Xt)

〉

Ht

,

dt := |Γt| is the number of neighbours of t, and Ht :=⊗
dt−1 Ft is the tensor product space made up of dt−1

of the Ft spaces. Next, by analogy with (6), we may
write

EXt|xs

[⊗
dt−1

ϕ(Xt)
]

= U
X

dt−1

t
|Xs

ϕ(xs),

where we have defined the conditional embedding op-
erator U

X
dt−1

t
|Xs

: F → Ht. This operator embeds

the conditional distribution P(Xt|xs) using a tensor
product feature map

⊗
dt−1 ϕ(Xt).

We also define the pre-message Mts :=
⊗

u∈Γt\s mut,
and obtain

mts(xs) =
〈
Mts,UX

dt−1

t
|Xs

ϕ(xs)
〉

Ht

.

The empirical expression for each incoming message

can be written m̂ut = Υ
(u)
t βut, where Υ

(u)
t con-

tains in its columns the feature maps of the sam-
ple {xt,i}

m
i=1 used to define m̂ut. The empirical es-

timate of the outgoing message is then m̂ts(xs) =[⊙
u∈Γt\s

(
K

(u)
t βut

)]⊤
(Ks + λmI)−1Υ⊤

s ϕ(xs). Here
⊙

denotes elementwise multiplication for vectors, and
we have used the empirical estimate for the conditional
embedding operator and the property of tensor prod-

uct features. The matrix K
(u)
t := Υ⊤

t Υ
(u)
t is the Gram

matrix between the mapped sample Υ
(u)
t used to define

m̂ts and the sample Υt used to define Û
X

dt−1

t
|Xs

(these

need not be the same sample). An important point to
note, when computing the message from t, is that we
do not need to observe a joint sample across the chil-
dren of t, but only samples from the pairs (xu, xt) for
each u ∈ Γt \ s. This is essential in ensuring the re-
sulting algorithm is useful in practice.
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Algorithm 1 Inference

In: Training features Υs, kernel Ks, ∀s ∈ V, root r.
Out: Belief Br at root.

1: Reroot the tree at node r, orient the edges in E
2: for all t ∈ V in reverse topological order do

3: s = π(t)
4: if t is the root r then

5: βr =
⊙

u∈Γr
K

(u)
r βur

6: Br = Υrβr

7: else if t observes evidence xt then

8: βts = ((Kt + λI)(Ks + λI))−1Υ⊤
t ϕ(xt)

9: mts = Υsβts

10: else if t is an internal node then

11: Wts =
⊙

u∈Γt\s K
(u)
t βut

12: βts = (Ks + λI)−1Wts

13: mts = Υsβts

14: end if

15: end for

Finally, we compute the belief at a root node r. We
express this as the expectation of the mapping φ(xr) ∈
Fr, since this gives us a conditional mean mapping,
which allows us to compute expectations of any test
function g ∈ Fr simply by taking an inner product.
Recalling (4), we have

Br = EXr

[
ϕ(Xr)

∏
s∈Γr

msr(Xr)
]

= EXr

[〈⊗
s∈Γr

msr,
⊗

dr

ϕ(Xr)
〉

Hr

ϕ(Xr)

]
,

where we have defined Hr :=
⊗

dr
Fr as the tensor

product space of dr of the Fr spaces. Define C
X

dr
r Xr

:=

EXr

[
(
⊗

dr
ϕ(Xr))

⊗
ϕ(Xr)

]
the covariance operator

from Fr to Hr, then we may express the expectation
of any g ∈ Fr as

〈g, Br〉Fr
=

〈⊗
s∈Γr

msr, CX
dr
r Xr

g
〉

Hr

.

Given a function g = Υrβr, where Υr contains
the mapped sample used in the empirical estimate
Ĉ

X
dr
r Xr

, and an empirical estimate of all incoming mes-

sages m̂sr = Υ
(s)
r βsr, the empirical estimate B̂r =

Υr(
⊙

s∈Γ(r) K
(s)
r βsr) and

〈
g, B̂r

〉

Fr

= B̂⊤
r Υrβr =

(
⊙

s∈Γ(r) K
(s)
r βsr)

⊤Krβr, where K
(s)
r = Υ⊤

r Υ
(s)
r and

Kr = Υ⊤
r Υr.

One can also obtain the marginal density (or belief
in the probabilistic graphical model sense) at the root
node r by performing a Parzen window estimate at
r. If we use a Gaussian RBF kernel, we can view
the Parzen density estimator as a function in the
RKHS, i.e., P(xr) = 〈µr, ϕ(xr)〉Fr

= EXr
[k(Xr, xr)]

(here we have used the RKHS kernel as the Parzen

window, but one could easily replace it with another
kernel as long as this remains a function in Fr). Then
the belief can be estimated as P(Xr)

∏
s∈Γr

msr(Xr) =〈(⊗
s∈Γr

msr

) ⊗
µr,

⊗
dr+1 ϕ(Xr)

〉
. While the result-

ing Parzen window estimator of the belief is biased (the
kernel bandwidth is fixed as a function of sample size),
we will see in our experiments that we can nonetheless
obtain good MAP estimators.

Algorithm: We summarize our method in Algo-
rithm 1. The matrix inversions for ((Kt + λI)(Ks +
λI))−1 and (Ks + λI)−1 need to be carried out only
once and can be stored for future use. Suppose m is
the number of training data, and n is the number of
nodes in the tree. Then these once-off computation
for matrix inversion requires O(nm3) floating point
operations in total. The major computations of the
algorithm when operating online comes from updating
the weights when new pieces of evidence xt are given
(step 3, 6 and 7). Suppose the degree of node t is dt.
Then updating each βts requires O(dtm

2) operations,
and therefore for all messages the algorithm requires∑

t O(dtm
2) = O(nm2) operations.

Sample complexity: We now prove that our algo-
rithm provides convergent estimates of the beliefs at
the nodes. For ease of notation, we will assume that
all variables share the same domain X , with kernel
0 ≤ k(x, x′) = 〈ϕ(x), ϕ(x′)〉F ≤ 1. The following the-
orem demonstrates the convergence of the belief at the
nodes s of the tree, where the proof is provided in the
appendix.

Theorem 3 For each node s ∈ V, let Ts be the tree

induced by setting node s as the root, and hi be the

depth of node i in this re-rooted tree. Let R be a

constant defined in the appendix. Then subject to

the assumptions required for Theorems 1 and 2 to

hold for random variables on all relevant node pairs,
‖B̂s−Bs‖

F

‖Bs‖F
= Op((λ

1

2 + λ−2m− 1

2 )
∑

i∈Ts
Rhi).

This bound depends on the topology of the tree: if the
tree is a balanced binary tree (shallow tree), the largest
exponent of R is only log2(n) where n is |V|; if the tree
is a long chain (deep tree), the largest exponent of R
will be n − 1. The height of the tree is related to
the number of times a message is passed through an
(empirically estimated) embedding operator.

6 Applications

We have applied our our nonparametric tree graphical
models (NTGM) in two settings: cross-lingual docu-
ment retrieval, and camera orientation recovery from
images.
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(a) Chain (b) NTGM (c) Bilingual Topic Model (d) Normalized File Size

(e) Tree (f) NTGM (g) Bilingual Topic Model (h) Normalized File Size

(i) Tree 2 (j) NTGM (k) Bilingual Topic Model (l) Normalized File Size

Figure 1: (a) The chain graphical model used for Swedish (sv) document retrieval. (b,c,d) The recall score
for NTGM, bilingual topic model and normalized file size method for retrieving Swedish documents using lan-
guages at the front of the chain. (e) The tree graphical model used for English document retrieval. (f,g,h) The
recall score for NTGM, bilingual topic model and normalized file size method for retrieval conditioned on docu-
ment observations from other languages. (i) A graphical model for cross-language document retrieval, obtained
via Chow-Liu with the HSIC dependence measure. (j,k,l) Recall score for NTGM, bilingual topic model and
normalized file size method for retrieval conditioned on document observations from other languages.

6.1 Finding document translations

In our cross-lingual document retrieval experiments,
the objective was to retrieve a document in one lan-
guage given a source document in another. Our
data were the proceedings of the European Parlia-
ment (Koehn, 2005). We chose 300 longest documents
written in 9 languages, namely Danish (da), Dutch
(nl), English (en), French (fr), German (de), Italian
(it), Portuguese (pt), Spanish (es), and Swedish (sv).
For this dataset, we treated each language as a ran-
dom variable and each document as an observation.
We constructed three graphical models over languages.
Our first graph was a chain (Figure 1(a)) connecting all
languages. We also produced chains of shorter length
by truncating the first languages, keeping Swedish as
the tail, and thus obtaining chains of length from 2 to
9. We retrieved Swedish documents given observations
at the head of the chain.

Our second graph was a tree (Figure 1(e)) based on

linguistic similarity of the languages, where Romance
languages and Germanic languages reside in different
branches. We retrieved English (en) documents con-
ditioned on documents from other languages. We first
provided evidence only on the leaf nodes (pt, it, nl and
sv) and then successively added evidence to other in-
ternal nodes (es, fr, de and da). We thus retrieved each
document using multiple input documents in other
languages. We repeated the experiment on a third
tree in Figure 1(i), obtained from the Chow-Liu al-
gorithm using the Hilbert-Schmidt Independence Cri-
terion (HSIC, from Gretton et al., 2005) for the re-
quired statistical dependence measure (applying the
same kernels that were used in our inference algo-
rithm). We again retrieved English documents con-
ditioned on documents from other languages. Besides
the different graph structure, all remaining experimen-
tal settings were identical to those of the linguistic sim-
ilarity tree experiments in Figure 1(e). We also inves-
tigated additional tree structures, with similar results.
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A key property of our method in the document re-
trieval application is that we do not need data for
all pairs of languages, only for those connected in
the graph. To learn a model on the graph, we
sampled 100 matching document pairs for each pair
of languages connected by an edge. The training
pairs for different edges were independently sam-
pled. Therefore, different edges might share very
few common documents. We used TF-IDF (term
frequency inverse document frequency) as document
features, and applied a Gaussian RBF kernel, using
as the bandwidth the median distance between the
feature vectors. For preprocessing we removed stop-
words (http://www.nltk.org) and performed stemming
(http://snowball.tartarus.org). We retrieved up to 50
documents, and evaluated the performance using the
recall score. All 300 documents were used as test
queries. We randomized the experiments 10 times and
report the average score.

We compared our approach against two baselines. The
first was to use document length directly as a sole fea-
ture for retrieval, since length will be roughly retained
across languages (see also the sentence alignment work
of Gale & Church, 1991). Since some languages are less
terse than others, we normalized the within-language
document length to zero mean and unit variance.

As our second point of comparison, we employed a
polylingual topic model for document tuples (Mimno
et al., 2009). We learned a bilingual topic model for
each edge based on the training document pairs (with
stemming and stopword removal). We trained each
bilingual topic model with 50 topics using Gibbs sam-
pling, and inferred the topic distribution for each query
document. Document retrieval in the target domain
was achieved by comparing the topic distributions of
the query and target documents. We used the Jensen-
Shannon divergence for this comparison. Since bilin-
gual topic models were built only for each edge, we
needed to perform multiple intermediate retrievals.

Experimental results are summarized in Figure 1. For
the chain, the performance of NTGM and bilingual
topic models degrades with increased length. The per-
formance of bilingual topic models drops significantly
faster than our method, however. For the retrieval
method based on file size, the result is surprisingly
good, and the performance is not much affected by
the length of the chain. However, the file size based
method does not perform better than our method
when the chain is short.

For the tree in Figure 1(e), our method achieves very
good results. As the evidence moves closer to the root
(English), retrieval performance improves. Bilingual
LDA produces a qualitatively similar result, but its

performance is much worse than NTGM. Again, re-
trieval using file size performs well. That said, when
the evidence is moved further towards the root, per-
formance remains stagnant. Results for the third tree
obtained via Chow-Liu are provided in Figures 1(j,k,l),
and are qualitatively similar to the cross-language re-
trieval results using the linguistic similarity tree.

6.2 Finding camera rotations

We applied NTGM to to a computer vision problem as
in Song et al. (2009). Our goal was to determine the
camera orientation based on the images it observed.
In this setting, the camera focal point was fixed at
a position and traced out a smooth path of rotations
while making observations. The dataset was generated
by POVRAY,5 which rendered images observed by the
camera. The virtual scene was a rectangular-shaped
room with a ceiling light and two pieces of furniture.
The images exhibited complex lighting effects such as
shadows, interreflections, and global illumination, all
of which made determining the camera rotation diffi-
cult, especially for noisy cases.

The sequence of image observations contained 3600
frames, where we used the first 1800 frames for train-
ing and the remaining 1800 frames for testing. The
dynamics governing the camera rotation were charac-
terized by a piece-wise smooth random walk. This is
an unconventional graphical model in that the cam-
era state is a rotation matrix R from SO(3); and the
observations are images which are high dimensional
spaces with correlation between pixel values. The
graph structure for this problem is the caterpillar tree
shown in Figure 2(b), and we perform online inference.

We flattened each image to a vector, and applied a
Gaussian RBF kernel. The bandwidth parameter of
the kernel was fixed to be the median distance be-
tween image vectors. We used a Gaussian RBF ker-
nel between two rotations R and R̃, i.e., k(R, R̃) :=
exp(−σ‖R − R̃‖2). With this kernel, we found the
most probable camera rotation matrix by maximiz-
ing the belief B(R) over the rotation group (Abrudan
et al., 2008).

We compared our method to a Kalman filter, and to
the method of Song et al. (2009). For the Kalman
filter, we used the quaternion corresponding to a ro-
tation matrix R as the state and the image vectors
as the observations. We learned the model parame-
ters of the linear dynamical system using linear regres-
sion. In Song et al., a simplifying approximation was
made in aggregating dynamical system history and the
current image observation. We expect NTGM, which
incorporates both sources of information in a princi-

5
www.povray.org
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(a) (b)

Figure 2: Performance of different methods vs obser-
vation noise, camera rotation problem.

pled way, to outperform this earlier method. We used
tr(R⊤R̂) between the true rotation R and the esti-
mated one R̂ as performance measure (this measure
ranges between [−1, 3]: larger means better perfor-
mance).

We added zero mean Gaussian white noise to the im-
ages and measured the performance scaling of the
three methods as we increased the noise variance. The
performance of NTGM degrades more slowly than the
other two methods (Figure 2(a)). For large noise, the
Kalman filter overtakes the method of Song et al. In
this setting, the images are very noisy, and the dynam-
ics become key to determining the camera orientation.
In this regime, NTGM significantly outperforms the
other two methods, with 40% higher trace measure.

7 Conclusion

We propose a nonparametric representation for graph-
ical models on trees. The key to this new framework
is to represent marginals, conditionals, and likelihoods
as Hilbert space elements. Based on these representa-
tions, we can manipulate the messages and beliefs of
the model solely on the basis of linear operations in
feature space, and we derive an efficient kernel belief
propagation algorithm for performing inference. Our
approach can handle challenging problems with contin-
uous and structured variables, which are difficult for
alternative methods. In our experiments, we applied
this nonparametric tree model to a document retrieval
task and a camera rotation estimation problem. In
both cases, our algorithm outperforms state-of-the-art
techniques. We anticipate the application of kernel
methods to inference in graphical models will be fruit-
ful not only in broadening the classes of data on which
inference is tractable, but also in generalizing kernel
techniques to more complex dependence structures.
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The appendix contains proofs of the main theorems.

1 Preliminary results

Given any operator A : G → F , the operator norm of A is written ‖A‖2, and
its Hilbert-Schmidt norm (where defined) is

‖A‖2
HS :=

∞
∑

i,j=1

〈ϕj , Aφi〉2F ,

where the ϕi form a complete orthonormal system (CONS) for F , and the φj

form a CONS for G. The set of Hilbert-Schmidt operators has the inner product

〈A, B〉HS =
∑

i,j≥1

〈Aφi, ϕj〉F 〈Bφi, ϕj〉F

We have defined the rank one operator f ⊗ g : G → F such that f ⊗ g(h) =
〈g, h〉G f .

It follows that
〈f ⊗ g,A〉HS = 〈Ag, f〉F ,

and in particular,
〈a ⊗ b, u ⊗ v〉HS = 〈a, u〉F 〈b, v〉G .

We can extend this notation to higher order: for instance, given the product
space Fn and functions ai ∈ F and bi ∈ F for i ∈ {1, . . . , n},

〈

n
⊗

i=1

ai,

n
⊗

i=1

bi

〉

Fn

=

n
∏

i=1

〈ai, bi〉F . (1)

We use the result

A−1 − B−1 = A−1(B − A)B−1. (2)

1



Further, following [2], we may define the empirical regularized correlation oper-
ator V̂XY such that

ĈXY :=
(

ĈXX + λmI
)1/2

V̂XY

(

ĈY Y + λmI
)1/2

. (3)

where we have
∥

∥

∥
V̂XY

∥

∥

∥
≤ 1.

2 Proof of Theorem 1

We now prove the result

∥

∥

∥ÛY |X − UY |X

∥

∥

∥

HS
= Op(λ

1

2

m + λ
− 3

2

m m− 1

2 ). (4)

We define a regularized population operator

ŨY |X := CY X (CXX + λmI)
−1

and decompose (4) as

∥

∥

∥
ÛY |X − UY |X

∥

∥

∥

HS
≤
∥

∥

∥
ÛY |X − ŨY |X

∥

∥

∥

HS
+
∥

∥

∥
UY |X − ŨY |X

∥

∥

∥

HS
.

There are two parts to the proof. In the first part, we show convergence in
probability of the first term in the above sum. In the second part, we demon-

strate that as long as CY XC− 3

2

XX is Hilbert-Schmidt, the second term in the sum
converges to zero as λm drops.

Part 1: We make the decomposition

∥

∥

∥

∥

CY X (CXX + λmI)
−1 − ĈY X

(

ĈXX + λmI
)−1

∥

∥

∥

∥

HS

≤
∥

∥

∥

(

CY X − ĈY X

)

(CXX + λmI)
−1
∥

∥

∥

HS
+

∥

∥

∥

∥

ĈY X

[

(

ĈXX + λmI
)−1

− (CXX + λmI)
−1

]∥

∥

∥

∥

HS

.

The first term is bounded according to

∥

∥

∥

(

CY X − ĈY X

)

(CXX + λmI)
−1
∥

∥

∥

HS
≤ 1

λm

∥

∥

∥
CY X − ĈY X

∥

∥

∥

HS
,

and we know from [1, Lemma 5] that
∥

∥

∥CY X − ĈY X

∥

∥

∥

HS
= Op(1/

√
m). For the

2



second term, we first substitute (2) and then (3) to obtain
∥

∥

∥

∥

ĈY X

[

(

ĈXX + λmI
)−1

− (CXX + λmI)
−1

]∥

∥

∥

∥

HS

=

∥

∥

∥

∥

ĈY X

(

ĈXX + λmI
)−1 [

CXX − ĈXX

]

(CXX + λmI)
−1

∥

∥

∥

∥

HS

=

∥

∥

∥

∥

(

ĈY Y + λmI
)1/2

V̂XY (CXX + λmI)
−1/2

[

CXX − ĈXX

]

(CXX + λmI)
−1

∥

∥

∥

∥

HS

≤

∥

∥

∥

∥

(

ĈY Y + λmI
)1/2

∥

∥

∥

∥

λ
3/2
m

∥

∥

∥CXX − ĈXX

∥

∥

∥

HS
= Op(λ

− 3

2

m m− 1

2 ).

Part 2:
∥

∥

∥
CY XC−1

XX − CY X (CXX + λmI)
−1
∥

∥

∥

HS
= O(λ

1

2

m).

Proof: We first expand the covariance operator CXX in terms of the complete
orthonormal system (CONS)

CXX =

∞
∑

i=1

νiϕi ⊗ ϕi. (5)

Then
∥

∥

∥CY XC−1
XX − CY X (CXX + λmI)

−1
∥

∥

∥

2

HS
(6)

=
∞
∑

i,j=1

〈

φj ,
(

CY XC−1
XX − CY X (CXX + λmI)

−1
)

ϕi

〉2

=

∞
∑

i,j=1

〈

φj , CY Xν−1
i ϕi − CY X(λm + νi)

−1ϕi

〉2

=

∞
∑

i,j=1

(

λm

νi + λm

)2
〈

φj , CY Xν−1
i ϕi

〉2

=
∞
∑

i,j=1

(

λm

νi + λm

)2
〈

φj , CY XC−1
XXϕi

〉2

Next, define
sji := 〈φj , CY Xϕi〉

Assuming CY XC−1
XX is Hilbert-Schmidt, we have that

∞
∑

i,j=1

〈

φj , CY XC−1
XXϕi

〉2
=

∞
∑

i,j=1

s2
ji

ν2
i

is finite.

Furthermore,

(

λm

νi + λm

)2

=





1
1

λm
νi

+ 1
1





2

≤
(

1

2

√

λm

νi

)2

=
1

4

λm

νi

3



where we have used the arithmetic-geometric-harmonic means inequality. There-
fore we need

∞
∑

i,j=1

1

4

λm

νi

s2
ji

ν2
i

to be finite.

If we assume that

c :=
∞
∑

i,j=1

1

4

s2
ji

ν3
i

is finite,

which corresponds to CY XC− 3

2

XX being Hilbert-Schmidt, then the squared norm
difference in (6) will approach zero with rate λmc.

3 Proof of Theorem 2

We make a similar decomposition to the proof of Theorem 1, yielding
∥

∥

∥

∥

(CY Y + λmI)
−1 CY X (CXX + λmI)

−1 −
(

ĈY Y + λmI
)−1

ĈY X

(

ĈXX + λmI
)−1

∥

∥

∥

∥

HS

≤
∥

∥

∥

∥

[

(CY Y + λmI)
−1 −

(

ĈY Y + λmI
)−1

]

CY X (CXX + λmI)
−1

∥

∥

∥

∥

HS

+

∥

∥

∥

∥

(

ĈY Y + λmI
)−1

(CY X − ĈY X) (CXX + λmI)
−1

∥

∥

∥

∥

HS

+

∥

∥

∥

∥

(

ĈY Y + λmI
)−1

ĈY X

[

(CXX + λmI)
−1 −

(

ĈXX + λmI
)−1

]∥

∥

∥

∥

HS

.

The first term is bounded according to
∥

∥

∥

∥

[

(CY Y + λmI)
−1 −

(

ĈY Y + λmI
)−1

]

CY X (CXX + λmI)
−1

∥

∥

∥

∥

HS

=

∥

∥

∥

∥

(

ĈY Y + λmI
)−1 [

CY Y − ĈY Y

]

(CY Y + λmI)
−1 CY X (CXX + λmI)

−1

∥

∥

∥

∥

HS

≤
∥

∥

∥

∥

(

ĈY Y + λmI
)−1 [

CY Y − ĈY Y

]

(CY Y + λmI)
−1/2

VXY (CXX + λmI)
−1/2

∥

∥

∥

∥

HS

≤

∥

∥

∥CY Y − ĈY Y

∥

∥

∥

HS

λ2
m

= Op(λ
−2
m m− 1

2 ).

The third term follows similar reasoning. The second term is bounded according
to

∥

∥

∥
(ĈY Y + λmI)−1(CY X − ĈY X) (CXX + λmI)

−1
∥

∥

∥

HS
≤

∥

∥

∥CY X − ĈY X

∥

∥

∥

HS

λ2
m

= Op(λ
−2
m m− 1

2 ).

Convergence in probability of the three terms follows from the convergence of

each of
∥

∥

∥
CY Y − ĈY Y

∥

∥

∥

HS
,
∥

∥

∥
CY X − ĈY X

∥

∥

∥

HS
, and

∥

∥

∥
CXX − ĈXX

∥

∥

∥

HS
, as in the

proof of Theorem 1.
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We next address the convergence of

∥

∥

∥(CY Y + λmI)
−1 CY X (CXX + λmI)

−1 − C−1
Y Y CXY C−1

XX

∥

∥

∥

HS
.

for λm approaching zero. We use the earlier decomposition of CXX in terms of
its eigenfunctions ϕi from (5), and further require that φi be the eigenfunctions
of CY Y ,

CY Y :=

∞
∑

i=1

γiφi ⊗ φi.

Thus

∥

∥

∥C−1
Y Y CXY C−1

XX − (CY Y + λmI)
−1 CY X (CXX + λmI)

−1
∥

∥

∥

2

HS

=

∞
∑

i,j=1

〈

φj ,
(

C−1
Y Y CXY C−1

XX − (CY Y + λmI)
−1 CY X (CXX + λmI)

−1
)

ϕi

〉2

=
∞
∑

i,j=1

〈

φj , C−1
Y Y CXY ν−1

i ϕi − (CY Y + λmI)
−1 CY X(νi + λm)−1ϕi

〉2

=

∞
∑

i,j=1

〈

φj , CXY (γjνi)
−1

ϕi − CY X(νi + λm)−1(γj + λm)−1ϕi

〉2

=

∞
∑

i,j=1

(

λ2
m + γjλm + νiλm

(νi + λm) (γj + λm)

)2
〈

φj , C−1
Y Y CXY C−1

XXϕi

〉2
.

Furthermore, we have

(

λ2
m + γjλm + νiλm

νiγj + λ2
m + γjλm + νiλm

)2

≤ 1

4

(

λ2
m + γjλm + νiλm

νiγj

)

,

where we again use the arithmetic-geometric-harmonic mean inequality. As-
suming λm ≪ γ1 and λm ≪ ν1, it follows that

λ2
m < γ1λm + ν1λm,

and thus
1

4

(

λ2
m + γjλm + νiλm

νiγj

)

<
1

2

(

γ1λm + ν1λm

νiγj

)

.

We therefore require the finiteness of

∞
∑

i,j=1

λm

2

(

ν1 + γ1

νiγj

)

s2
ij

ν2
i γ2

j

<
λm (ν1 + γ1)

2

∞
∑

i,j=1

s2
ij

ν3
i γ3

j

.

This is equivalent to requiring that C− 3

2

Y Y CY XC− 3

2

XX be Hilbert-Schmidt as a con-
dition of convergence.
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4 Proof of Theorem 3

Our bound is in terms of the following constants:

Rm = max(s,t)∈E
‖Mts‖Ht

‖mts‖F

(7)

RB = maxt∈V
‖Mts⊗mst‖Ht⊗F

‖Bt‖F

(8)

RL = max(s,t)∈E supxt∈X ‖fxt
‖−1
F (9)

R = max {Rm, RB , RL} (10)

where Rm is the maximal ratio of the RKHS norm of the pre-message to that
of the message, RB is maximal ratio of the RKHS norm of the pre-belief to
that of the belief, and RL is the maximal inverse of the RKHS norm of fxt

.
R is the largest of these three quantities. Rm and RB quantify the degree of
smoothing of the RKHS function after message propagation, while RL quantifies
the smoothness of the RKHS function fxt

itself. Under our assumption that 0 ≤
k(x, x′) = 〈ϕ(x), ϕ(x′)〉F ≤ 1, we have ‖Û

X
dt−1

t |Xs
‖2 ≤ 1 and

∥

∥

∥CXds
s Xs

∥

∥

∥

2
≤ 1.

Proof We first bound the difference between the true message mts = M⊤
tsUXt|Xs

and the message produced by propagating the true “pre-message” through the
estimated embedding operator m̃ts := M⊤

ts ÛX
dt−1

t |Xs
:

‖m̃ts − mts‖F
‖mts‖F

=

∥

∥

∥M⊤
tsUX

dt−1

t |Xs
− M⊤

ts ÛX
dt−1

t |Xs

∥

∥

∥

F

‖mts‖F

≤
‖Mts‖Ht

‖mts‖
∥

∥

∥UX
dt−1

t |Xs
− Û

X
dt−1

t Xs

∥

∥

∥

HS

≤ RC
(

δ
2(n−1)

)

λ−2m− 1

2 =: ǫ (11)

with probability at least 1 − δ simultaneously for all 2(n − 1) messages, using
the union bound. The first inequality follows from ‖T a‖F ≤ ‖T ‖2 ‖a‖F , and
the relation between the spectral norm and Hilbert-Schmidt norm of opera-
tors, i.e. ‖T ‖2 ≤ ‖T ‖HS . We then have

m̃ts ∈ mts + v · ǫ ‖mts‖F , ‖v‖F ≤ 1 (12)

Note that m̃ts is different from the estimated message m̂ts(xs) := M̂⊤
ts ÛX

dt−1

t |Xs
ϕ(xs),

where both the pre-message and the conditional embedding operator are esti-
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mated. Next, we bound

‖m̂ts − mts‖F
‖mts‖F

≤ ‖m̂ts − m̃ts‖F
‖mts‖F

+
‖m̃ts − mts‖F

‖mts‖F

≤

∥

∥

∥M̂⊤
ts ÛX

dt−1

t |Xs
− M⊤

ts ÛX
dt−1

t |Xs

∥

∥

∥

F

‖mts‖F
+ ǫ

≤

∥

∥

∥M̂ts − Mts

∥

∥

∥

Ht

‖mts‖F
+ ǫ (13)

where we use ‖Û
X

dt−1

t |Xs
‖2 ≤ 1. Furthermore, we have:

∥

∥

∥
M̂ts − Mts

∥

∥

∥

Ht

‖mts‖F

=
‖⊗u(mut + vu · ǫu ‖mut‖) −

⊗

u mut‖Ht

‖mts‖F

=
‖Mts‖Ht

‖mts‖F

∥

∥

∥

⊗

u
(wu + vu · ǫu) −

⊗

u
wu

∥

∥

∥

Ht

(

‖Mts‖Ht
=
∏

u
‖mut‖F and ‖wu‖F = 1

)

≤R
∥

∥

∥

⊗

u
wu(1 + ǫu) −

⊗

u
wu

∥

∥

∥

Ht

≤R
(

∏

u
(1 + ǫu) − 1

)

=R





∑

u

ǫu +
∑

u,u′

O(ǫuǫu′)



 (14)

We can then prove by induction that

‖m̂ts − mts‖F
‖mts‖F

≤ ǫ
∑

i∈Tt

Rhi + O(ǫ2) =: ǫt (15)

where Tt is the subtree induced by node t when it sends a message to s. For a
node i in the subtree Tt, hi denotes the depth of this node. The root node of
the subtree Tt, i.e. node t, starts with depth 0, i.e. ht = 0.

For a leaf node, the subtree Tt contains a single node, and mts = fxt
. We

have
∥

∥

∥f̂xt
− fxt

∥

∥

∥

F

‖fxt
‖F

≤

∥

∥

∥Âts −Ats

∥

∥

∥

HS

‖fxt
‖F

≤ ǫ. (16)

Assume that (15) holds for all messages coming into node t. Combining (13)
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and (14),

‖m̂ts − mts‖F
‖mts‖F

≤ ǫ
∑

u

∑

i∈Tu

Rhi+1 + O(ǫ2)

= ǫ
∑

j∈Tt

Rhj + O(ǫ2) (17)

where in the last equality we have grown the tree by one level. Applying a

similar argument to the final belief Bs and using
∥

∥

∥CXds
s Xs

∥

∥

∥

2
≤ 1, we complete

the proof.
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