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Abstract

We propose a family of clustering algorithms
based on the maximization of dependence be-
tween the input variables and their cluster
labels, as expressed by the Hilbert-Schmidt
Independence Criterion (HSIC). Under this
framework, we unify the geometric, spectral,
and statistical dependence views of cluster-
ing, and subsume many existing algorithms
as special cases (e.g. k-means and spectral
clustering). Distinctive to our framework is
that kernels can also be applied on the labels,
which can endow them with particular struc-
tures. We also obtain a perturbation bound
on the change in k-means clustering.

1 Introduction

Given a set of observationsX = {x1, . . . , xm} ∈ X , the
goal of clustering is to associate with each observation
a label chosen from a smaller set Y = {y1, . . . , yn} ∈ Y,
such that the xi grouped together share some under-
lying property. This is useful both in terms of gaining
a better understanding of the data, and in obtaining
a succinct representation.

A popular clustering algorithm is k-means (Mac-
Queen, 1967), which can be kernelized straightforward
(Schölkopf et al., 1998; Girolami, 2001). Points are
grouped in k clusters so as to minimize intra-cluster
variance, and the resulting k cluster centroids are used
to represent their respective clusters. This problem is
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NP-hard; however a simple heuristic often produces
acceptable results: random initialization followed by
iterative update of cluster centroids and the data par-
tition (MacQueen, 1967). Recently, (Zha et al., 2001;
Ding & He, 2004) proposed to use the principal com-
ponents of the data as a more efficient initialization
for k-means.

Besides the geometric view of clustering, spectral
methods have gained considerable popularity over the
past decade, e.g. Shi & Malik (1997); Ng et al. (2002).
These methods treat each datum as a node in a near-
est neighbor graph and exploit the piecewise constant
eigenvectors of a graph Laplacian for the initial par-
tition. Usually, thresholding or a second k-means is
performed to obtain a final cluster assignment.

A third view of clustering arises from statistical consid-
erations: given X, we want to find Y such that the sta-
tistical dependence betweenX and Y is maximized. In
the case of “hard” clustering, where each observation
is assigned to exactly one cluster, mutual information
I(X,Y ) has been used as the objective (Slonim, 2002,
Section 4.2). It is difficult to compute mutual informa-
tion in high dimensions, however, since sophisticated
bias correction methods must be employed (Nemen-
man et al., 2002).

A natural question is how these different approaches
are related. Early work by Zha et al. (2001); Ding &
He (2004) show the connection between the geometric
view and spectral view of k-means. In this paper, we
will start from a statistical dependence view of cluster-
ing, and lead naturally to the unification of the three
views at a statistical inference level.

Instead of I(X,Y ), however, we use the Hilbert
Schmidt Independence Criterion (HSIC) (Gretton
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et al., 2005) as our measure of statistical dependence.
HSIC is the Hilbert-Schmidt norm of the cross co-
variance operator between reproducing kernel Hilbert
spaces. It has several advantages: first, it does not
require density estimation, and has good uniform con-
vergence guarantees; second, it has very little bias,
even in high dimensions; and third, a number of algo-
rithms can be viewed as maximizing HSIC subject to
constraints on Y , for particular Hilbert spaces on the
inputs and labels. Thus, we propose a family of feature
extraction and clustering methods, of which k-means
and spectral clustering are special cases. Another dis-
tinctive feature of our framework is that rich choices
of kernels are also applicable to the label spaces. This
provides us with new clustering algorithms that gen-
erate cluster labels with structures.

Given the many possible clustering algorithms that
arise from particular kernel choices, we face the dif-
ficulty of choosing which kernel gives the most useful
partition of our data. We find the kernels that provide
the most reasonable clustering in our examples are also
the most stable under perturbation. We measure the
stability using a novel bound on the change in cluster-
ing performance under perturbation. Unlike previous
such bounds by Ng et al. (2002), Kannan et al. (2004),
and Meilă (2006), ours holds even under large pertur-
bations, and is distribution independent. We also use
this bound to determine the accuracy required of low
rank approximations to the input Gram matrix, while
still maintaining good clustering performance.

2 Measure of Dependence

Let sets of observations X and Y be drawn jointly
from some probability distribution Prxy. The Hilbert
Schmidt Independence Criterion (HSIC) (Gretton
et al., 2005) measures the dependence between x and y
by computing the norm of the cross-covariance opera-
tor over the domain X ×Y in Hilbert Space. It can be
shown, provided the Hilbert Space is universal, that
this norm vanishes if and only if x and y are indepen-
dent. A large value suggests strong dependence with
respect to the choice of kernels.

Formally, let F be the reproducing kernel Hilbert
Space (RKHS) on X with associated kernel k :
X ×X → R and feature map φ : X → F . Let G
be the RKHS on Y with kernel l and feature map ψ.
The cross-covariance operator Cxy : G 7→ F is defined
by Fukumizu et al. (2004) as

Cxy = Exy[(φ(x)− µx)⊗ (ψ(y)− µy)], (1)

where µx = E[φ(x)], µy = E[ψ(y)], and ⊗ is the ten-
sor product. HSIC, denoted as D, is then defined as

the square fo the Hilbert-Schmidt norm of Cxy (Gret-
ton et al., 2005), D(F ,G,Prxy) := ‖Cxy‖2HS .In term of
kernels HSIC can be expressed as

Exx′yy′ [k(x, x′)l(y, y′)] + Exx′ [k(x, x′)] Eyy′ [l(y, y′)]
−2 Exy[Ex′ [k(x, x′)] Ey′ [l(y, y′)]],

where Exx′yy′ is the expectation over both (x, y) ∼
Prxy and an additional pair of variables (x′, y′) ∼ Prxy

drawn independently according to the same law. Given
a sample Z = {(x1, y1), . . . , (xm, ym)} of size m drawn
from Prxy an empirical estimate of HSIC is

D(F ,G, Z) = (m− 1)−2 tr(HKHL), (2)

where K,L ∈ Rm×m are the kernel matrices for the
data and the labels respectively, and Hij = δij −m−1

centers the data and the labels in the feature space.
For notational convenience, we always assume that K
is centered, i.e. K = HKH and use tr(KL).

Previous work used HSIC to measure independence be-
tween given random variables (Gretton et al., 2005).
Here we use it to construct a compressed representa-
tion, Y (the labels), of the data, X, such that their
dependence is maximized.

There are several advantages to use HSIC as a depen-
dence criterion. First, HSIC satisfies concentration
of measure conditions (Gretton et al., 2005). That
is, for random draws of observation from Prxy, HSIC
provides values which are very similar. This is desir-
able, as we want our clustering to be robust to small
changes. Second, HSIC is easy to compute, since only
the kernel matrices are required and no density esti-
mation is needed. The freedom of choosing a kernel
allows us to incorporate prior knowledge into the de-
pendence estimation process. The consequence is that
we are able to generate a family of methods by simply
choosing appropriate kernels for X and Y .

3 Clustering via HSIC

Having defined our dependence measure, we now de-
vise an optimization problem for feature extraction via

Y ∗ = argmax
Y ∈Y

tr(KL(Y )) (3)

subject to constraints on Y,

where L(Y ) represents the kernel matrix of the gener-
ated labels. The constraints on Y serve two purposes:
to ensure dependence is comparable as Y changes; and
to endow Y with particular structures. For exam-
ple, we can use a vector of real numbers, yi, as the
label (from which we form the label feature matrix
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Y = (y1, . . . ,ym)>). If we further require that the
columns of Y be orthogonal with unit norm, we can
recover kernel PCA by simply applying a linear ker-
nel on Y (Schölkopf et al., 1998). However, the focus
of this paper is to investigate the case of clustering,
where the label space Y = {y1, . . . , yc} contains only
c� m distinctive elements.

In this case, we effectively have the liberty of choosing
a positive semidefinite matrix A of size c× c defining
the similarity between elements in Y. Then the ker-
nel matrix of the labels can be parameterized using a
partition matrix, Π, of size m× c,

L = ΠAΠ>, (Π1 = 1, Πij ∈ {0, 1}) (4)

Each row of the partition matrix, Π, contains all zeros
but a single entry of 1, and 1 denotes a vector of all
ones. Π effectively constrains us to assign each data
point to a particular label by putting 1 in an appro-
priate column. In this case, (3) becomes

Π∗ = argmax
Π

tr(KΠAΠ>) (5)

subject to Π1 = 1, Πij ∈ {0, 1}

Using properties of the trace,

tr((Π> KΠ)A) = 1>((Π> KΠ) ◦A)1, (6)

where ◦ denotes elementwise matrix multiplication.
This means that in (5) we try to partition the kernel
matrix such that the sum of kernel entries in the cor-
responding blocks best align with the given structure
in A (this is explained further in section 4).

Very often we will use the normalized partition matrix
P instead of Π. These are related by P = ΠD, where
D is a diagonal matrix with entries Dii = (1> Π·i)−1/2

(We use subscript ·i to represent a column; similarly,
i· represents a row). In this case, the sum of kernel en-
tries in each block is normalized before the alignment.

The optimization in (5) usually involves mixed integer
nonlinear programming. Polynomial time exact solu-
tions exist only in special cases, e.g. when the data
are partitioned evenly into c clusters (Loera et al.,
2006). Therefore, either heuristics or relaxations are
employed to solve the problem approximately. We
designed an iterative algorithm for this problem by
greedily maximizing the dependence in each step.

Clustering using HSIC (CLUHSIC) is presented in Al-
gorithm 1. It first randomly initializes the partition
matrix Π (step 1). Then it iterates through each data
point, finding the cluster assignment of each point that
maximizes the dependence (step 5). The algorithm
terminates when changes of assignment of any single

Algorithm 1 CLUHSIC
Input: The kernel matrices, K and A, the number of
data, m, and the number of cluster, c.
Output: The cluster assignment, Π∗.
1: Π← Π0

2: repeat
3: Π0 ← Π
4: for all i ∈ {1 . . .m} do
5: j0 ← argmaxj tr(KΠj

i· AΠj>
i· ), j ∈ {1 . . . c}

subject to Π1 = 1, Πij ∈ {0, 1}
6: Π← Πj0

i·
7: end for
8: until Π0 = Π

data point can no longer increase the dependence (step
8). We denote Πj

i· as the partition matrix derived from
Π by reassigning data point i to cluster j.

This greedy procedure is guaranteed to terminate,
since in each step we increase the objective and there
is only finite number of different cluster assignments.
We observe experimentally that the outer loop repeats
less than 20 times. Further speedup is also possible
by taking into the fact that adjacent computations of
tr(KΠj

i· AΠj>
i· ) share many common structures.

4 CLUHSIC Family

Our formulation in (5) is very general: we can ob-
tain a family of clustering algorithms by combining
a kernel for the input space and one for the labels.
While different kernels for the input space have been
explored extensively (eg. Schölkopf et al., 1998; Giro-
lami, 2001), almost no studies have explicitly investi-
gated kernels on the label space. In this section, after
a brief overview of input space kernels, we will focus
on the rich choice of kernels for the labels, and the as-
sociated clustering algorithms. This way we show that
k-means is a special case of the CLUHSIC family.

There exist a great number of kernels on the input
spaces (Schölkopf & Smola, 2002), some basic exam-
ples being the inner product 〈x, x′〉 (or linear kernel);
the polynomial kernel (〈x, x′〉+ c)d for some c ≥ 0 and
d ∈ N; and the RBF kernel family (Gauss, Laplace).

Graph kernels are also commonly used in clustering,
where the similarity measure is given by the connec-
tivity of vertices. One first builds a nearest neigh-
bor graph W on the inputs, and then takes either the
pseudo-inverse G† or the exponentiation exp(−sG) of
the graph Laplacian G as the graph kernel (Smola &
Kondor, 2003). In some cases, one can learn a graph
kernel matrix directly from the data (Xiao et al., 2006).
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While the kernels mentioned above are limited to vec-
torial data, more sophisticated kernels on structured
objects and general sets can also be applied.

We now describe possible RKHS kernels on label
spaces. Although these can in principle be very gen-
eral, we will present certain label spaces that are of
particular interest for clustering.

Plain (kernel) k-means We set A to a diagonal
matrix (Zha et al., 2001; Ding & He, 2004; Zass &
Shashua, 2005) (3 cluster example)

A = diag
([
m−1

1 m−1
2 m−1

3

])
, (7)

where diag(a) is a diagonal matrix with non-zero en-
tries a. Alternatively, we can use the normalized par-
tition matrix P and set A as the identity matrix. Each
cluster is assigned to an arbitrary column in Π. This
label kernel requires the labels be mutually orthogonal
and assumes no relation between clusters. This can be
misleading when structure in the inputs exists.

Weighted k-means Each input xi is associated
with a weight wi that represents its importance. Again
we set A to a diagonal matrix (3 cluster example)

A = diag
([

1P
i∈Π·1

wi

1P
i∈Π·2

wi

1P
i∈Π·3

wi

])
, (8)

where i ∈ Π·j denotes the indices of the inputs that
are in cluster j. In this case, the entries in K are
also weighted accordingly, i.e. wiwlk(xi, xl) (Dhillon
et al., 2004). Weighted k-means also ignores relations
between clusters.

Hierarchical clustering We can easily specify a
hierarchy in the cluster labels by making some off-
diagonal entries of A nonzero. For example, we may
have a two-level clustering problem: first divide the
inputs in 4 clusters, and then further group them into
2 super-clusters (each containing 2 sub-clusters). This
requirement can be tackled using

A =
(

1 0
0 1

)
⊗

(
2 1
1 2

)
(9)

Unlike k-means, the assignment of clusters to columns
of Π is no longer arbitrary. Cluster membership will be
arranged according to the hierarchical structure spec-
ified in A. Therefore, once the inputs are clustered,
we can recognize the relations between the clusters by
observing the labels.

Cluster data in a chain In some cases, the inputs
may reside on a manifold, and we want to cluster them

by grouping adjacent data points. Obviously, the clus-
ters are related: they from a chain or a grid. The fol-
lowing choice of A encodes this in the labels

A =

2 1 0
1 2 1
0 1 2

 (10)

(a chain of 3 clusters). This label kernel enforces
that adjacent clusters be similar. Therefore, adjacent
columns of Π represent adjacent clusters.

Cluster data in a ring Besides a chain or a grid
structure on the clusters, the inputs may reside on a
closed manifold. For example, a ring structured clus-
ter relationship can be induced as follows

A =


2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

 (11)

(an example with 4 clusters). The two corner entries
in the anti-diagonal of A close the chain structure of
(10) into a ring. Explicitly enforcing a ring structure in
the clusters is useful since this may help avoid ambigu-
ity during the clustering (see experiments).Finally, we
note that additional structure might be discovered in
the data using more complex label kernels than those
covered here, for instance deeper tree hierarchies.

5 Relation to Spectral Clustering

In some cases, methods more sophisticated than ran-
domization can be used to initialize CLUHSIC (step 1
in Algorithm 3). Zha et al. (2001) showed that spectral
relaxation can be effectively used to initialize k-means
clustering. We now briefly review these results from
the point of view of dependence maximisation with
HSIC. Although the results we present in this section
are not new, our framework makes the connection be-
tween k-means and its spectral relaxation much sim-
pler conceptually: both are dependence maximization
processes, and they differ only in their label spaces.

Let D(Y ∗) = tr(KL(Y ∗)) be the maximal dependence
captured by a label space Y. A larger label space (for
the same kernel) may capture more information about
the data: given two label spaces Y1 and Y2, we have

Y1 ⊆ Y2 ⇒ D(Y ∗
1 ) ≤ D(Y ∗

2 ) (12)

where Y ∗
1 ∈ Y1 and Y ∗

2 ∈ Y2 are the maximizers
of problem (3) for Y1 and Y2, respectively. This
relation suggests a general strategy for problem (3):
apply a cascade of relaxations on the label spaces
Y ⊆ Y1 ⊆ . . . ⊆ Yn, and use the more relaxed so-
lutions to initialise the less relaxed ones.
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This strategy has been exploited in the spectral relax-
ation of k-means (Zha et al., 2001; Ding & He, 2004):
first, we drop all constrains on the normalized partition
matrix P except P> P = I. We can then efficiently
obtain an initialization for k-means via principal com-
ponent analysis and a pivoted QR decomposition (Zha
et al., 2001; Ding & He, 2004). Note that using a graph
kernel as K establishes the link between k-means and
spectral clustering (Shi & Malik, 1997; Ng et al., 2002;
Meilă, 2003). There is, however, no guarantee that
(kernel) k-means or its relaxation will lead to the de-
sired clustering.

6 Stability under Perturbation

Given the wide variety of kernels we have proposed for
HSIC-based clustering, we require a means of choosing
the kernel that best reveals meaningful data structure.
In this section we provide a perturbation bound for the
clustering, which may be used in kernel choice: kernels
that provide the most reasonable clustering are also
the most stable under perturbation.

Let ∆ be the perturbation such that the perturbed
(centered) kernel matrix K̃ is related to the original
(centered) kernel matrix K by K = K̃+ ∆. Two clus-
terings obtained respectively before and after the per-
turbation are denoted P and P̃ (both are normalized
partition matrices, and can be treated as the labels).
Let c be the number of clusters, and L and D be the
label kernel matrix and the dependence estimated by
P, respectively. Denote D◦ as the dependence esti-
mated by the first c−1 principal eigenvectors U of K.
Similarly, define L̃, D̃, D̃◦, and Ũ for K̃.

First, we note that the dependence tr(HLHL̃) consti-
tutes a measure of similarity between two clusterings.
In fact, a variant called χ2 functional has already been
employed for comparing clusterings (Meilă, 2005). A
distance, ε, between the clusterings can be obtained as

ε = tr(HLHL) + tr(HL̃H L̃)− 2 tr(HLHL̃)

= ‖HLH−HL̃H ‖2F = ‖L−L̃‖2F (13)

where ‖ · ‖F denotes matrix Frobenius norm, and the
centering matrix H does not affect the distance. We
will relate ε to two factors: (i) the estimated depen-
dence between the inputs and the labels; (ii) the size
of the perturbation.

Let λc−1 and λc be the c− 1 and c-th principal eigen-
values of K (and define λ̃c−1 and λ̃c accordingly for
K̃). Further define η = tr(∆ŨŨ

>
), which measures

the size of the perturbation. The following theorem
quantifies the relationship between ε and its determin-
ing factors. See (Song et al., 2007) for the proof.

Theorem 1 The distance, ε, between the two cluster-
ings, P and P̃, is bounded by:

ε ≤ 2
(√

δ +
√
δ̃ +
√
γ
)2

(14)

where δ, δ̃ and γ are defined respectively as

D◦−D
λc−1 − λc

,
D̃◦ − D̃
λ̃c−1 − λ̃c

,
D◦−D̃◦ − η
λc−1 − λc

(15)

We see that ε is mainly influenced by the ratio of the
dependence gap (e.g. D◦−D) to the eigenvalue gap
(e.g. λc−1 − λc). If changes in dependence due to
perturbation and discretization are small compared to
eigenvalue gaps, it is likely that the clustering will re-
main unchanged. Our error bound is distribution free,
and does not require the perturbation to be small.
This is in contrast to the results by (Ng et al., 2002),
Kannan et al. (2004), and Meilă (2006). Hence, our
result may have wider applicability.

One case of particular interest is where the perturba-
tion is caused by our performing a low rank approxi-
mation of the kernel matrix, K ≈ BB> = K̃ (e.g. in-
complete Cholesky factorization (Fine & Scheinberg,
2001)). In this case, the eigenvalues of K always
dominate the corresponding ones in K̃. Denoting
as ξ = tr(∆) the approximation error, we see that
ξ ≥ D◦−D̃◦ − η. Instead of using a fixed error tol-
erance for the decomposition, this inequality suggests
a data-dependent way of setting it: with a tolerance
of λc−1 − λc, almost no clustering error will be in-
curred due to the low rank approximation. We will
also demonstrate this in our experiments.

7 Experiments

Our experiments address three main questions: (i)
how to choose a kernel for a particular clustering prob-
lem; (ii) how to use the perturbation bound for kernel
matrix approximation; and (iii) how to cluster inputs
with rich structured labels.

7.1 Kernel Choice and Stability

In our first series of experiments, we evaluate kernels
with respect to their ability to solve certain clustering
problems, and their stability after data perturbation.

Choice of Kernels We investigated three artificial
datasets (Collinear, Ring, and XOR; see Figure 1), to
show how the choice of kernel affects spectral initial-
ization and the correct clustering.

For the Collinear dataset, both the linear and RBF
kernels are capable of capturing information about the
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spherical shape of the clusters. K computed with a lin-
ear kernel has only one piecewise constant eigenvector
due to the collinearity of the cluster centers. By con-
trast, a Gaussian kernel produces two such informative
eigenvectors and allows a spectral initialization of k-
means. This is because K produced by the Gaussian
kernel has full rank (Schölkopf & Smola, 2002) and
hence avoids the collinear degeneracy.

For the Ring dataset, a Gaussian kernel is not able
to produce the correct clustering. This is reflected in
its eigenvectors. Although some authors (eg Girolami,
2001), obtain correct clustering using an RBF kernel,
this is actually a local minimum. The eigenvectors of
a graph kernel provide a very good indication of the
clusters, and lead to correct clustering.

For the XOR dataset, although a graph kernel pro-
vides piecewise constant eigenvectors, the piecewise
structure is not consistent with the cluster structure.
Hence the resulting clustering is incorrect. The poly-
nomial kernel of degree 2 gives consistent information
for spectral initialization and correct clustering.

These examples provide us with two rules for choosing
kernels. First, a kernel should introduce the correct
notion of similarity. Second, it should be powerful
enough (e.g. a Gaussian kernel vs. a linear one) to
avoid the degenerate case for spectral clustering.

Stability of Kernels In this section, we perturb the
datasets from the previous section, and plot the scaling
of γ computed from different kernels as a function of
the amount of perturbation (Figure 2). The scaling
gives a very good indication of the fitness of a kernel
for a particular dataset. This also provides a method
for choosing an appropriate kernel.

For the Collinear dataset, both the Gaussian kernel
and the graph kernel provide similar stability. This is
consistent with the fact that both can detect spherical
clusters. For the Ring dataset, however, the graph
kernel is clearly better than the other two. This is
because the notion of similarity in this dataset is well
reflected by graph connectivity. For the XOR dataset,
the polynomial kernel becomes the most stable one,
since it is the only one that defines a correct similarity
measure on the data.

7.2 Kernel Matrix Approximation

In our second set of experiments, we focus on speed-
ing up clustering by kernel matrix approximation. In-
complete Cholesky decomposition is used to approxi-
mate the kernel matrix, i.e. K ≈ BB> (B ∈ Rm×d

where d � m). Here we use the perturbation bound
to set the approximation tolerance of the incomplete
Cholesky decomposition. More precisely, we further

Figure 1: Three artificial datasets and the first 2 prin-
cipal eigenvectors computed from various kernels matri-
ces. Left column, top to bottom: I) Collinear dataset,
III) Ring dataset, and V) XOR dataset (data from the
same cluster scatter diagonally around the origin). Data
points with identical colors and shapes belong to the same
class. Right column: eigenvectors computed for the cor-
responding datasets on the left. The first principal eigen-
vector is colored blue and the second in red. For Colinear,
results are for linear and RBF kernels (II). For Ring, re-
sults are for RBF and graph kernels (IV). For XOR, results
are for graph and polynomial kernels (VI).

decompose the kernel matrix if the approximation er-
ror ξ is larger than the eigengap λc−1 − λc.

We carried out experiments in 9 datasets taken from
the UCI and Statlib repositories, and report results
in Table 1. The number of classes in the datasets
varies from 2 to 11. We are interested in the num-
ber of data points clustered differently from the true
labels, err1 and err2, computed respectively before and
after the incomplete Cholesky decomposition. We also
report the time (in seconds), t1, taken to compute the
eigenvectors of the full kernel matrix, and the time,
t2, to compute the singular vectors of the incomplete
Cholesky approximation. The time is recorded for
matlab using the routines eig and svd, respectively.

We find that by guiding the incomplete Cholesky de-
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Table 1: Clustering error and speed before and after performing incomplete Cholesky decomposition. err1, t1: clustering
error and time using the full kernel matrix; err2, t2: clustering error and time using the incomplete Cholesky factor. col#:
number of columns in the incomplete Cholesky factor. (m, d): sample size and dimension. c: number of clusters.

Breastcancer Iris Wine Soybean Vehicle Glass Segment USPS Vowel
(m,d) (669,10) (150,4) (178,13) (47,21) (846,18) (214,9) (2310,18) (2007,256) (990,10)

c 2 3 3 4 4 6 7 10 11
err1 3.7 16.0 4.5 0.0 65.4 51.4 36.0 47.0 68.9
err2 3.7 18.0 5.1 0.0 65.4 51.4 36.0 46.9 68.9
t1 18.9 0.2 0.4 0.0 38.0 0.6 647.0 537.9 57.1
t2 0.0 0.0 0.0 0.0 0.3 0.0 11.4 157.3 2.1

col# 35 12 61 32 137 93 228 1518 309

composition using the eigengap and performing singu-
lar value decomposition to obtain cluster initialization,
almost no clustering errors result (or misclassification
errors in Meilă, 2006). At the same time, the compu-
tation time is greatly reduced for several datasets, up
to an order of magnitude.

7.3 Clustering with Rich Label Kernels

In our final set of experiments, we demonstrate cluster-
ing with rich label kernels, for both tree and ring struc-
tures. The experiments were all conducted on image
data, with pixel vectors normalized in each dimension
to zero mean and unit variance. We used a Gaussian
kernel exp(−s‖x−x′ ‖2) with s = d−1 (d:dimension
of the data) for the kernel matrix K.

Hierarchical Facial Expression Clustering
Computer recognition of facial expressions is an
important component in automated understanding
of human communication (Pantic & Rothkrantz,
2000). We describe a hierarchical clustering of face
images that takes into account both the identity
of the individual and the emotion being expressed.
We collected 185 images (size 217 × 308) of 3 types
of facial expressions (NE: neutral, HA: happy, SO:
shock) from 3 subjects (CH, LE, AR), in alternating
order, with around 20 repetitions each. We registered
the images by aligning the eyes, and adjusting the
average pixel intensities to be the same. We plotted
the data points in Figure 3(a), using the entries in the
top 3 eigenvectors of K as the coordinates. Typical
images from each clusters are plotted beside the clus-
ters. Besides clustering the images into individuals
and different expressions (9 clusters), we also require
that images belong to the same person should also be
grouped together (3 groups). This hierarchy is shown
in Figure 3(b), as successfully obtained using P and
A in (9). This can be checked by examining the
columns of the resulting partition matrix: CLUHSIC
clusters each person into adjacent columns according
to A. Although plain k-means is also able to cluster
the images correctly into 9 cluster, the hierarchy is
lost: k-means place the cluster assignments for each
person into arbitrary columns.

Clustering Teapots in a Ring We used the 400
consecutive teapot images (of size 76× 101 with RGB
color) from Weinberger & Saul (2006). The images
were taken successively as the teapot was rotated 360◦.
We plot the data points as dots in Figure 4, using their
corresponding entries in the top 3 eigenvectors of K as
the coordinates. To make the clustering problem more
difficult, we perturb the images at the points where
they are close (the perturbed images have indices in
two ranges: from 90 to 105, and from 290 to 305), so
as to bring these clusters closer together. We wish to
divide the data into 10 clusters, such that images in the
same cluster come from similar viewing angles, and im-
ages in adjacent clusters come from consecutive angles.
We present the different clusters produced by plain k-
means in Figure 4, where images in the same cluster
are dots of identical shape and color. k-means incor-
rectly groups images of opposite angle into the same
cluster (yellow square dots). CLUHSIC avoids this er-
ror by coding a ring structure into A as in (11). In
addition, the labels generated by CLUHSIC preserve
the ordering of the images (adjacent clusters represent
consecutive angles, and the clusters form a ring), while
k-means does not.

8 Conclusion

In this paper, we view clustering as a process of infer-
ring the labels from the data, and employ the Hilbert-
Schmidt Independence Criterion (HSIC) as the under-
lying inference rule. Clustering via HSIC allows us to
unify various views of clustering, and to generalise to
clustering in hierarchies, chains, rings, and other com-
plex structures. Furthermore, we provide a perturba-
tion bound on the stability of the clustering, which has
practical implications for kernel selection. We expect
that our framework will provide useful guidance to the
practice of clustering.
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Figure 2: γ as a function of the amount of perturbation
applied to the artificial datasets in Figure 1 using three
kernels: RBF kernel (blue circle), graph kernel (red square)
and polynomial kernel (green diamond). Results are for
Colinear (I), Ring (II), and XOR (III) datasets.

(a)

(b)

Figure 3: (a) Facial expression images embedded into 3
dimensional space; different marker shape/colour combi-
nations represent the true identity/expression clusters. (b)
The two-level hierarchy recovered from the data.

Figure 4: Teapot images, 360◦ rotation, k-means labeling.
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