
Electronic Journal of Statistics

Vol. 6 (2012) 1550–1599
ISSN: 1935-7524
DOI: 10.1214/12-EJS722

On the empirical estimation of integral

probability metrics

Bharath K. Sriperumbudur

Gatsby Computational Neuroscience Unit, University College London, Alexandra House,
17 Queen Square, London, WC1N 3AR, U.K.

e-mail: bharath@gatsby.ucl.ac.uk

Kenji Fukumizu

The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562,
Japan

e-mail: fukumizu@ism.ac.jp

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London, Alexandra House,
17 Queen Square, London, WC1N 3AR, U.K.

e-mail: arthur.gretton@gmail.com
Max Planck Institute for Biological Cybernetics, Spemannstraße 41, 72076 Tübingen,
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Abstract: Given two probability measures, P and Q defined on a measur-
able space, S, the integral probability metric (IPM) is defined as

γF(P,Q) = sup

{∣∣∣∣
∫

S

f dP−
∫

S

f dQ

∣∣∣∣ : f ∈ F

}
,

where F is a class of real-valued bounded measurable functions on S. By
appropriately choosing F, various popular distances between P and Q, in-
cluding the Kantorovich metric, Fortet-Mourier metric, dual-bounded Lips-
chitz distance (also called the Dudley metric), total variation distance, and
kernel distance, can be obtained.

In this paper, we consider the problem of estimating γF from finite ran-
dom samples drawn i.i.d. from P and Q. Although the above mentioned
distances cannot be computed in closed form for every P and Q, we show
their empirical estimators to be easily computable, and strongly consistent
(except for the total-variation distance). We further analyze their rates of
convergence. Based on these results, we discuss the advantages of certain
choices of F (and therefore the corresponding IPMs) over others—in partic-
ular, the kernel distance is shown to have three favorable properties com-
pared with the other mentioned distances: it is computationally cheaper,
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the empirical estimate converges at a faster rate to the population value,
and the rate of convergence is independent of the dimension d of the space
(for S = Rd). We also provide a novel interpretation of IPMs and their
empirical estimators by relating them to the problem of binary classifica-
tion: while the IPM between class-conditional distributions is the negative
of the optimal risk associated with a binary classifier, the smoothness of an
appropriate binary classifier (e.g., support vector machine, Lipschitz classi-
fier, etc.) is inversely related to the empirical estimator of the IPM between
these class-conditional distributions.

AMS 2000 subject classifications: Primary 62G05.
Keywords and phrases: Integral probability metrics, empirical estima-
tion, Kantorovich metric, dual-bounded Lipschitz distance (Dudley metric),
kernel distance, reproducing kernel Hilbert space, Rademacher average, Lip-
schitz classifier, support vector machine.
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1. Introduction

Given samples from two unknown probability measures, P and Q, it is often
of interest (in applications such as two-sample and independence testing) to
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estimate the distance (or divergence) between them. The goal of this paper is
to study the empirical estimation of a popular family of distance measures on
probabilities, the integral probability metrics (IPM) [29]—also called probability
metrics with a ζ-structure [55]—defined as

γF(P,Q) := sup
f∈F

∣∣∣∣
∫

S

f dP−
∫

S

f dQ

∣∣∣∣ , (1.1)

where F in (1.1) is a class of real-valued bounded measurable functions on S (the
choice of functions being the crucial distinction between different IPMs). IPMs
have been employed as tools of theoretical interest in probability theory [15,
Chapter 11], with applications including mass transportation problems [34] and
empirical process theory [50]. In statistics, IPMs have been used in nonparamet-
ric two-sample testing, including the Kolmogorov-Smirnov test [7, 39, 40] and
the kernel test [20, 21]; as well as in independence testing [20, Section 7.4], [22].
By appropriately choosing F in (1.1), various popular distance measures can be
obtained:

(a) Kantorovich metric, Wasserstein distance and Fortet-Mourier metric: Set-
ting F = {f : ‖f‖L ≤ 1} in (1.1) yields the Kantorovich metric, where ‖f‖L is
the Lipschitz semi-norm of a bounded continuous real-valued function f on a
metric space, (S, ρ),

‖f‖L := sup

{ |f(x)− f(y)|
ρ(x, y)

: x 6= y in S

}
.

The famous Kantorovich-Rubinstein theorem [15, Theorem 11.8.2] shows that
when S is separable, the Kantorovich metric is the dual representation of the
Wasserstein distance [15, p. 420]—more specifically, the L1-Wasserstein dis-
tance—defined as

W1(P,Q) := inf
µ∈L(P,Q)

∫
ρ(x, y) dµ(x, y), (1.2)

where P,Q ∈ {P :
∫
ρ(x, y) dP(x) < ∞, ∀ y ∈ S} and L(P,Q) is the set of all

measures on S × S with marginals P and Q. The L1-Wasserstein distance (and
therefore the Kantorovich metric) has found applications in information theory
[19], mathematical statistics [33, 55] and mass transportation problems [34].

The Fortet-Mourier metric [35, p. 17] is a generalization of the Kantorovich
metric, with F := {‖f‖c ≤ 1}, where

‖f‖c := sup

{ |f(x)− f(y)|
c(x, y)

: x 6= y in S

}
,

and c(x, y) = ρ(x, y)max(1, ρ(x, a)p−1, ρ(y, a)p−1), p ≥ 1 for some a ∈ S. Note
that when p = 1, the Fortet-Mourier metric is the same as the Kantorovich
metric.
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(b) Dudley metric: Choosing F = {f : ‖f‖BL ≤ 1} in (1.1) yields the dual-
bounded Lipschitz distance—also called the Dudley metric—where

‖f‖BL := ‖f‖∞ + ‖f‖L,

with ‖f‖∞ := sup{|f(x)| : x ∈ S}. The Dudley metric is used in proving
the convergence of probability measures with respect to the weak topology [15,
Chapter 11].

(c) Total variation metric and Kolmogorov distance: γF is the total variation
metric when F = {f : ‖f‖∞ ≤ 1} while it is the Kolmogorov distance when
F = {1(−∞,t] : t ∈ Rd}. The Kolmogorov distance is used in proving the clas-

sical central limit theorem in Rd, and also appears as the Kolmogorov-Smirnov
statistic in hypothesis testing [39].

(d) Kernel distance: γF is called the kernel distance or maximum mean discrep-
ancy [6, 20, 21, 46] when F = {f : ‖f‖H ≤ 1}, where H represents a reproducing
kernel Hilbert space (RKHS) [2] with k as its reproducing kernel (r.k.) — we
write the space (H, k).1 The kernel distance is used in statistical applications
including homogeneity testing [20, 21], independence testing [22], testing for
conditional independence [17] and mixture density estimation [42].

As described above, an important application of distance estimates between
P and Q (based on random i.i.d. samples drawn from them) is in homogeneity
testing and independence testing, where the estimate of the distance can be used
as a test statistic (additional applications include classification of probability
measures using empirically computed distances). While the kernel distance and
the total variation distance have been successfully applied in testing, most other
IPMs have not, due to the absence of good estimates for continuous random
variables, especially in the multivariate case. Indeed, for testing, it is crucial that
the statistic have a consistent estimator exhibiting fast convergence behavior and
low computational complexity (i.e., the estimator must be easy to compute). In
Section 2.1, we provide empirical estimates of the above mentioned IPMs, in
particular the Kantorovich metric (and therefore the L1-Wasserstein distance),
Dudley metric, and kernel distance, based on finite samples drawn i.i.d. from
P and Q. The empirical estimators of the Kantorovich distance and Dudley
metric are obtained by solving linear programs, while that of the kernel distance
is computed in closed form, thereby demonstrating that the kernel distance is
simpler to compute than the remaining IPMs.

We show in Section 2.2 that the empirical estimators derived in Section 2.1
exhibit a nice connection to the problem of binary classification. In Section 2.2,
we first show that γF(P,Q) (resp. its empirical estimator) is the negative of
the optimal risk associated with a binary classifier that separates the class con-
ditional distributions, P and Q (resp. Pm and Qn—see the last paragraph of

1A function k : S×S → R, (x, y) 7→ k(x, y) is a reproducing kernel of the Hilbert space H if
and only if the following hold: (i) ∀ y ∈ S, k(·, y) ∈ H and (ii) ∀ y ∈ S, ∀ f ∈ H, 〈f, k(·, y)〉H =
f(y). When a reproducing kernel exist, H is called a reproducing kernel Hilbert space, and is

defined as the completion of the span of k, H = span{k(·, y)|y ∈ S}. It can be shown that a
real-valued k is a reproducing kernel if and only if it is symmetric and positive definite [6].
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this section for the notation), where the classification rule is restricted to F.
In other words, the Kantorovich metric, Dudley metric and the kernel distance
(and their empirical estimators) can be understood as the negative of the opti-
mal risk associated with a classifier for which the classification rule is restricted
to {f : ‖f‖L ≤ 1}, {f : ‖f‖BL ≤ 1} and {f : ‖f‖H ≤ 1}, respectively. We then
show that the empirical estimators of the Kantorovichmetric, Dudley metric and
kernel distance are related to themargins of the Lipschitz classifier [51], bounded
Lipschitz classifier, and support vector machine, respectively. The significance
of this result is that the smoothness of the classifier is inversely related to the
empirical estimator of the IPM between class conditionals P and Q. Although
this is intuitively clear, our result provides a theoretical justification. Finally, we
also establish the relation between the kernel distance and the Parzen window
classifier [37, 38] (see kernel classification rule [14, Chapter 10]).

Next, in Section 3, we show that the empirical estimators derived in Sec-
tion 2.1 are strongly consistent, and provide their rates of convergence using
standard techniques from empirical process theory. Based on these results, it
will be clear that the empirical estimator of the kernel distance exhibits a fast
rate of convergence compared with that of other IPMs, and its rate of con-
vergence is independent of the dimension d (for S = Rd), unlike with other
IPMs. Our experimental results in Section 4 confirm the convergence theory
discussed in Section 3 and therefore demonstrate the practical viability of these
estimators. Based on these convergence results, in Section 3, we also show how
a homogeneity test can be constructed using the empirical estimator of IPM as
a test statistic (see Remark 3.6(v)).

Since the total variation distance is also an IPM, we discuss its empirical
estimator in Section 5, and show that it is not strongly consistent. Because
of this, we provide new lower bounds for the total variation distance in terms
of the Kantorovich metric, Dudley metric and the kernel distance, which can
be consistently estimated. These bounds also translate as lower bounds on the
Kullback-Leibler divergence through Pinsker’s inequality [16].

We note that there exist other distance/divergence measures between prob-
abilities besides those of the IPM family. One popular family of divergence
measures are the Ali-Silvey distances [1], also called the Csiszár’s φ-divergences
[11], defined as

Dφ(P,Q) :=

∫

S

φ

(
dP

dQ

)
dQ if P ≪ Q,

where S is a measurable space and φ : [0,∞) → (−∞,∞] is a convex func-
tion. P ≪ Q denotes that P is absolutely continuous w.r.t. Q. Well-known dis-
tance/divergence measures obtained by appropriately choosing φ include the
Kullback-Leibler (KL) divergence (φ(t) = t log t), Hellinger distance (φ(t) =
(
√
t− 1)2), χ2-divergence (φ(t) = (t− 1)2) and total variation distance (φ(t) =

|t−1|). The empirical estimation of φ-divergences, especially the KL-divergence,
has recently been studied in depth [30, 32, 52]. We emphasize that φ-divergences
and IPMs are fundamentally different, and intersect only at the total variation
distance (our proof of this result is in Appendix A).
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Table 1

Function space, F Unit ball IPM, γF

Lip(S, ρ) := {f : S → R | ‖f‖L < ∞} FW := {f : ‖f‖L ≤ 1} W := γFW

BL(S, ρ) := {f : S → R | ‖f‖BL < ∞} Fβ := {f : ‖f‖BL ≤ 1} β := γFβ

Bounded measurable functions FTV := {f : ‖f‖∞ ≤ 1} TV := γFTV

(H, k) Fk := {f : ‖f‖H ≤ 1} γk := γFk

Before proceeding with our main presentation, we introduce the notation we
will use throughout the paper. For a measurable function f and a probability
measure P, Pf :=

∫
f dP denotes the expectation of f(X) where X is distributed

as P. Given an i.i.d. sample X1, . . . , Xn drawn from P, Pn := 1
n

∑n
i=1 δXi repre-

sents the empirical distribution, where δx represents the Dirac measure at x. We
use Pnf to represent the empirical expectation 1

n

∑n
i=1 f(Xi). Table 1 defines

the function spaces, unit balls in these function spaces, and the associated IPMs
that we use throughout the paper.

2. Empirical estimators of integral probability metrics

Given {X(1)
1 , X

(1)
2 , . . . , X

(1)
m } and {X(2)

1 , X
(2)
2 , . . . , X

(2)
n }, which are i.i.d. samples

drawn randomly from P and Q, respectively, the empirical estimator of γF(P,Q)
is given by

γF(Pm,Qn) = sup
f∈F

∣∣∣∣∣

N∑

i=1

Ỹif(Xi)

∣∣∣∣∣ , (2.1)

where Pm := 1
m

∑m
i=1 δX(1)

i

and Qn := 1
n

∑n
i=1 δX(2)

i

represent the empirical dis-

tributions of P and Q, respectively, N = m + n, Ỹi =
1
m when Xi = X

(1)
i for

i = 1, . . . ,m and Ỹm+i = − 1
n when Xm+i = X

(2)
i for i = 1, . . . , n. The compu-

tation of γF(Pm,Qn) in (2.1) is not straightforward for arbitrary F. To obtain
meaningful results, in Section 2.1, we restrict ourselves to FW , Fβ and Fk and
compute (2.1). We show that the Kantorovich (and therefore L1-Wasserstein)
and Dudley metrics can be estimated by solving linear programs (see Theorems
2.1 and 2.3). By contrast, the empirical estimator for the kernel distance can be
obtained in closed form (Theorem 2.4; proved in [20, 21]).

In Section 2.2, we present a novel interpretation of IPMs and their empiri-
cal estimators (especially of the Kantorovich metric, Dudley metric and kernel
distance) by relating them to binary classification.

2.1. Empirical estimators of the Kantorovich metric (W), Dudley
metric (β) and kernel distance (γk)

The following results present the empirical estimators of the Kantorovich metric
W , Dudley metric β, and kernel distance γk.
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Theorem 2.1 (Empirical estimator of the Kantorovich metric). For all α ∈
[0, 1], the following function solves (2.1) for F = FW :

fα(x) := α min
i=1,...,N

(a⋆i + ρ(x,Xi)) + (1− α) max
i=1,...,N

(a⋆i − ρ(x,Xi)), (2.2)

where

W (Pm,Qn) =

N∑

i=1

Ỹia
⋆
i , (2.3)

and {a⋆i }Ni=1 solve the following linear program,

max
a1,...,aN

{
N∑

i=1

Ỹiai : −ρ(Xi, Xj) ≤ ai − aj ≤ ρ(Xi, Xj), ∀ i, j
}
. (2.4)

Proof. Consider W (Pm,Qn) = sup{∑N
i=1 Ỹif(Xi) : ‖f‖L ≤ 1}. Note that

1 ≥ ‖f‖L = sup
x 6=x′

|f(x) − f(x′)|
ρ(x, x′)

≥ max
Xi 6=Xj

|f(Xi)− f(Xj)|
ρ(Xi, Xj)

,

and hence

W (Pm,Qn) ≤ sup

{
N∑

i=1

Ỹif(Xi) : max
Xi 6=Xj

|f(Xi)− f(Xj)|
ρ(Xi, Xj)

≤ 1

}

= sup

{
N∑

i=1

Ỹif(Xi) : |f(Xi)− f(Xj)| ≤ ρ(Xi, Xj), ∀ i, j
}

= sup

{
N∑

i=1

Ỹiai : |ai − aj | ≤ ρ(Xi, Xj), ∀ i, j
}
,

where we have set ai := f(Xi). Therefore, we have W (Pm,Qn) ≤ ∑N
i=1 Ỹia

⋆
i ,

where {a⋆i }Ni=1 solve the linear program in (2.4). Note that the objective in (2.4)
is linear in {ai}Ni=1 with linear inequality constraints, and therefore by Theorem
32.1 in [36], the optimum lies on the boundary of the constraint set, which means

maxXi 6=Xj

|a⋆
i −a⋆

j |
ρ(Xi,Xj)

= 1. Therefore, by the Lipschitz extension theorem due to

McShane and Whitney [27, 54], any g on {X1, . . . , XN} with g(Xi) = a⋆i and
‖g‖L = 1 can be extended to a function fα (on S) as defined in (2.2), where
fα(Xi) = g(Xi), ∀ i and ‖fα‖L = ‖g‖L, which means fα is a maximizer of (2.1)

and W (Pm,Qn) =
∑N

i=1 Ỹia
⋆
i .

Remark 2.2. (a) The main result that is invoked in the proof of Theorem 2.1
is the extension of Lipschitz functions (defined on a subset of S) to S. Since
such an extension is also possible for uniformly Hölder continuous functions, we
obtain an empirical estimator of γF similar to (2.3) and (2.4)—with ρ in (2.4)
replaced by ρθ—where F = {‖f‖θ ≤ 1} and

‖f‖θ := sup

{ |f(x)− f(y)|
ρθ(x, y)

: x 6= y in S

}
, 0 < θ ≤ 1.
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(b) Applying a similar idea as in the proof of Theorem 2.1 to the empirical
estimation of the Fortet-Mourier metric, it can be shown that γF(Pm,Qn) ≤∑N

i=1 Ỹia
⋆
i , where {a⋆i }Ni=1 solve the linear program in (2.4) with ρ(Xi, Xj) re-

placed by c(Xi, Xj). Since it is not clear whether an extension theorem similar
to the one invoked in Theorem 2.1 (for Lipschitz functions) holds for f ∈ {g :

‖g‖c < ∞}, it is not clear whether γF(Pm,Qn) =
∑N

i=1 Ỹia
⋆
i holds for any

{Xi}Ni=1.

Theorem 2.3 (Empirical estimator of the Dudley metric). For all α ∈ [0, 1],
the following function solves (2.1) for F = Fβ:

gα(x) := max

(
− max

i=1,...,N
|a⋆i |,min

(
hα(x), max

i=1,...,N
|a⋆i |
))

, (2.5)

where

hα(x) := α min
i=1,...,N

(a⋆i + L⋆ρ(x,Xi)) + (1 − α) max
i=1,...,N

(a⋆i − L⋆ρ(x,Xi)), (2.6)

L⋆ = max
Xi 6=Xj

|a⋆i − a⋆j |
ρ(Xi, Xj)

,

β(Pm,Qn) =

N∑

i=1

Ỹia
⋆
i , (2.7)

and {a⋆i }Ni=1 solve the following linear program,

max
a1,...,aN ,b,c

N∑

i=1

Ỹiai

s.t. −b ρ(Xi, Xj) ≤ ai − aj ≤ b ρ(Xi, Xj), ∀ i, j
−c ≤ ai ≤ c, ∀ i, b+ c ≤ 1. (2.8)

Proof. The proof is similar to that of Theorem 2.1. Note that

1 ≥ ‖f‖BL = ‖f‖L + ‖f‖∞ = sup
x 6=y

|f(x)− f(y)|
ρ(x, y)

+ sup
x∈S

|f(x)|

≥ max
Xi 6=Xj

|f(Xi)− f(Xj)|
ρ(Xi, Xj)

+ max
i

|f(Xi)|,

which means

β(Pm,Qn) = sup

{
N∑

i=1

Ỹif(Xi) : ‖f‖BL ≤ 1

}

≤ sup

{
N∑

i=1

Ỹif(Xi) : max
i

|f(Xi)|+ max
Xi 6=Xj

|f(Xi)− f(Xj)|
ρ(Xi, Xj)

≤ 1

}
.
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Let ai := f(Xi). Therefore, β(Pm,Qn) ≤
∑N

i=1 Ỹia
⋆
i , where {a⋆i }Ni=1 solve

max
a1,...,aN

{
N∑

i=1

Ỹiai : max
Xi 6=Xj

|ai − aj |
ρ(Xi, Xj)

+ max
i

|ai| ≤ 1

}
. (2.9)

Introducing variables b and c such that maxXi 6=Xj

|ai−aj |
ρ(Xi,Xj)

≤ b and maxi |ai| ≤ c

reduces the program in (2.9) to (2.8). In addition, it is easy to see that the

optimum occurs at the boundary of the constraint set, i.e., maxXi 6=Xj

|ai−aj |
ρ(Xi,Xj)

+

maxi |ai| = 1. Hence, by Proposition 11.2.3 of [15], gα in (2.5) extends any g
defined on {X1, . . . , XN} (with g(Xi) = a⋆i and ‖g‖BL = 1) to S, i.e., gα(Xi) =
g(Xi), ∀ i and ‖gα‖BL = ‖g‖BL. Note that hα in (2.6) is the Lipschitz extension
of f to S (by McShane-Whitney Lipschitz extension theorem). Therefore, gα is
a solution to (2.1) and (2.7) holds.

Theorem 2.4 (Empirical estimator of the kernel distance [20, 21]). Let k be
a strictly positive definite kernel, i.e., for all n ∈ N, {αi}ni=1 ⊂ R\{0} and all
mutually distinct {θi}ni=1 ⊂ S,

∑n
i,j=1 αiαjk(θi, θj) > 0. Then, for F = Fk, the

following function is the unique solution to (2.1):

f =
1

‖∑N
i=1 Ỹik(·, Xi)‖H

N∑

i=1

Ỹik(·, Xi), (2.10)

and

γk(Pm,Qn) =

∥∥∥∥∥

N∑

i=1

Ỹik(·, Xi)

∥∥∥∥∥
H

=

√√√√
N∑

i,j=1

ỸiỸjk(Xi, Xj). (2.11)

Proof. Consider γk(Pm,Qn) := sup{∑N
i=1 Ỹif(Xi) : ‖f‖H ≤ 1}, which can be

written as

γk(Pm,Qn) = sup

{〈
f,

N∑

i=1

Ỹik(·, Xi)

〉

H

: ‖f‖H ≤ 1

}
,

where we have used the reproducing property ofH, i.e., ∀ f ∈ H, ∀x ∈ S, f(x) =
〈f, k(·, x)〉H. The result in (2.11) follows from the Cauchy-Schwartz inequality.
Since k is strictly positive definite, γk(Pm,Qn) = 0 if and only if Pm = Qn,
which therefore ensures that (2.10) is well-defined.

It is clear from Theorems 2.1, 2.3 and 2.4 that the empirical estimator of the
kernel distance is easy to implement (as it is available in closed form) compared
with the empirical estimators of the Kantorovich and Dudley metrics, which
involve solving linear programs. One important observation to be made about
all these estimators is that they depend on {Xi}Ni=1 through ρ or k, which means
that, once {ρ(Xi, Xj)}Ni,j=1 or {k(Xi, Xj)}Ni,j=1 are known, the complexity of the

corresponding estimators is independent of the dimension d when S = Rd. Also
note that while the maximizer of the kernel distance (see (2.10)) is unique, α
in (2.2) and (2.5) signifies that the maximizers of the Kantorovich and Dudley
metrics are not unique.
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2.2. Interpretability of IPMs and their empirical estimators:
Relation to binary classification

In this section, we provide a novel interpretation of IPMs and their empirical
estimators by relating them to the problem of binary classification. We show in
Proposition 2.5 that W , β and γk are related to the optimal risks associated
with an appropriate binary classification problem, while in Proposition 2.6 we
show their empirical estimators to be related to the margins (see footnote 2)
of the Lipschitz classifier [51], bounded Lipschitz classifier, and support vector
machine, respectively. The significance of the latter result is that the smooth-
ness of these classifiers is inversely related to the distance between the empirical
estimates of the class-conditional distributions, computed usingW , β and γk, re-
spectively. In addition, we also establish the relation between the kernel distance
and the Parzen window classifier [37, 38] (also called the kernel classification
rule [14, Chapter 10]).

Let us consider the binary classification problem with X being an S-valued
random variable, Y being a {−1, 1}-valued random variable and the product
space, S×{−1, 1}, being endowed with a Borel probability measure µ. A discrim-
inant function f is a real valued measurable function on S, whose sign is used to
make a classification decision. Given a loss function, L : {−1, 1} × R → R, the
goal is to choose an f ∈ F that minimizes the risk associated with L, defined as,

RL
F
= inf

f∈F

∫

S×{−1,1}
L(y, f(x)) dµ(x, y)

= inf
f∈F

{
ε

∫

S

L(1, f(x)) dP(x) + (1− ε)

∫

S

L(−1, f(x)) dQ(x)

}
, (2.12)

with the optimal L-risk being RL
F⋆

, where F⋆ is the set of all measurable func-
tions on S, P(X) := µ(X |Y = +1), Q(X) := µ(X |Y = −1), ε := µ(S, Y = +1).
Here, P and Q represent the class-conditional distributions and ε is the prior dis-
tribution of class +1. We now present the result that relates IPMs (between the
class-conditional distributions) and the optimal L-risk of a binary classification
problem.

Proposition 2.5 (γF and optimal L-risk). For α ∈ R and y ∈ {−1, 1}, define

L(y, α) =
2yα

y(1− 2τ)− 1
, (2.13)

where 0 < τ < 1. Suppose F ⊂ F⋆ is such that f ∈ F ⇒ −f ∈ F. If ε = τ , then
γF(P,Q) = −RL

F
.

Proof. Note that L(1, α) = −α/τ and L(−1, α) = α/(1− τ), which imply

ε

∫

S

L(1, f) dP+ (1 − ε)

∫

S

L(−1, f) dQ =

∫

S

f dQ−
∫

S

f dP = Qf − Pf.

Therefore,

RL
F
= inf

f∈F

(Qf − Pf) = − sup
f∈F

(Pf −Qf)
(a)
= − sup

f∈F

|Pf −Qf | = −γF(P,Q),
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where (a) follows from the fact that F is symmetric around zero, i.e., f ∈ F ⇒
−f ∈ F.

Proposition 2.5 shows that γF(P,Q) (resp. γF(Pm,Qn)) is the negative of
the optimal L-risk that is associated with a binary classifier that classifies the
class-conditional distributions P and Q (resp. Pm and Qn) using the loss func-
tion L in (2.13), when the discriminant function is restricted to F. Therefore,
Proposition 2.5 provides a novel interpretation for the Kantorovich metric, Dud-
ley metric and kernel distance (resp. their empirical estimators), which can be
understood as the optimal L-risk associated with binary classifiers where the
discriminant function f is restricted to FW , Fβ and Fk, respectively. We refer
the reader to [31] for a similar result relating φ-divergences to the problem of
binary classification.

While Proposition 2.5 is a general result relating any IPM to binary clas-
sification, the following result (in Proposition 2.6) relates specific IPMs such
as the Kantorovich metric (W ), Dudley metric (β) and kernel distance (γk) to
certain well-known classification procedures such as the Lipschitz classifier (the
classification rule belongs to Lip(S, ρ)), bounded Lipschitz classifier (the classifi-
cation rule belongs to BL(S, ρ)), and support vector machine (the classification
rule belongs to (H, k)), respectively. Before we present the result, we briefly
introduce these classifiers.

Suppose {(Xi, Yi)}Ni=1 (with Xi ∈ S, Yi ∈ {−1, 1}, ∀ i) is a training sample
drawn i.i.d. from µ and m := |{i : Yi = 1}|. The Lipschitz classifier is defined as
the solution, flip to the following program:

inf {‖f‖L : f ∈ Lip(S, ρ), Yif(Xi) ≥ 1, i = 1, . . . , N} , (2.14)

which is a large margin classifier with margin2 1
‖flip‖L

. The program in (2.14)

computes a smooth function, f that classifies the training sample, {(Xi, Yi)}Ni=1

correctly (note that the constraints in (2.14) are such that sign(f(Xi)) = Yi, i =
1, . . . , N , which means f classifies the training sample correctly, assuming it is
separable). The smoothness is controlled by ‖f‖L (the smaller the value of ‖f‖L,
the smoother f and vice-versa). See [51] for a detailed study on the Lipschitz
classifier. Replacing ‖f‖L by ‖f‖BL in (2.14) gives the bounded Lipschitz clas-
sifier, fBL which is the solution to the following program:

inf {‖f‖BL : f ∈ BL(S, ρ), Yif(Xi) ≥ 1, i = 1, . . . , N} .
Replacing ‖f‖L by ‖f‖H in (2.14), and taking the infimum over f ∈ H, yields
the hard-margin support vector machine, fsvm [10], i.e.,

fsvm = arg inf {‖f‖H : f ∈ H, Yif(Xi) ≥ 1, i = 1, . . . , N} .
Proposition 2.6 (Empirical estimators and binary classification). The follow-
ing hold:

(a) 1
‖flip‖L

≤ 1
2W (Pm,Qn).

2The margin is a technical term used to indicate how well the training sample can be
separated. Large margin classifiers (i.e., smooth classifiers) are preferred as they generalize
well to unseen samples (i.e., test samples). See [9, 37] for details.
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(b) 1
‖fBL‖BL

≤ 1
2β(Pm,Qn).

(c) Suppose a bounded and measurable kernel, k satisfies

∫ ∫

S

k(x, y) dµ(x) dµ(y) > 0, (2.15)

for all non-zero finite signed Borel measures on a topological space, S.
Then,

1

‖fsvm‖H
≤ 1

2
γk(Pm,Qn).

Before we prove Proposition 2.6, let us discuss its significance. Proposi-
tion 2.6(a) shows that ‖flip‖L ≥ 2

W (Pm,Qn)
, which means the smoothness of

the classifier, flip, computed as ‖flip‖L, is lower bounded by the inverse of the
Kantorovich metric between Pm and Qn. So, if the distance between the class-
conditionals P and Q is “small” (in terms of W ), then the resulting Lipschitz
classifier is less smooth, i.e., a “complex” classifier is required to separate the
distributions P and Q. A similar explanation holds for the bounded Lipschitz
classifier and the support vector machine. Although it is intuitively clear that
one would require a classifier that is “wiggly” (i.e., less smooth) to separate the
class-conditional distributions that are not “well separated”, the above result
establishes this formally by defining the wiggliness of the classifier through its
norm and the separation between class-conditionals through an IPM.

The condition on k in (2.15) is satisfied by a host of kernels that include the
Gaussian kernel, k(x, y) = exp(−σ‖x − y‖22), x, y ∈ Rd, σ > 0, the Laplacian
kernel, k(x, y) = exp(−σ‖x−y‖1), x, y ∈ Rd, σ > 0, etc. More generally, a large
family of kernels that satisfy (2.15) can be obtained: if k is a bounded kernel
on Rd such that k(x, y) = ψ(x − y), where ψ is a continuous positive definite
function, then (2.15) holds if and only if the support of the Fourier transform
of ψ is Rd [44, Theorem 9].

To prove Proposition 2.6, we need the following lemma.

Lemma 2.7. Let θ : V → R and ψ : V → R be convex functions on a real
vector space V . Suppose

a = sup{θ(x) : ψ(x) ≤ b}, (2.16)

where θ is not constant on {x : ψ(x) ≤ b} and a <∞. Then,

b = inf{ψ(x) : θ(x) ≥ a}. (2.17)

Proof. Note that A := {x : ψ(x) ≤ b} is a convex subset of V . Since θ is not
constant on A, by Theorem 32.1 of [36], θ attains its supremum on the boundary
of A. Therefore, any solution, x∗ to (2.16) satisfies θ(x∗) = a and ψ(x∗) = b.
Let G := {x : θ(x) > a}. For any x ∈ G, ψ(x) > b. If this were not the case,
then x∗ would not be a solution to (2.16). Let H := {x : θ(x) = a}. Clearly,
x∗ ∈ H and so there exists an x ∈ H for which ψ(x) = b. Suppose inf{ψ(x) : x ∈
H} = c < b, which means x∗ ∈ A for some x∗ ∈ H . From (2.16), this implies θ
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attains its supremum relative to A at some point of the relative interior of A. By
[36, Theorem 32.1], this implies θ is constant on A, leading to a contradiction.
Therefore, inf{ψ(x) : x ∈ H} = b and the result in (2.17) follows.

Proof of Proposition 2.6. Define Pf :=
∫
S
f dP. Note that ‖f‖L, ‖f‖BL and

‖f‖H are convex functionals on the vector spaces Lip(S, ρ), BL(S, ρ) and U(S) :=
{f : S → R | ‖f‖H <∞}, respectively. Similarly, Pf−Qf is a convex functional
on Lip(S, ρ), BL(S, ρ) and U(S). Since P 6= Q, it is clear that Pf − Qf is not
constant on FW and Fβ. In fact this is also true for Fk if k satisfies the condition
in (2.15). This is because if k satisfies (2.15), then γk is a metric on the space
of probability measures [44, Theorem 7] and therefore for P 6= Q, Pf − Qf is
not constant on Fk. The results in (a)–(c) are then obtained by appropriately
choosing ψ, θ, V and b in Lemma 2.7. Here, we only prove (a) as the proofs of
(b) and (c) are similar to that of (a).

Since W (Pm,Qn) = sup{∑N
j=1 Ỹjf(Xj) : ‖f‖L ≤ 1}, by Lemma 2.7, we

have

1 = inf




‖f‖L :

N∑

j=1

Ỹjf(Xj) ≥W (Pm,Qn), f ∈ Lip(S, ρ)




 ,

which can be written as

2

W (Pm,Qn)
= inf




‖f‖L :

N∑

j=1

Ỹjf(Xj) ≥ 2, f ∈ Lip(S, ρ)




 .

Note that {f ∈ Lip(S, ρ) : Yjf(Xj) ≥ 1, ∀ j} ⊂ {f ∈ Lip(S, ρ) :
∑N

j=1 Ỹjf(Xj) ≥
2}, and therefore

2

W (Pm,Qn)
≤ inf {‖f‖L : Yjf(Xj) ≥ 1, ∀ j, f ∈ Lip(S, ρ)} ,

proving (a). A similar analysis for β and γk yields (b) and (c).

In the following, we present another interpretation for the kernel distance
by relating it to the Parzen window classifier [37, 38] (also called the kernel
classification rule [14]). Theorem 2.4 shows that f in (2.10) is the unique solution
to (2.1) when F = Fk, which by Proposition 2.5 means that it is also the unique
solution to RL

F
with empirical distribution. This implies f in (2.10) is the Bayes

classifier with Bayes risk −γk(Pm,Qn), with the associated decision rule,

sign(f(x)) =

{
1, 1

m

∑
Yi=1 k(x,Xi) >

1
n

∑
Yi=−1 k(x,Xi)

−1, 1
m

∑
Yi=1 k(x,Xi) ≤ 1

n

∑
Yi=−1 k(x,Xi)

, (2.18)

which is exactly the Parzen window classifier3.

3The classification rule in (2.18) differs from the “classical” Parzen window classifier in
two respects. (i) Usually, the kernel (called the smoothing kernel) in the Parzen window rule
is translation invariant in Rd. In our case, S need not be Rd and k need not be translation
invariant. The rule in (2.18) can thus be seen as a generalization of the classical Parzen window
rule. (ii) The kernel in (2.18) is positive definite unlike in the classical Parzen window rule
where k need not be so.
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3. Consistency and rate of convergence

In Section 2.1, we presented the empirical estimators of W, β and γk. For these
estimators to be reliable, we need them to converge to their population values
as m,n→ ∞. We would further like to have fast rates of convergence such that
in practice, fewer samples are sufficient to obtain reliable estimates. We address
these issues in this section. The strong consistency ofW (Pm,Qn) and β(Pm,Qn)
is shown in Proposition 3.2, while their rates of convergence are analyzed in
Corollary 3.5. Corollary 3.5 also proves the strong consistency of γk(Pm,Qn)
and analyzes its rate of convergence. We show that γk(Pm,Qn) enjoys a fast
rate of convergence compared to W (Pm,Qn) and β(Pm,Qn).

Before we start presenting the results, we introduce some terminology and
notation from empirical process theory. For any r ≥ 1 and probability measure
Q, define the Lr norm ‖f‖Q,r := (

∫
|f |r dQ)1/r and let Lr(Q) denote the metric

space induced by this norm. The covering number N (ε,F, Lr(Q)) is the min-
imal number of Lr(Q) balls of radius ε needed to cover F. H(ε,F, Lr(Q)) :=
logN (ε,F, Lr(Q)) is called the entropy of F using the Lr(Q) metric. Define the
minimal envelope function: F (x) := supf∈F |f(x)|.

We now present a general result on the strong consistency of γF(Pm,Qn),
which follows from [49, Theorem 3.7].

Lemma 3.1. Suppose the following conditions hold:

(i)
∫
S
F dP <∞.

(ii)
∫
S F dQ <∞.

(iii) ∀ε > 0, 1
mH(ε,F, L1(Pm))

P−→ 0 as m→ ∞.

(iv) ∀ε > 0, 1
nH(ε,F, L1(Qn))

Q−→ 0 as n→ ∞.

Then, |γF(Pm,Qn)− γF(P,Q)| a.s.−→ 0 as m,n→ ∞.

Proof. Note that |γF(Pm,Qn)−γF(P,Q)| ≤ supf∈F |Pmf−Pf |+supf∈F |Qnf−
Qf |. Therefore, by Theorem 3.7 of [49], supf∈F

|Pmf−Pf | a.s.−→ 0, supf∈F
|Qnf−

Qf | a.s.−→ 0 and the result follows.

The following corollary to Lemma 3.1 shows that W (Pm,Qn) and β(Pm,Qn)
are strongly consistent.

Proposition 3.2 (Consistency of W and β). Let (S, ρ) be a totally bounded
metric space. Then, as m,n→ ∞,

(i) |W (Pm,Qn)−W (P,Q)| a.s.−→ 0.

(ii) |β(Pm,Qn)− β(P,Q)| a.s.−→ 0.

Proof. For any f ∈ FW ,

f(x) ≤ sup
x∈S

|f(x)| ≤ sup
x,y

|f(x) − f(y)| ≤ ‖f‖L sup
x,y

ρ(x, y) ≤ ‖f‖Ldiam(S) <∞,

where diam(S) represents the diameter of S. Therefore, ∀x ∈ S, F (x) ≤ diam(S)
<∞, which satisfies (i) and (ii) in Lemma 3.1. Kolmogorov and Tihomirov [24]



1564 B.K. Sriperumbudur et al.

have shown that

H(ε,FW , ‖ · ‖∞) ≤ N
(ε
4
, S, ρ

)
log

(
2

⌈
2 diam(S)

ε

⌉
+ 1

)
. (3.1)

Since H(ε,FW , L1(Pm)) ≤ H(ε,FW , ‖ · ‖∞), the conditions (iii) and (iv) in

Lemma 3.1 are satisfied and therefore, |W (Pm,Qn)−W (P,Q)| a.s.−→ 0 as m,n→
∞. Since Fβ ⊂ FW , the envelope function associated with Fβ is upper bounded
by the envelope function associated with FW and H(ε,Fβ , ‖ ·‖∞) ≤ H(ε,FW , ‖ ·
‖∞). Therefore, the result for β follows.

Similar to Proposition 3.2, a strong consistency result for γk can be provided
by estimating the entropy number of Fk. See Cucker and Zhou [12, Chapter 5]
for the estimates of entropy numbers for various H. However, in the following,
we adopt a different approach to prove the strong consistency of γk. To this
end, we first provide a general result (Theorem 3.3) on the rate of convergence
of γF(Pm,Qn) and then, as a special case, obtain the rates of convergence of
the empirical estimators of W , β and γk. Using this result, we then prove the
strong consistency of γk(Pm,Qn).

Theorem 3.3. Define N := m + n,
(
Ỹ1, . . . , ỸN

)
:=
(

1
m

m. . . 1
m ,− 1

n
n. . . − 1

n

)

and

(X1, . . . , Xm, Xm+1, . . . , XN ) :=
(
X

(1)
1 , . . . , X(1)

m , X
(2)
1 , . . . , X(2)

n

)
.

Let F be the space of measurable functions such that ‖f‖∞ ≤ ν, VarP(f) ≤ σ2
P

and VarQ(f) ≤ σ2
Q for all f ∈ F, where VarP(f) := Pf2 − (Pf)2. Then, with

probability at least 1 − 2e−τ over the choice of {Xi}Ni=1 ∼ Pm ⊗ Qn and for all
α > 0, δ ∈ (0, 1), the following holds:

|γF(Pm,Qn)− γF(P,Q)| ≤ 2(1 + α)

1− δ
Rmn

(
F; {Xi}Ni=1

)
+

√
2τ(m+ n)(σ2

P ∨ σ2
Q)

mn

+
2τν(m+ n)

mn

(
2

3
+

1

α
+

1 + α

δ(1− δ)

)
, (3.2)

where

Rmn

(
F; {Xi}Ni=1

)
:= E

[
sup
f∈F

∣∣∣∣∣

N∑

i=1

σiỸif(Xi)

∣∣∣∣∣
∣∣∣{Xi}Ni=1

]
, (3.3)

{σi}Ni=1 are independent Rademacher (symmetric ±1-valued) random variables
and a ∨ b := max(a, b).

Proof. We begin by noting that

|γF(Pm,Qn)− γF(P,Q)| ≤ sup
f∈F

|(Pm − Qn)f − (P−Q)f | =: g(X1, . . . , XN ).

The bound in (3.4) on g can be obtained from Proposition B.1 by using µi := P

for i = 1, . . . ,m and µi := Q for i = m + 1, . . . , N so that P := Pm ⊗ Qn,
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z := (ω1, . . . , ωN ) = (X1, . . . , XN ), θi(f, ωi) = f(Xi)−Pf
m for i = 1, . . . ,m and

θi(f, ωi) = − f(Xi)−Qf
n for i = m+1, . . . , N . Note that

∫
Ωi
θi(f, ω) dµi(ω) = 0 for

all i and f ∈ F. Also note that ‖θi(f, ·)‖∞ ≤ 2ν
m+ 2ν

n for all f ∈ F. In addition, for

i = 1, . . . ,m, we have
∫
Ωi
θ2i (f, ω) dµi(ω) = m−2P(f−Pf)2 = m−2VarP(f) ≤ σ2

P

m2

for all f ∈ F. Similarly, for i = m+ 1 . . . , N , we have
∫
Ωi
θ2i (f, ω) dµi(ω) ≤ σ2

Q

n2

for all f ∈ F. By Proposition B.1, we then have that with probability at least
1− e−τ and for all α > 0,

g(X1, . . . , XN) ≤ (1 + α)EP g +

√
2τ(m+ n)(σ2

P ∨ σ2
Q)

mn

+
2τν(m+ n)

mn

(
1

α
+

2

3

)
(3.4)

(a)

≤ 2(1 + α)E sup
f∈F

∣∣∣∣∣

N∑

i=1

σiỸif(Xi)

∣∣∣∣∣+

√
2τ(m+ n)(σ2

P ∨ σ2
Q)

mn

+
2τν(m+ n)

mn

(
1

α
+

2

3

)

= 2(1 + α)EPRmn

(
F; {Xi}Ni=1

)
+

√
2τ(m+ n)(σ2

P ∨ σ2
Q)

mn

+
2τν(m+ n)

mn

(
1

α
+

2

3

)
(3.5)

where (a) follows from bounding E g(X1, . . . , XN) by using the idea of sym-
metrization (see [50]; for completeness, we prove the bound in Appendix B.2).
By Proposition B.3, we have that with probability at least 1 − e−τ and for all
δ ∈ (0, 1),

EPRmn

(
F; {Xi}Ni=1

)
≤ Rmn

(
F; {Xi}Ni=1

)

1− δ
+
τν(m + n)

mnδ(1− δ)
. (3.6)

Combining (3.5) and (3.6), we have that with probability at least 1−2e−τ , (3.2)
holds.

Theorem 3.3 holds for any F for which ν is finite (note that VarP(f) =
Pf2 − (Pf)2 ≤ Pf2 ≤ ν2 =: σ2

P and similarly VarQ(f) ≤ ν2). However, in order
to comment about the consistency and rate of convergence of γF(Pm,Qn), we

require an estimate of Rmn

(
F; {Xi}Ni=1

)
. Note that if Rmn

(
F; {Xi}Ni=1

) P,Q−→ 0
as m,n→ ∞, then

|γF(Pm,Qn)− γF(P,Q)| P,Q−→ 0 as m,n→ ∞,

therefore proving the consistency of γF(Pm,Qn). In addition, ifRmn

(
F; {Xi}Ni=1

)
=

OP,Q(rmn) where rmn → 0 as m,n→ ∞, then from (3.2),
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|γF(Pm,Qn)− γF(P,Q)| = OP,Q

(
rmn ∨

√
m+ n

mn

)
,

which provides a rate of convergence for γF(Pm,Qn).
In Corollary 3.5 (below) to Theorem 3.3, we estimate Rmn in (3.3) for

F = FW , F = Fβ and F = Fk to provide rates of convergence for W (Pm,Qn),
β(Pm,Qn) and γk(Pm,Qn), respectively. Before we present and prove Corol-
lary 3.5, we need the result in Proposition 3.4 (which is a slight modification
of the Dudley entropy bound in [41, Lemma A.3], in turn based on the bound
in [28]; also see [51, Theorem 16]) that bounds Rmn in terms of the entropy
number of F, which is then used in Corollary 3.5 to obtain bounds on Rmn for
F = FW and F = Fβ . While Proposition 3.4 could also be used to obtain a
bound on Rmn for F = Fk, we instead use a direct and simple approach—a
slight modification from [21] and [20, Appendix A.2]—, which does not require
knowledge of the entropy number of Fk.

Proposition 3.4. Define Tmn := m+n
m Pm+ m+n

n Qn. Then, for any F contain-
ing real valued functions on S,

Rmn

(
F; {Xi}Ni=1

)
≤ inf

α>0

{
4α+ 12

∫ AF,Tmn

α

√
H (ε,F, L2 (Tmn))

m+ n
dε

}

≤ inf
α>0



4α+ 12

∫ √
mnA

F,Tmn
m+n

α
√

mn
m+n

√
H (ε,F, ‖ · ‖∞)

mn/(m+ n)
dε





where AF,Tmn := supf∈F ‖f‖L2(Tmn). Suppose supx∈S F (x) ≤ ν <∞. Then,

Rmn

(
F; {Xi}Ni=1

)
≤ inf

α>0

{
4α+ 12

∫ ν

α
√

mn
m+n

√
H (ε,F, ‖ · ‖∞)

mn/(m+ n)
dε

}
. (3.7)

Proof. See Appendix C.

Corollary 3.5 (Rates of convergence for W , β and γk). (i) Let S be a bounded
subset of (Rd, ‖ · ‖s) for some 1 ≤ s ≤ ∞. Then there exist finite constants
{Cj}4j=1 (that depend only on d and S, and not on m and n) such that

Rmn(Fβ , {Xi}Ni=1) ≤ Rmn(FW , {Xi}Ni=1)

≤





C1

√
m+n
mn + C2

√
m+n
mn log(m+ n), d = 1

C3

√
m+n
mn + C4

(m+n)2/3√
mn

, d = 2
. (3.8)

For d > 2, there exist finite constants C5, C6 and N0 (that depend only on d and
S, and not on m and n) such that for any m,n with (m∧ n)d+1 > N0(m∨ n)d,

Rmn(Fβ , {Xi}Ni=1) ≤ Rmn(FW , {Xi}Ni=1) ≤ C5

√
m+ n

mn
+ C6

(m+ n)d/(d+1)

√
mn

.

(3.9)
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Therefore, |W (Pm,Qn) −W (P,Q)| = OP,Q(rmn) and |β(Pm,Qn) − β(P,Q)| =
OP,Q(rmn) where

rmn =






√
m+n
mn log(m+ n), d = 1

(m+n)d/(d+1)

√
mn

, d ≥ 2
. (3.10)

In addition, if S is a bounded, convex subset of (Rd, ‖ · ‖s) with non-empty
interior, then there exist finite constants {Dj}5j=1 (that depend only on d and S
and not on m) such that for (m ∧ n) > 9,

Rmn(Fβ , {Xi}Ni=1) ≤ Rmn(FW , {Xi}Ni=1)

≤






D1

√
m+n
mn , d = 1

D2

√
m+n
mn +D3

√
m+n
mn log(m+ n), d = 2

D4

√
m+n
mn +D5

(m+n)(d−1)/d

√
mn

, d > 2

, (3.11)

and therefore, |W (Pm,Qn)−W (P,Q)| = OP,Q(rmn) and |β(Pm,Qn)−β(P,Q)| =
OP,Q(rmn) where

rmn =





√
m+n
mn , d = 1

√
m+n
mn log(m+ n), d = 2

(m+n)(d−1)/d

√
mn

, d > 2

. (3.12)

(ii) Let S be a measurable space. Suppose k is measurable and supx∈S

√
k(x, x) ≤

ν <∞. Then,

Rmn

(
Fk; {Xi}Ni=1

)
≤ ν

√
m+ n

mn
(3.13)

and therefore,

|γk(Pm,Qn)− γk(P,Q)| = OP,Q

(√
m+ n

mn

)
. (3.14)

In addition, |γk(Pm,Qn) − γk(P,Q)| a.s.−→ 0 as m,n → ∞, i.e., the empirical
estimator of the kernel distance is strongly consistent.

Proof. (i) Let F = FW . Since S is a bounded subset of Rd, it is totally bounded.
Define R := diam(S). As shown in Proposition 3.2, we have supf∈FW

F (x) ≤ R.
Therefore, we obtain

H(ε,FW , ‖ · ‖∞) ≤ N
(ε
4
, S, ‖ · ‖s

)
log

(
2

⌈
2R

ε

⌉
+ 1

)

≤ ηε−d
(
4Rε−1 + 2

)
, (3.15)
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where we have used the facts that ⌈x⌉ ≤ x+ 1, log(x) ≤ x− 1 and there exists
η > 0 (which depends on d and S) such that N (ε, S, ‖ ·‖s) ≤ ηε−d, 1 ≤ s ≤ ∞.4

Using (3.15) in (3.7), we have

Rmn(FW ; {Xi}Ni=1) ≤ inf
α>0

{
4α+ 12

√
2η

∫ R

α
√

mn
m+n

√
2R

ε(d+1)/2 + 1
εd/2√

mn/(m+ n)
dε

}
. (3.16)

The bounds in (3.8) are simply obtained by bounding the right hand side of
(3.16), which when used in (3.2) yields the rates in (3.10). See Appendix E for
details.

Suppose S is convex. Then S is connected. It is easy to see that S is also
centered, i.e., for all subsets A ⊂ S with diam(A) ≤ 2r there exists a point
x ∈ S such that ‖x− a‖s ≤ r for all a ∈ A. Since S is connected and centered,
we have from [24] that

H(ε,FW , ‖ · ‖∞) ≤ N
(ε
2
, S, ‖ · ‖s

)
log 2 + log

(
2

⌈
2R

ε

⌉
+ 1

)

≤ ηε−d log 2 + 4Rε−1 + 2. (3.17)

Using (3.17) in (3.7), we have

Rmn(FW ; {Xi}Ni=1) ≤ inf
α>0





(
4− 12

√
2√

m+ n

)
α+ 12

∫ R

α
√

mn
m+n

√
η log 2
εd/2

+ 2
√
R√
ε√

mn/(m+ n)
dε





+ 12
√
2R

√
m+ n

mn
. (3.18)

The bound in (3.11) is obtained by bounding the right hand side of (3.18), which
when used in (3.2) yields the rates in (3.12). See Appendix F for details.

Since Fβ ⊂ FW , we have Rmn(Fβ; {Xi}Ni=1) ≤ Rmn(FW ; {Xi}Ni=1) and there-
fore, the result for β(Pm,Qn) follows. The rates in (3.12) can also be directly
obtained for β by using the entropy number of Fβ , i.e., H(ε,Fβ , ‖·‖∞) = O(ε−d)
[50, Theorem 2.7.1] in (3.7).

(ii) The bounding technique on Rmn(Fk; {Xi}Ni=1) is taken from [20], however
we provide the proof in Appendix D for ease of reference. Omitting for simplicity
the conditioning variables {Xi}Ni=1 in the definition of Rmn

(
Fk; {Xi}Ni=1

)
, we

have

Rmn

(
Fk; {Xi}Ni=1

)
= E sup

‖f‖H≤1

∣∣∣∣∣

N∑

i=1

σiỸif(Xi)

∣∣∣∣∣ = E

∥∥∥∥∥

N∑

i=1

σiỸiK(·, Xi)

∥∥∥∥∥
H

(3.19)

≤

√√√√
N∑

i=1

Ỹ 2
i k(Xi, Xi) +

√√√√E

N∑

i6=j

σiσj ỸiỸjk(Xi, Xj).

4Note that for any x ∈ S ⊂ Rd, ‖x‖∞ ≤ · · · ≤ ‖x‖s ≤ · · · ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
d‖x‖2.

Therefore, ∀ s ≥ 2, N (ε, S, ‖·‖s) ≤ N (ε, S, ‖·‖2) and ∀ 1 ≤ s ≤ 2, N (ε, S, ‖·‖s) ≤ N (ε, S,
√
d‖·

‖2) = N (ε/
√
d, S, ‖ · ‖2). Use N (ε, S, ‖ · ‖2) ≤ γε−d [49, Lemma 2.5].



On the empirical estimation of integral probability metrics 1569

While the bound in (3.13) can be obtained from (3.19) by noting that H has
Rademacher type 2 (see [5, p. 303] for more details), the Appendix D reasoning
provides the constant explicitly. Substituting this bound in (3.2) yields (3.14).
By the Borel-Cantelli lemma, the strong consistency of γk(Pm,Qn) follows.

Remark 3.6. (i) Note that the rates of convergence ofW (Pm,Qn) and β(Pm,Qn)
are dependent on the dimension, d (for S = Rd), which means that in large di-
mensions, more samples are needed to obtain useful estimates of W (P,Q) and
β(P,Q). Also note that the rates are independent of the metric, ‖·‖s, 1 ≤ s ≤ ∞.

(ii) When S is a bounded, convex subset of (Rd, ‖ · ‖s), faster rates are obtained
than for the case where S is just a bounded (but not convex) subset of (Rd, ‖·‖s).
(iii) In the case of kernel distance, we have not made any assumptions on S
except it being a measurable space. This means that for S = Rd, the rate
is independent of d (if ν in Corollary 3.5(ii) is independent of d), which is a
very useful property. The boundedness condition is satisfied by many commonly
used kernels, including the Gaussian kernel, k(x, y) = exp(−σ‖x− y‖22), σ > 0,
Laplacian kernel, k(x, y) = exp(−σ‖x − y‖1), σ > 0, inverse multiquadrics,
k(x, y) = (c2 + ‖x − y‖22)−t, c > 0, t > d/2, etc. on Rd. See Wendland [53]
for more examples. As mentioned before, the estimates for Rmn(Fk; {Xi}Ni=1)
can be directly obtained by using the entropy numbers of Fk. See Cucker and
Zhou [12, Chapter 5] and Steinwart [45, Chapter 7] for the estimates of entropy
numbers and Rmn(Fk; {Xi}Ni=1) for various H.

(iv) The rates obtained in (3.10) and (3.12) may not be optimal due to crude
upper bounding techniques used to simplify the analysis. However, the idea is
to demonstrate the dependence of these rates on d, in contrast to the case of
kernel distance where the rates in (3.14) are independent of d.

(v) Combining Theorem 3.3 and Corollary 3.5, it is possible to construct a θ-
level test for H0 : P = Q vs. H1 : P 6= Q as follows: For a fixed α, δ and θ,
define

cθ :=
2(1 + α)

1− δ
Rmn(F; {Xi}Ni=1) +

√
2ν2(m+ n) log 2

θ

mn

+
2ν(m+ n) log 2

θ

mn

(
2

3
+

1

α
+

1 + α

δ(1− δ)

)
.

It is easy to see that under H0, P
m ⊗Qn(γF(Pm,Qn) > cθ) ≤ θ. Therefore, the

test involves accepting H0 when γF(Pm,Qn) ≤ cθ and rejecting it if otherwise.

To summarize, in this section, we have shown that the empirical estimators
of the Kantorovich metric, Dudley metric and kernel distance are strongly con-
sistent and the empirical estimator of the kernel distance exhibits a fast rate
of convergence compared with those of the Kantorovich and Dudley metrics.
Therefore, based on the results in this section and Section 2.1, it is clear that
the empirical estimator of the kernel distance has more favorable properties
compared with the other empirical estimators under consideration, and hence
is more suited for use in statistical inference applications.
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4. Simulation results

So far, in Sections 2 and 3, we have presented the empirical estimators of W ,
β and γk and their convergence analysis. In this section, we demonstrate the
performance of these estimators through simulations and, verify the dependence
of the rate of convergence of the empirical estimators of W and β on d (when
S = Rd) as opposed to the dimension-independent rate of γk.

Given P and Q, it is usually difficult to compute W (P,Q), β(P,Q) and
γk(P,Q) in closed form. However, in order to test the performance of their em-
pirical estimators, in the following, we consider some examples where W (P,Q),
β(P,Q) and γk(P,Q) can be computed exactly. Using these examples, we show
that the proposed estimators of above IPMs can be used as good surrogates
to their population versions, and therefore can be used in applications such as
homogeneity testing.

4.1. Estimator of W (P,Q)

For ease of computation, let us consider P and Q (defined on the Borel σ-algebra
of Rd) as product measures, P = ⊗d

i=1P
(i) and Q = ⊗d

i=1Q
(i), where P(i) andQ(i)

are defined on the Borel σ-algebra of R. In this setting, when ρ(x, y) = ‖x−y‖1,
it is easy to show that

W (P,Q) =
d∑

i=1

W (P(i),Q(i)), (4.1)

where

W (P(i),Q(i)) =

∫

R

∣∣FP(i)(x)− FQ(i) (x)
∣∣ dx, (4.2)

and FP(i)(x) = P(i)((−∞, x]) [48].5 In the following, we consider two examples
where W in (4.2) can be computed in closed form. We need S to be a bounded
subset of Rd such that the consistency of W (Pm,Qn) is guaranteed by Corol-
lary 3.5.

Example 1. Let S = ×d
i=1[ai, si]. Suppose P(i) = U [ai, bi] and Q(i) = U [ri, si],

which are uniform distributions on [ai, bi] and [ri, si], respectively, where −∞ <
ai ≤ ri ≤ bi ≤ si <∞. Then, it is easy to verify that

W (P(i),Q(i)) =
si + ri − ai − bi

2
,

and W (P,Q) follows from (4.1).

5 The explicit form for the L1-Wasserstein distance in (1.2) is known for (S, ρ(x, y)) =
(R, |x− y|) [47, 48], and given as

W1(P,Q) =

∫

(0,1)
|F−1

P
(u)− F−1

Q
(u)| du =

∫

R

|FP(x) − FQ(x)| dx,

where FP(x) = P((−∞, x]) and F−1
P

(u) = inf{x ∈ R|FP(x) ≥ u}, 0 < u < 1. However, the
exact computation (in closed form) ofW1(P,Q) is not straightforward for all P and Q. Note that
since Rd is separable, by the Kantorovich-Rubinstein theorem, W (P,Q) = W1(P,Q), ∀P,Q.
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Fig 1. Empirical mean squared error of the Kantorovich metric (W ) between P = U [− 1
2
, 1
2
]d

and Q = U [0, 1]d with ρ(x, y) = ‖x − y‖1 for increasing sample size N and various d. Here,
U [l1, l2]d represents a uniform distribution on [l1, l2]d. The empirical mean squared error is
computed by choosing T = 100. See Example 1 and footnote 6 for details.

Figure 1 shows the behavior ofW (Pm,Qn) in terms of empirical mean squared
error6 for various d and various sample sizes, m = n = N

2 . Here, we chose ai =

− 1
2 , bi =

1
2 , ri = 0 and si = 1 for all i = 1, . . . , d such that W (P(i),Q(i)) = 1

2 , ∀i
and W (P,Q) = d

2 .

Example 2. Let S = ×d
i=1[0, ci]. Suppose P(i), Q(i) have densities

pi(x) =
dP(i)

dx
=

λie
−λix

1− e−λici
, qi(x) =

dQ(i)

dx
=

µie
−µix

1− e−µici
,

respectively, where λi > 0, µi > 0. Note that P(i) and Q(i) are exponential
distributions supported on [0, ci] with rate parameters λi and µi. Then, it can

6Suppose γF(Pm,Qn) is an estimator of γF(P,Q). Then the mean squared error is given

by E[γF(Pm,Qn)− γF(P,Q)]2. Given T pairs of samples, {({X(1)
i }mi=1, {X

(2)
i }ni=1)j}Tj=1, the

empirical mean squared error is computed as 1
T

∑T
j=1[γF(P

j
m,Qj

n) − γF(P,Q)]2, where P
j
m

and Q
j
n represent the empirical measures based on ({X(1)

i }mi=1, {X
(2)
i }ni=1)j .
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Fig 2. Empirical mean squared error of the Kantorovich metric (W ) between P and Q, which
are truncated exponential distributions on Rd

+, with ρ(x, y) = ‖x− y‖1 for increasing sample
size N and various d. The empirical mean squared error is computed by choosing T = 100.
See Example 2 and footnote 6 for details.

be shown that

W (P(i),Q(i)) =

∣∣∣∣
1

λi
− 1

µi
− ci(e

−λici − e−µici)

(1− e−λici)(1 − e−µici)

∣∣∣∣ ,

and W (P,Q) follows from (4.1).
Figure 2 shows the behavior ofW (Pm,Qn) in terms of empirical mean squared

error for various d and various sample sizes, m = n = N
2 , where we chose λi = 3,

µi = 1 and ci = 5 for all i.

The empirical estimates in Figures 1 and 2 are obtained by drawing N
i.i.d. samples (with m = n = N/2) from P and Q and then solving the linear
program in (2.4). It is easy to see from these figures that W (Pm,Qn) improves
with increasing sample size and that W (Pm,Qn) estimates W (P,Q) correctly,
which therefore demonstrates the efficacy of the estimator. Note that instead of
plotting the error bars around the bias of W (Pm,Qn), we plotted the empirical
mean squared error so as not to crowd the plots. Figures 1 and 2 also show
the effect of the dimensionality, d of the data on W (Pm,Qn), by showing that
the rate of convergence of the estimator gets slower with increasing d (see the
flattening of the curves at large d)—see Corollary 3.5.
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4.2. Estimator of γk(P,Q)

We now consider the performance of γk(Pm,Qn). [21, 43] have shown that when
k is measurable and bounded,

γk(P,Q) =

∥∥∥∥
∫

S

k(·, x) dP(x) −
∫

S

k(·, x) dQ(x)

∥∥∥∥
H

=
[ ∫ ∫

S

k(x, y) dP(x) dP(y) +

∫ ∫

S

k(x, y) dQ(x) dQ(y)

− 2

∫ ∫

S

k(x, y) dP(x) dQ(y)
] 1

2

, (4.3)

where the second equality follows from the reproducing property of the kernel
(see footnote 1). Note that, although γk(P,Q) has a closed form in (4.3), exact
computation is not always possible for all choices of k, P and Q. In such cases,
one has to resort to numerical techniques to compute the integrals in (4.3). In the
following, we present four examples where we choose P and Q such that γk(P,Q)
can be computed exactly. Also, note that for the consistency of γk(Pm,Qn), by
Corollary 3.5, we just need the kernel, k to be measurable and bounded, and no
assumptions on S are required.

Example 3. Let S = Rd, P = ⊗d
i=1P

(i) and Q = ⊗d
i=1Q

(i). Suppose P(i) =
N(µi, σ

2
i ) and Q(i) = N(λi, θ

2
i ), where N(µ, σ2) represents a Gaussian distribu-

tion with mean µ and variance σ2. Let k(x, y) = exp(−‖x− y‖22/2τ2). Clearly,
k is measurable and bounded. With this choice of k, P and Q, γk in (4.3) can
be computed exactly as

γ2k(P,Q) =

d∏

i=1

τ√
2σ2

i + τ2
+

d∏

i=1

τ√
2θ2i + τ2

− 2

d∏

i=1

τe
− (µi−λi)

2

2(σ2
i
+θ2

i
+τ2)

√
σ2
i + θ2i + τ2

,

as the integrals in (4.3) simply involve the convolution of Gaussian distributions.
Figure 3 shows the behavior of γk(Pm,Qn) in terms of empirical mean squared

error for various d and sample sizes m = n = N
2 , where we chose τ = 1, µi = 0,

λi = 1, σi =
√
2 and θi =

√
2 for all i.

Example 4. Let S = Rd
+, P = ⊗d

i=1P
(i) and Q = ⊗d

i=1Q
(i). Suppose P(i) =

Exp(1/λi) andQ(i) = Exp(1/µi), which are exponential distributions on R+ with
rate parameters λi > 0 and µi > 0, respectively. Suppose k(x, y) = exp(−α‖x−
y‖1), α > 0, which is a Laplacian kernel on Rd. Then for λi 6= µi 6= α, ∀ i, it is
easy to verify that γk(P,Q) in (4.3) reduces to

γ2k(P,Q) =

d∏

i=1

λi
λi + α

+

d∏

i=1

µi

µi + α
− 2

d∏

i=1

λiµi(λi + µi + 2α)

(λi + α)(µi + α)(λi + µi)
.
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The curves for d=25, d=50 and d=100 
are so similar that they appear to coincide

Fig 3. Empirical mean squared error of the kernel distance (γk) between P = N(0, 2Id) and
Q = N(1, 2Id) with k(x, y) = exp(− 1

2
‖x − y‖22) for increasing sample size N and various d.

Here, N(µ, σ2Id) represents a normal distribution with mean vector (µ1, d. . ., µd) and covari-
ance matrix σ2Id. Id represents the d× d identity matrix. The empirical mean squared error
is computed by choosing T = 100. See Example 3 and footnote 6 for details.

Figure 4 shows the behavior of γk(Pm,Qn) in terms of empirical mean squared
error for various d and sample sizes m = n = N

2 , where we chose α = 1, λi = 3
and µi = 2 for all i.

As in the case of W (Pm,Qn), the performance of γk(Pm,Qn) is verified by
drawing N i.i.d. samples (with m = n = N/2) from P and Q and computing
γk(Pm,Qn) in (2.11). It is easy to see from Figures 3 and 4 that the qual-
ity of the estimate improves with increasing sample size and that γk(Pm,Qn)
estimates γk(P,Q) correctly. In addition, these figures also show that the di-
mensionality d does not greatly affect the rate of convergence of γk(Pm,Qn), as
predicted by Corollary 3.5. In order to compare the performance of γk(Pm,Qn)
with W (Pm,Qn) in terms of the dependence of the rate of convergence on d,
in the following, we consider the estimation of γk(P,Q) for the distributions in
Examples 1 and 2.

Example 5. Let S = ×d
i=1[ai, si]. Suppose P(i) = U [ai, bi] and Q(i) = U [ri, si],

which are uniform distributions on [ai, bi] and [ri, si], respectively, where −∞ <
ai ≤ ri ≤ bi ≤ si < ∞. Suppose k(x, y) = exp(−α‖x − y‖1), α > 0, which is a
Laplacian kernel on Rd. Then, it is easy to verify that
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Fig 4. Empirical mean squared error of the kernel distance (γk) between P and Q, which are
exponential distributions on Rd

+ with k(x, y) = exp(−‖x − y‖1) for increasing sample size
N and various d. The empirical mean squared error is computed by choosing T = 100. See
Example 4 and footnote 6 for details.

γ2k(P,Q) =

d∏

i=1

2(bi − ai − 1 + eai−bi)

(bi − ai)2
+

d∏

i=1

2(si − ri − 1 + eri−si)

(si − ri)2

− 2

d∏

i=1

2(bi − ri) + eai−si − ebi−si − eai−ri + eri−bi

(bi − ai)(si − ri)
.

Figure 5 shows the behavior of γk(Pm,Qn) in terms of empirical mean squared
error for various d and various sample sizes, m = n = N

2 . As in Example 1, we
chose α = 1, ai = − 1

2 , bi =
1
2 , ri = 0 and si = 1 for all i = 1, . . . , d.

Example 6. Let S = ×d
i=1[0, ci]. Suppose P(i), Q(i) have densities

pi(x) =
dP(i)

dx
=

λie
−λix

1− e−λici
, qi(x) =

dQ(i)

dx
=

µie
−µix

1− e−µici
,

respectively, where λi > 0, µi > 0. Note that P(i) and Q(i) are exponential
distributions supported on [0, ci] with rate parameters λi and µi. Let k(x, y) =
exp(−α‖x− y‖1) for α > 0. Then, it can be shown that for λi 6= α and µi 6= α
for all i, we have

γ2k(P,Q) =

d∏

i=1

λ2i Θ(λi, λi, ci)

(1− e−λici)2
+

d∏

i=1

µ2
i Θ(µi, µi, ci)

(1− e−µici)2
−2

d∏

i=1

λi µiΘ(λi, µi, ci)

(1 − e−λici)(1 − e−µici)
,
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Fig 5. Empirical mean squared error of the kernel distance (γk) between P = U [− 1
2
, 1
2
]d and

Q = U [0, 1]d with k(x, y) = exp(−‖x− y‖1) for increasing sample size N and various d. Here
U [l1, l2]d represents a uniform distribution on [l1, l2]d. The empirical mean squared error is
computed by choosing T = 100. See Example 5 and footnote 6 for details.

where

Θ(λ, µ, c) :=
α− λ− (α+ µ)e−(λ+µ)c + (λ+ µ)e−(α+µ)c

(λ+ µ)(α + µ)(α− λ)

+
α− µ− (α+ λ)e−(λ+µ)c + (λ+ µ)e−(α+λ)c

(λ+ µ)(α+ λ)(α− µ)
.

Figure 6 shows the behavior of γk(Pm,Qn) in terms of empirical mean squared
error for various d and various sample sizes, m = n = N

2 , where we chose α = 2,
λi = 3, µi = 1 and ci = 5 for all i.

First note from Figures 5 and 6 that the quality of the estimate of γk(P,Q)
improves with increasing sample size and that γk(Pm,Qn) estimates γk(P,Q)
correctly. By comparing these figures with Figures 1 and 2, it can be seen that
the rate of convergence of γk(Pm,Qn) is less strongly affected than W (Pm,Qn)
by the dimensionality of data, again following Corollary 3.5.

4.3. Estimator of β(P,Q)

In the case of W and γk, we have closed form expressions to start with—see
(4.2) and (4.3)—which can be solved by numerical methods. The resulting val-
ues are then used as baselines to test the performance of the estimators of W
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Fig 6. Empirical mean squared error of the kernel distance (γk) between P and Q, which
are truncated exponential distributions on Rd

+, with k(x, y) = exp(−‖x− y‖1) for increasing
sample size N and various d. The empirical mean squared error is computed by choosing
T = 100. See Example 6 and footnote 6 for details.

and γk. On the other hand, in the case of β, we are not aware of any such closed
form expression to compute the baseline. However, it is possible to compute
β(P,Q) when P and Q are discrete distributions on S, i.e., P =

∑r
i=1 λiδXi ,

Q =
∑s

i=1 µiδZi , where
∑r

i=1 λi = 1,
∑s

i=1 µi = 1, λi ≥ 0, ∀ i, µi ≥ 0, ∀ i, and
Xi, Zi ∈ S. This is because, for this choice of P and Q, we have

β(P,Q) = sup

{
r∑

i=1

λif(Xi)−
s∑

i=1

µif(Zi) : ‖f‖BL ≤ 1

}

= sup

{
r+s∑

i=1

θif(Vi) : ‖f‖BL ≤ 1

}
, (4.4)

where θ = (λ1, . . . , λr,−µ1, . . . ,−µs), V = (X1, . . . , Xr, Z1, . . . , Zs) with θi :=
(θ)i and Vi := (V )i. Now, (4.4) is of the form of (2.1) and so, by Theorem 2.3,
β(P,Q) =

∑r+s
i=1 θia

⋆
i , where {a⋆i } solve the following linear program,

max
a1,...,ar+s,b,c

r+s∑

i=1

θiai

s.t. −b ρ(Vi, Vj) ≤ ai − aj ≤ b ρ(Vi, Vj), ∀ i, j
−c ≤ ai ≤ c, ∀ i
b+ c ≤ 1. (4.5)
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Fig 7. Empirical mean squared error of the Dudley metric (β) between discrete distributions
P and Q on R for increasing sample size N . The empirical mean squared error is computed
by choosing T = 100. See Example 7 and footnote 6 for details.

Therefore, for these distributions, one can compute the baseline which can then
be used to verify the performance of β(Pm,Qn). In the following, we consider a
simple example to demonstrate the performance of β(Pm,Qn).

Example 7. Let S = {0, 1, 2, 3, 4, 5} ⊂ R, λ = (13 ,
1
6 ,

1
8 ,

1
4 ,

1
8 ), µ = (14 ,

1
4 ,

1
4 ,

1
4 ),

X = (0, 1, 2, 3, 4) and Z = (2, 3, 4, 5). With this choice, P and Q are defined as

P =
∑5

i=1 λiδXi and Q =
∑4

i=1 µiδZi . By solving (4.5) with ρ(x, y) = |x − y|,
we get β(P,Q) = 0.5278.

Figure 7 shows the behavior of β(Pm,Qn) in terms of empirical mean squared
error which is computed by drawing T = 100 sets of N i.i.d. samples (with
m = n = N/2) from P and Q and solving the linear program in (2.8)—see
footnote 6 for details. It can be seen that β(Pm,Qn) estimates β(P,Q) correctly.

Since we do not know how to compute β(P,Q) for P and Q other than the
ones we discussed here, we do not provide any other non-trivial examples to test
the performance of β(Pm,Qn).

5. Empirical estimation of total variation distance

In Sections 2–4, we derived and analyzed the empirical estimators of W , β and
γk. Since the total variation distance,

TV (P,Q) := sup

{∫

S

f d(P−Q) : ‖f‖∞ ≤ 1

}
,
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is also an IPM, we consider in this section its empirical estimation and consis-
tency analysis. Suppose S is a metric space. Let TV (Pm,Qn) be the empirical
estimator of TV (P,Q). Using similar arguments as in Theorems 2.1 and 2.3, it
can be shown that

TV (Pm,Qn) =

N∑

i=1

Ỹia
⋆
i ,

where {a⋆i }Ni=1 solve the following linear program,

max
a1,...,aN

{
N∑

i=1

Ỹiai : −1 ≤ ai ≤ 1, ∀ i
}
.

Now, the question is whether this estimator is consistent. First, note that a⋆i =

sign(Ỹi) and therefore, TV (Pm,Qn) = 2 for any m,n. This means that for any
P,Q such that TV (P,Q) < 2, TV (Pm,Qn) is not a consistent estimator of
TV (P,Q). Indeed, a⋆i , ∀ i are independent of the actual samples, {Xi}Ni=1 drawn
from P and Q, unlike in the estimation of the Kantorovich and Dudley metrics,
and therefore it is not surprising that TV (Pm,Qn) is not a consistent estimator
of TV (P,Q).

The issue in the empirical estimation of TV (P,Q) is that the set FTV := {f :
‖f‖∞ ≤ 1} is too large to obtain meaningful results if no assumptions on the
distributions are made. If certain reasonable assumptions are made on the dis-
tributions, however, then the total variation distance between such distributions
can be estimated consistently in a strong sense.7 On the other hand, instead of
restricting the class of probability measures, one can choose a more manageable
subset F of FTV such that γF(P,Q) ≤ TV (P,Q), ∀P,Q and γF(Pm,Qn) is a
consistent estimator of γF(P,Q). Examples of such choice of F include Fβ and
{1(−∞,t] : t ∈ Rd}, where the former yields the Dudley metric while the latter
results in the Kolmogorov distance. The empirical estimator of the Dudley met-
ric and its consistency have been presented in Sections 2.1 and 3. The empirical
estimator of the Kolmogorov distance between P and Q is well studied and is
strongly consistent, which simply follows from the Glivenko-Cantelli theorem
[14, Theorem 12.4].

Since the total variation distance between P and Q cannot be estimated
consistently for all P,Q, we present two new lower bounds on TV , one involving
W and β and the other involving γk, which can be estimated consistently.

Proposition 5.1 (Lower bounds on TV ). (i) Suppose (S, ρ) is a metric space.
Then for all P 6= Q, we have

TV (P,Q) ≥ W (P,Q)β(P,Q)

W (P,Q)− β(P,Q)
. (5.1)

7Suppose S = Rd and let P, Q be absolutely continuous w.r.t. the Lebesgue measure. Then,
TV (P,Q) can be consistently estimated in a strong sense using the total variation distance

between the kernel density estimators of P and Q. This is because if P̃m and Q̃n represent
the kernel density estimators associated with P and Q, respectively, then |TV (P̃m, Q̃n) −
TV (P,Q)| ≤ TV (P̃m,P) + TV (Q̃n, Q)

a.s.−→ 0 as m,n → ∞ (see [13, Chapter 6] and references
therein).
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(ii) Suppose C := supx∈S k(x, x) <∞. Then,

TV (P,Q) ≥ γk(P,Q)√
C

. (5.2)

Proof. (i) The proof is based on Lemma 2.7. Note that ‖f‖L, ‖f‖BL and ‖f‖∞
are convex functionals on the vector spaces Lip(S, ρ), BL(S, ρ) and U(S) :=
{f : S → R | ‖f‖∞ <∞}, respectively. Similarly, Pf−Qf is a convex functional
on Lip(S, ρ), BL(S, ρ) and U(S). Since P 6= Q, Pf −Qf is not constant on FW ,
Fβ and FTV . Therefore, by appropriately choosing ψ, θ, V and b in Lemma 2.7,
the following sequence of inequalities is obtained:

1 = inf{‖f‖BL : Pf −Qf ≥ β(P,Q), f ∈ BL(S, ρ)}
≥ inf{‖f‖L : Pf −Qf ≥ β(P,Q), f ∈ BL(S, ρ)}

+ inf{‖f‖∞ : Pf −Qf ≥ β(P,Q), f ∈ BL(S, ρ)}

=
β(P,Q)

W (P,Q)
inf{‖f‖L : Pf −Qf ≥W (P,Q), f ∈ BL(S, ρ)}

+
β(P,Q)

TV (P,Q)
inf{‖f‖∞ : Pf −Qf ≥ TV (P,Q), f ∈ BL(S, ρ)}

≥ β(P,Q)

W (P,Q)
inf{‖f‖L : Pf −Qf ≥W (P,Q), f ∈ Lip(S, ρ)}

+
β(P,Q)

TV (P,Q)
inf{‖f‖∞ : Pf −Qf ≥ TV (P,Q), f ∈ U(S)}

=
β(P,Q)

W (P,Q)
+

β(P,Q)

TV (P,Q)
,

which gives (5.1).

(ii) To prove (5.2), we use the coupling formulation for TV [25, p. 19] given by

TV (P,Q) = 2 inf
µ∈L(P,Q)

µ(X 6= Y ), (5.3)

where L(P,Q) is the set of all measures on S×S with marginals P and Q. Here,
X and Y are distributed as P and Q, respectively. Let λ ∈ L(P,Q) and f ∈ H.
Then,

∣∣∣∣
∫

S

f d(P−Q)

∣∣∣∣ =
∣∣∣∣
∫
(f(x) − f(y)) dλ(x, y)

∣∣∣∣

≤
∫

|f(x) − f(y)| dλ(x, y)

(a)
=

∫
|〈f, k(·, x) − k(·, y)〉H| dλ(x, y)

(b)

≤ ‖f‖H
∫

‖k(·, x)− k(·, y)‖H dλ(x, y),
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where we have used the reproducing property of H in (a) and the Cauchy-
Schwartz inequality in (b). Taking the supremum over f ∈ Fk and the infimum
over λ ∈ L(P,Q) gives

γk(P,Q) ≤ inf
λ∈L(P,Q)

∫
‖k(·, x)− k(·, y)‖H dλ(x, y). (5.4)

Consider

‖k(·, x)− k(·, y)‖H ≤ 1x 6=y‖k(·, x)− k(·, y)‖H
≤ 1x 6=y [‖k(·, x)‖H + ‖k(·, y)‖H]

= 1x 6=y

[√
k(x, x) +

√
k(y, y)

]
≤ 2

√
C1x 6=y. (5.5)

Using (5.5) in (5.4) yields (5.2) through (5.3).

Remark 5.2. (i) A simple lower bound on TV can be obtained as TV (P,Q) ≥
β(P,Q), ∀P,Q. However, it is easy to see that the bound in (5.1) is tighter as
W (P,Q)β(P,Q)
W (P,Q)−β(P,Q) ≥ β(P,Q) with equality only if P = Q.

(ii) Theorem 4 in [18] shows that the total-variation and Kantorovich distances

are related as 2W (P,Q)
diam(S) ≤ TV (P,Q), which makes sense if S is bounded. By

simple algebra, it is easy to check that this bound is weaker than the proposed
bound in (5.1) if W (P,Q) ≤ (1 + diam(S)/2)β(P,Q).

(iii) The bounds in (5.1) and (5.2) translate as lower bounds on the KL-
divergence through Pinsker’s inequality: TV 2(P,Q) ≤ 2Dt log t(P,Q), ∀P,Q. See
Fedotov et al. [16] and references therein for more refined bounds between TV
and KL. Therefore, using these bounds, one can obtain a consistent estimate of
a lower bound on TV and KL. The bounds in (5.1) and (5.2) also translate to
lower bounds on other distance measures on probabilities. See [18] for a detailed
discussion of the relation between various metrics.

6. Conclusion & discussion

In this work, we have studied the empirical estimation of integral probabil-
ity metrics between two probability measures, based on finite samples drawn
i.i.d. from each. We have provided empirical estimates, proved consistency, and
obtained convergence rates for the empirical estimators of the Kantorovich met-
ric, Dudley metric and kernel distance. We have shown that: (a) the empirical
estimator of the kernel distance is easy to implement as it can be obtained in
a closed form, unlike the Kantorovich and Dudley metrics, which require solv-
ing linear programs; (b) the empirical estimator of the kernel distance has a
better rate of convergence than the empirical estimators of the other two met-
rics, though all these estimators are strongly consistent. Due to these favorable
properties, the empirical estimator of the kernel distance might be more useful
in statistical inference applications than the remaining two. We also provided a
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novel interpretation of these empirical estimators by relating them to the binary
classification problem.

There are several interesting questions yet to be explored in connection with
this work:

(i) The minimax rate for estimating W , β and γk has not been established,
nor is it known whether the empirical estimators achieve this rate.

(ii) Although the limiting distribution of γk(Pm,Qn) is known for the cases
of P = Q and P 6= Q [21, Theorem 8]; [20, Theorem 12], it is not clear
whether a limiting distribution exists for W (Pm,Qn) and β(Pm,Qn).

(iii) An empirical estimate of the Fortet-Mourier metric has yet to be obtained.

Appendix A: Relation between IPMs and φ-divergences

In this appendix, we discuss the relation between IPMs and φ-divergences, and
show that IPMs are essentially different from φ-divergences.

Based on the definitions of IPM and φ-divergence, it is clear that {γF(P,Q) :
F} and {Dφ(P,Q) : φ} represent classes of IPMs and φ-divergences (on P and
Q) indexed by F and φ, respectively. Let us define Pλ as the set of all proba-
bility measures, P that are absolutely continuous with respect to some σ-finite
measure, λ on S. For P,Q ∈ Pλ, let p =

dP
dλ and q = dQ

dλ be the Radon-Nikodym
derivatives of P and Q with respect to λ. For P,Q ∈ Pλ (so that P ≪ Q), it
is easy to check that the above two classes intersect at F = {f : ‖f‖∞ ≤ 1}
and φ(t) = |t− 1|, i.e., γF(P,Q) = Dφ(P,Q) =

∫
S |p− q| dλ, which is the total-

variation distance. A natural question to consider is for what conditions on F

and φ is γF(P,Q) = Dφ(P,Q) for all P,Q ∈ Pλ? This shows the degree of
overlap between the class of IPMs and the class of φ-divergences. We answer
this in the following theorem, where we show that the total-variation distance
is the only “non-trivial”8 IPM that is also a φ-divergence.

Theorem A.1 (Necessary and sufficient conditions). Suppose F⋆ be the set
of all real-valued measurable functions on S and Φ be the class of all convex
functions φ : [0,∞) → (−∞,∞] continuous at 0 and finite on (0,∞). Let F ⊂ F⋆

and φ ∈ Φ. Then for any P,Q ∈ Pλ, γF(P,Q) = Dφ(P,Q) if and only if any
one of the following hold:

(i) F = {f : ‖f‖∞ ≤ β−α
2 }, φ(u) = α(u − 1)1[0,1](u) + β(u − 1)1[1,∞)(u) for

some α < β <∞, i.e., γF(P,Q) = Dφ(P,Q) = β−α
2

∫
S |p− q| dλ.

(ii) F = {f : f = c, c ∈ R}, φ(u) = α(u − 1)1[0,∞)(u), α ∈ R, i.e., γF(P,Q) =
Dφ(P,Q) = 0.

8Choosing F to be the set of all real-valued measurable functions on S and φ(t) = 0 if t = 1
and +∞ if t 6= 1 yields γF(P,Q) = Dφ(P,Q) = 0 if P = Q and +∞ if P 6= Q. It is easy to show
that the converse also holds. For this choice of F and φ, the IPM is trivially a φ-divergence.
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Proof. (⇐) Suppose (i) holds. Then for any P,Q ∈ Pλ, we have

γF(P,Q) = sup

{
|Pf −Qf | : ‖f‖∞ ≤ β − α

2

}

=
β − α

2
sup{|Pf −Qf | : ‖f‖∞ ≤ 1}

=
β − α

2

∫

S

|p− q| dλ (a)
= Dφ(P,Q),

where (a) follows from simple algebra after substituting φ in Dφ(P,Q) (see [23]).
This means γF(P,Q) and Dφ(P,Q) are equal to the total variation distance
between P and Q.

Suppose (ii) holds. Then γF(P,Q) = 0 and Dφ(P,Q) = α
∫
S q φ(p/q) dλ =

α
∫
S(p− q) dλ = 0.

(⇒) Suppose γF(P,Q) = Dφ(P,Q) for any P,Q ∈ Pλ. Since γF is a pseudomet-
ric on Pλ (irrespective of F), Dφ is a pseudometric9 on Pλ. Through a simple
modification of Theorem 2 in [23], it can be shown that if Dφ is a pseudometric
then φ(u) = α(u− 1)1[0,1](u) + β(u− 1)1[1,∞)(u) for some β ≥ α, which means

for P,Q ∈ Pλ, Dφ(P,Q) = β−α
2

∫
S |p − q| dλ if β > α and Dφ(P,Q) = 0 if

β = α. Now, let us consider two cases.

Case 1: β > α
Since γF(P,Q) = Dφ(P,Q) for all P,Q ∈ Pλ, we have γF(P,Q) = β−α

2

∫
S
|p−

q| dλ = β−α
2 sup{|Pf − Qf | : ‖f‖∞ ≤ 1} = sup{|Pf − Qf | : ‖f‖∞ ≤ β−α

2 } and

therefore F = {f : ‖f‖∞ ≤ β−α
2 }.

Case 2: β = α
γF(P,Q) = supf∈F

|Pf −Qf | = 0 for all P,Q ∈ Pλ, which means ∀P,Q ∈ Pλ,
∀ f ∈ F, Pf = Qf . This, in turn, means f is a constant on S, i.e., F = {f : f =
c, c ∈ R}.

Note that in Theorem A.1, the cases (i) and (ii) are disjoint as α < β in case
(i) and α = β in case (ii). Case (i) shows that the family of φ-divergences and
the family of IPMs intersect only at the total variation distance. Case (ii) is
trivial as the distance between any two probability measures is zero. This result
shows that IPMs and φ-divergences are essentially different.

Appendix B: Proof of Theorem 3.3: Supplementary results

In this section, we present supplementary results to prove Theorem 3.3.

B.1. Talagrand’s inequality

The following is a general result, a special case of which is used to prove Theo-
rem 3.3.

9Given a set S, a metric for S is a function ρ : S×S → R+ such that (i) ∀x, ρ(x, x) = 0, (ii)
∀x, y, ρ(x, y) = ρ(y, x), (iii) ∀x, y, z, ρ(x, z) ≤ ρ(x, y) + ρ(y, z), and (iv) ρ(x, y) = 0 ⇒ x = y.
A pseudometric only satisfies (i)-(iii) of the properties of a metric. Unlike a metric space (S, ρ),
points in a pseudometric space need not be distinguishable: one may have ρ(x, y) = 0 for x 6= y.
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Proposition B.1. Let B ≥ 0, n ≥ 1, (Ωi,Ai, µi), i = 1, . . . , n be probability
spaces and θi : F × Ωi → R be bounded measurable functions, where F is the
space of real-valued Ai-measurable functions for all i. Suppose

(a)
∫
Ωi
θi(f, ω) dµi(ω) = 0 for all i and f ∈ F

(b)
∫
Ωi
θ2i (f, ω) dµi(ω) ≤ σ2

i for all f ∈ F

(c) ‖θi(f, ·)‖∞ ≤ B for all i and f ∈ F.

Define Z := ×n
i=1Ωi and P := ⊗n

i=1µi. Furthermore, define g : Z → R by

g(z) := sup
f∈F

∣∣∣∣∣

n∑

i=1

θi(f, ωi)

∣∣∣∣∣ , z = (ω1, . . . , ωn) ∈ Z.

Then, for all τ > 0, we have

P







z ∈ Z : g(z) ≥ EP g +

√√√√2τ

(
n∑

i=1

σ2
i + 2BEP g

)
+

2τB

3







 ≤ e−τ .

In addition, for all τ > 0 and α > 0,

P







z ∈ Z : g(z) ≥ (1 + α)EP g +

√√√√2τ

n∑

i=1

σ2
i + τB

(
2

3
+

1

α

)




 ≤ e−τ .

To prove Proposition B.1, we need the following result, which we quote from
[45, Theorem A.9.14 followed by the simplification in p. 551–552]. Before we
quote this result, we need some definitions. Define Z := Ω1 × · · · × Ωn and
Z ′
i := Ω1× · · ·×Ωi−1×Ωi+1× · · ·×Ωn for i = 1, . . . , n. Let π′

i : Z → Z ′
i denote

the projection of Z onto Z ′
i. For fixed i ∈ {1, . . . , n} and z := (ω1, . . . , ωn) ∈ Z,

define Ii,z : Ωi → Z by Ii,z(ω) := (ω1, . . . , ωi−1, ω, ωi+1, . . . , ωn), ω ∈ Ωi.

Theorem B.2. Let n ≥ 1 and (Ωi,Ai, µi), i = 1 . . . , n, be probability spaces.
Define P := ⊗n

i=1µi. Assume that there exist bounded measurable functions
g : Z → R, gi : Z

′
i → R and ui : Z → R such that

(A) ui(z) ≤ g(z)− gi ◦ π′
i(z) ≤ 1

(B)
∑n

i=1 (g(z)− gi ◦ π′
i(z)) ≤ g(z)

(C)
∫
Ωi
ui ◦ Ii,z(ω) dµi(ω) ≥ 0

(D)
∫
Ωi

|ui ◦ Ii,z(ω)|2 dµi(ω) ≤ σ2
i

for some constants σi > 0 and all i = 1, . . . , n, z ∈ Z. Then for all τ > 0, we
have

P







z ∈ Z : g(z) ≥ EP g +

√√√√2τ

(
n∑

i=1

σ2
i + 2EP g

)
+

2τ

3







 ≤ e−τ .
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Proof of Proposition B.1. Define ηi(f, ωi) := B−1θi(f, ωi) and h(z) := B−1g(z).
Let ui(z) = h(z)− hi ◦ π′

i(z) where

hi(z
′
i) := sup

f∈F

∣∣∣∣∣∣

∑

j 6=i

ηj(f, ωj)

∣∣∣∣∣∣
.

It is easy to check that

ui(z) = sup
f∈F

∣∣∣∣∣∣

n∑

j=1

ηj(f, ωj)

∣∣∣∣∣∣
− sup

f∈F

∣∣∣∣∣∣

∑

j 6=i

ηj(f, ωj)

∣∣∣∣∣∣
≤ sup

f∈F

|ηi(f, ωi)| ≤ 1,

which implies h, hi and ui satisfy (A) in Theorem B.2.
For a fixed δ > 0, let f∗

δ ∈ F be such that

h(z) = sup
f∈F

∣∣∣∣∣

n∑

i=1

ηi(f, ωi)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑

i=1

ηi(f
∗
δ , ωi)

∣∣∣∣∣+ δ,

which implies,

(n− 1)h(z) ≤ (n− 1)δ +

∣∣∣∣∣∣

n∑

i=1

∑

j 6=i

ηj(f
∗
δ , ωj)

∣∣∣∣∣∣

≤ (n− 1)δ +

n∑

i=1

sup
f∈F

∣∣∣∣∣∣

∑

j 6=i

ηj(f, ωj)

∣∣∣∣∣∣

= (n− 1)δ +

n∑

i=1

hi ◦ π′
i(z).

Since δ is arbitrary, taking δ → 0, it is easy to see that h and hi satisfy (B).
Consider

∫

Ωi

ui ◦ Ii,z(ω) dµi(ω) =

∫

Ωi

sup
f∈F

∣∣∣∣∣∣

∑

j 6=i

ηj(f, ωj) + ηi(f, ω)

∣∣∣∣∣∣
dµi(ω)− hi(z

′
i)

(⋆)

≥ sup
f∈F

∣∣∣∣∣∣

∑

j 6=i

ηj(f, ωj) +

∫

Ωi

ηi(f, ω) dµi(ω)

∣∣∣∣∣∣
− hi(z

′
i)

(a)
= 0,

where we invoked Jensen’s inequality in (⋆). The above ensures that ui satis-
fies (C).
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Consider

|ui ◦ Ii,z(ω)|2 =



sup
f∈F

∣∣∣∣∣∣

∑

j 6=i

ηj(f, ωj) + ηi(f, ω)

∣∣∣∣∣∣
− sup

f∈F

∣∣∣∣∣∣

∑

j 6=i

ηj(f, ωj)

∣∣∣∣∣∣




2

≤
∣∣∣∣∣supf∈F

|ηi(f, ω)|
∣∣∣∣∣

2

= sup
f∈F

η2i (f, ω).

For a given δ > 0, let fδ ∈ F be such that supf∈F
η2i (f, ω) ≤ η2i (fδ, ω)+ δ. Then

we have,

∫

Ωi

sup
f∈F

η2i (f, ω) dµi(ω) ≤
∫

Ωi

η2i (fδ, ω) dµi(ω) + δ
(b)

≤ σ2
i

B2
+ δ.

Since δ is arbitrary, taking δ → 0, we have that ui satisfies (D) with σ2
i replaced

by
σ2
i

B2 . Substituting for h proves the first inequality in Theorem B.1. The second
inequality is obtained by applying

√
u+ v ≤ √

u +
√
v and 2

√
uv ≤ αu + α−1v

for all α > 0 to
√
2τ (

∑n
i=1 σ

2
i + 2BEP g).

B.2. Symmetrization inequality

The proof is a minor modification of the reasoning in [20, Appendix A.2, p. 757],
the main difference being that we do not split the expectation into two separate
Rademacher averages. We need to bound h(X1, . . . , XN ) := E supf∈F |(Pm −
Qn)f − (P−Q)f |. Let {X̃(1)

i }mi=1 and {X̃(2)
i }ni=1 be independent samples drawn

from P and Q respectively. Define P̃m := 1
m

∑m
i=1 δX̃(1)

i

and Q̃n := 1
n

∑n
i=1 δX̃(2)

i

.

Also define

(X̃1, . . . , X̃m, X̃m+1, . . . , X̃N ) :=
(
X̃

(1)
1 , . . . , X̃(1)

m , X̃
(2)
1 , . . . , X̃(2)

n

)
.

Since Pf = E P̃mf and Qf = E Q̃mf , we have

h(X1, . . . , XN ) = E sup
f∈F

|(Pm −Qn)f − E (P̃m − Q̃n)f |

≤ E sup
f∈F

|(Pm −Qn)f − (P̃m − Q̃n)f |

= E sup
f∈F

∣∣∣∣∣

N∑

i=1

Ỹi

(
f(Xi)− f(X̃i)

)∣∣∣∣∣

= E sup
f∈F

∣∣∣∣∣

N∑

i=1

σiỸi

(
f(Xi)− f(X̃i)

)∣∣∣∣∣

≤ 2E sup
f∈F

∣∣∣∣∣

N∑

i=1

σiỸif(Xi)

∣∣∣∣∣ .
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B.3. Concentration of Rmn(F; {Xi}
N

i=1
)

The following result shows that Rmn(F; {Xi}Ni=1) is concentrated around its
mean, which is a generalization of Lemma A.4 in [4].

Proposition B.3. Let F and Rmn(F; {Xi}Ni=1) be defined as in Theorem 3.3.
Define P := Pm ⊗Qn, g(X1, . . . , XN) := Rmn(F; {Xi}Ni=1). Then for all τ > 0,

P

({
(X1, . . . , XN) ∈ SN : g(X1, . . . , XN ) ≤ EP g −

√
2τν(m+ n)EP g

mn

})
≤ e−τ .

In addition, with probability at least 1− e−τ ,

EP g ≤ 1

1− θ
g(X1, . . . , XN ) +

τν(m+ n)

mnθ(1− θ)

for all θ ∈ (0, 1).

To prove Proposition B.3, we need the following result, which we quote from
[8, (7) and Theorem 6].

Theorem B.4. Let n ≥ 1 and (Ωi,Ai, µi), i = 1 . . . , n, be probability spaces.
Let Z, Z ′

i, π
′
i and P are defined as in Theorem B.2. Assume there exist bounded

measurable functions g : Z → [0,∞) and gi : Z
′
i → R such that

(A1) 0 ≤ g(z)− gi ◦ π′
i(z) ≤ 1

(B1)
∑n

i=1 (g(z)− gi ◦ π′
i(z)) ≤ g(z)

for all i = 1, . . . , n, z ∈ Z. Then for all τ > 0, we have

P
({
z ∈ Z : g(z) ≤ EP g −

√
2τEP g

})
≤ e−τ .

Proof of Proposition B.3. Define h(X1, . . . , XN) := mn
ν(m+n)g(X1, . . . , XN ) and

X\i := (X1, . . . , Xi−1, Xi+1, . . . , XN ). It is clear that h is non-negative. Define

gi(X
\i) := E


sup
f∈F

∣∣∣∣∣∣

N∑

j 6=i

σj Ỹjf(Xj)

∣∣∣∣∣∣

∣∣∣X\i




and hi(X
\i) := mn

ν(m+n)h(X1, . . . , XN ). Consider

g(X1, . . . , XN) = E



sup
f∈F

∣∣∣∣∣∣

N∑

j=1

σj Ỹjf(Xj)

∣∣∣∣∣∣

∣∣∣{Xi, X
\i}





≥ E



sup
f∈F

∣∣∣∣∣∣

N∑

j 6=i

σj Ỹjf(Xj) + E

[
σiỸif(Xi)

∣∣∣Xi

]
∣∣∣∣∣∣

∣∣∣X\i





= gi(X
\i).
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Also consider

g(X1, . . . , XN ) = E


sup
f∈F

∣∣∣∣∣∣

N∑

j=1

σj Ỹjf(Xj)

∣∣∣∣∣∣

∣∣∣{Xi, X
\i}




≤ E


sup
f∈F

∣∣∣∣∣∣

N∑

j 6=i

σj Ỹjf(Xj)

∣∣∣∣∣∣

∣∣∣X\i


+ E

[
sup
f∈F

∣∣∣σiỸif(Xi)
∣∣∣
∣∣∣Xi

]

≤ gi(X
\i) +

ν(m+ n)

mn
,

which implies 0 ≤ g(X1, . . . , Xn) − gi(X
\i) ≤ ν(m+n)

mn for all i, and therefore
h satisfies (A1) in Theorem B.4. The proof that h satisfies (B1) follows the
technique in the proof of Proposition B.1 to show that h (in the proof of Propo-
sition B.1) satisfies (B). For a fixed δ > 0, let fδ ∈ F be such that

g(X1, . . . , XN ) = E


sup
f∈F

∣∣∣∣∣∣

N∑

j=1

σj Ỹjf(Xj)

∣∣∣∣∣∣

∣∣∣{Xi, X
\i}




≤ E





∣∣∣∣∣∣

N∑

j=1

σj Ỹjfδ(Xj)

∣∣∣∣∣∣

∣∣∣{Xi, X
\i}



+ δ,

which implies

(N − 1)g(X1, . . . , XN) ≤ (N − 1)δ + E





∣∣∣∣∣∣

N∑

i=1

∑

j 6=i

σj Ỹjfδ(Xj)

∣∣∣∣∣∣

∣∣∣{Xi, X
\i}





≤ (N − 1)δ + E




N∑

i=1

sup
f∈F

∣∣∣∣∣∣

∑

j 6=i

σj Ỹjf(Xj)

∣∣∣∣∣∣

∣∣∣{Xi, X
\i}





= (N − 1)δ +

N∑

i=1

E



sup
f∈F

∣∣∣∣∣∣

∑

j 6=i

σj Ỹjf(Xj)

∣∣∣∣∣∣

∣∣∣X\i





= (N − 1)δ +

N∑

i=1

gi(X
\i).

Since δ is arbitrary, taking δ → 0, we have that h satisfies (B1). The result
therefore follows from Theorem B.4.

Appendix C: Proof of Proposition 3.4

The following result is a simple modification of Massart’s finite class lemma [26],
which will be used to prove Proposition 3.4.
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Lemma C.1. Let A be some finite subset of Rl and {σi}li=1 be independent
Rademacher random variables. For any a ∈ Rl, define ai := (a)i. Then for any

ν ∈ Rl satisfying supa∈A

√∑l
i=1 a

2
i ν

2
i ≤ R, we have

E sup
a∈A

l∑

i=1

σiνiai ≤
√
2R2 log |A|.

Proof of Proposition 3.4. Let δ0 := supf∈F ‖f‖L2(Tmn) and for any j ∈ N∪ {0},
let δj = 2−jδ0. For each j, let Cj be an L2(Tmn)-cover at scale δj of F. For
each f ∈ F, pick an fj ∈ Cj so that ‖f − fj‖L2(Tmn) ≤ δj . For any M , f can

be expressed by chaining as f = f − fM +
∑M

j=1(fj − fj−1), where f0 = 0.

For simplicity, we denote the conditional expectation in Rmn

(
F; {Xi}Ni=1

)
by

ignoring the conditioning variables {Xi}Ni=1. Therefore, for any M , we have

Rmn

(
F; {Xi}Ni=1

)
= E sup

f∈F

∣∣∣∣∣∣

N∑

i=1

σiỸi



f(Xi)− fM (Xi) +

M∑

j=1

fj(Xi)− fj−1(Xi)





∣∣∣∣∣∣

≤ E sup
f∈F

∣∣∣∣∣

N∑

i=1

σiỸi (f(Xi)− fM (Xi))

∣∣∣∣∣

+

M∑

j=1

E sup
fj−fj−1∈Fj

∣∣∣∣∣

N∑

i=1

σiỸi (fj − fj−1) (Xi)

∣∣∣∣∣

(a)

≤ E

√√√√
N∑

i=1

σ2
i sup
f∈F

√√√√
N∑

i=1

Ỹ 2
i (f(Xi)− fM (Xi))

2

+

M∑

j=1

E sup
fj−fj−1∈Fj

∣∣∣∣∣

N∑

i=1

σiỸi (fj − fj−1) (Xi)

∣∣∣∣∣ ,

where we have used Cauchy-Schwartz inequality in (a) and Fj is defined below
(C.1). Note that

√√√√
N∑

i=1

σ2
i sup
f∈F

√√√√
N∑

i=1

Ỹ 2
i (f(Xi)− fM (Xi))

2 = sup
f∈F

√√√√N
N∑

i=1

Ỹ 2
i (f(Xi)− fM (Xi))

2

= sup
f∈F

√√√√
m∑

i=1

m+n

m2

(
f(X

(1)
i )− fM (X

(1)
i )
)2

+
n∑

i=1

m+n

n2

(
f(X

(2)
i )− fM (X

(2)
i )
)2

= sup
f∈F

‖f − fM‖L2(Tmn)
≤ δM .

Also, it can be seen that

‖fj − fj−1‖L2(Tmn)
≤ ‖f − fj‖L2(Tmn)

+ ‖f − fj−1‖L2(Tmn)
≤ δj + δj−1 = 3δj.
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Therefore,

Rmn

(
F; {Xi}Ni=1

)
≤ δM +

M∑

j=1

E sup
fj−fj−1∈Fj

N∑

i=1

σiỸi (fj(Xi)− fj−1(Xi)) , (C.1)

where Fj := {fj − fj−1 : fj ∈ Cj , fj−1 ∈ Cj−1, ‖fj − fj−1‖L2(Tmn) ≤ 3δj}.
Applying Lemma C.1 to Fj with νi =

√
m+n
m for 1 ≤ i ≤ m and νi =

√
m+n
n for

m+ 1 ≤ i ≤ N , we obtain from (C.1) that

Rmn

(
F; {Xi}Ni=1

)
≤ δM +

M∑

j=1

√
18δ2j log (|Cj ||Cj−1|)

m+ n

≤ δM + 6

M∑

j=1

δj

√
log (|Cj |)
m+ n

≤ δM + 12

M∑

j=1

(δj − δj+1)

√
H (δj ,F, L2(Tmn))

m+ n

≤ δM + 12

∫ δ0

δM+1

√
H (ε,F, L2(Tmn))

m+ n
dε. (C.2)

For any α > 0, pick M = sup{j : δj > 2α}. This means, δM+1 ≤ 2α and
therefore δM = 2δM+1 ≤ 4α. In addition, since δM > 2α, we have δM+1 > α.
Using these bounds in (C.2), we obtain

Rmn

(
F; {Xi}Ni=1

)
≤ 4α+ 12

∫ AF,Tmn

α

√
H (ε,F, L2(Tmn))

m+ n
dε. (C.3)

Since α is arbitrary, taking infimum over α provides the result. Note that if

‖f‖∞ ≤ ε
√
mn

m+n , then ‖f‖L2(Tmn) ≤ ε, which therefore implies

H
(
ε,F, L2 (Tmn)

)
≤ H

( √
mn

m+ n
ε,F, ‖ · ‖∞

)
.

Hence,

Rmn

(
F; {Xi}Ni=1

)
≤ inf

α>0





4α+ 12

∫ AF,Tmn

α

√√√√H
(√

mn
m+nε,F, ‖ · ‖∞

)

m+ n
dε





.

A simple change of variables provides the result in Proposition 3.4.
Suppose supx∈S F (x) ≤ ν < ∞. Then it is easy to check that AF,Tmn ≤

νm+n√
mn

. Using this in the previous bound yields (3.7).
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Appendix D: Proof of Corollary 3.5(ii)

In the following, we bound Rmn(Fk; {Xi}Ni=1) following [20, Theorem 8, Ap-
pendix A.2], which uses the proof technique in [3, Lemma 22]. For simplic-
ity, we do not display the conditioning variables {Xi}Ni=1 in the definition of
Rmn

(
Fk; {Xi}Ni=1

)
. We have

Rmn

(
Fk; {Xi}Ni=1

)
= E sup

‖f‖H≤1

∣∣∣∣∣

N∑

i=1

σiỸif(Xi)

∣∣∣∣∣

(∗)
= E sup

‖f‖H≤1

∣∣∣∣∣

〈
N∑

i=1

σiỸik(·, Xi), f

〉

H

∣∣∣∣∣

= E

∥∥∥∥∥

N∑

i=1

σiỸiK(·, Xi)

∥∥∥∥∥
H

(D.1)

= E

√√√√
N∑

i,j=1

σiσj ỸiỸj〈k(·, Xi), k(·, Xj)〉H

(∗)
= E

√√√√
N∑

i,j=1

σiσj ỸiỸjk(Xi, Xj)

= E

√√√√
N∑

i=1

σ2
i Ỹ

2
i k(Xi, Xi) +

N∑

i6=j

σiσj ỸiỸjk(Xi, Xj)

≤

√√√√
N∑

i=1

Ỹ 2
i k(Xi, Xi) +

√√√√E

N∑

i6=j

σiσj ỸiỸjk(Xi, Xj).

Since σi and σj are independent random variables with zero mean, the second

term in the last line is zero, while the first term is bounded by ν
√

m+n
mn , there-

fore yielding (3.13). Note that we have invoked the reproducing property (see
footnote 1) of the kernel in (∗).

Appendix E: Proof of (3.8) and (3.9)

Define θmn :=
√

mn
m+n and φmn :=

√
mn

m+n . We showed in (3.16) that for every

α > 0,

Rmn(FW , {Xi}Ni=1) ≤ 4α+
12

√
2η

θmn

∫ R

αφmn

( √
2R

ε(d+1)/2
+

1

εd/2

)
dε.

We now consider three cases.
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d = 1 :

Rmn(FW , {Xi}Ni=1) ≤ 4α+
12

√
2η

θmn

∫ R

αφmn

(√
2R

ε
+

1√
ε

)
dε

= 4α− 24
√
ηR

θmn
log(αφmn)−

24
√
2η

θmn

√
αφmn +

A1

θmn

≤ 4α− A2

θmn
log(αφmn) +

A1 − 24
√
2η

θmn
,

where A1 := 24
√
ηR
(
logR+

√
2
)
, A2 := 24

√
ηR + 12

√
2η and therefore

Rmn(FW , {Xi}Ni=1) ≤ inf
α>0

[
4α− A2

θmn
log(αφmn)

]
+
A1 − 24

√
2η

θmn

=
C1

θmn
+ C2

log(m+ n)

θmn
,

where C1 := A1 +A2 −A2 log(A2/4)− 24
√
2η and C2 := A2

2 .

d = 2 :

Rmn(FW , {Xi}Ni=1) ≤ 4α+
12

√
2η

θmn

∫ R

αφmn

(√
2R

ε3/2
+

1

ε

)
dε

= 4α+
12

√
2η

θmn

(
−2

√
2 + logR+

2
√
2R√

αφmn
+ 2 log

1√
αφmn

)

≤ 4α+
12

√
2η

θmn

(
−2− 2

√
2 + logR+

2
√
2R+ 2√
αφmn

)

and therefore

Rmn(FW , {Xi}Ni=1) ≤ inf
α>0

[
4α+

12
√
2η

θmn

(
−2− 2

√
2 + logR+

2
√
2R+ 2√
αφmn

)]

=
C3

θmn
+ C4

(m+ n)2/3√
mn

,

where C3 := 12
√
2η(logR − 2 − 2

√
2), A1 := 12

√
2η(2

√
2R + 2) and C4 :=

(1 + 81/3)A
2/3
1 .

d > 2 :

Rmn(FW , {Xi}Ni=1) ≤ 4α+
12

√
2η

θmn

∫ R

αφmn

( √
2R

ε(d+1)/2
+

1

εd/2

)
dε

= 4α+
24

√
2η

θmn

(√
2R/(d− 1)

(αφmn)
d−1
2

+
1/(d− 2)

(αφmn)
d−2
2

)
+

A1

θmn
,
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where A1 := −24
√
2ηR

2−d
2 (

√
2

d−1 + 1
d−2). Define A2 := 48

√
ηR

d−1 and A3 := 24
√
2η

d−2 .
Then, we have

Rmn(FW , {Xi}Ni=1) ≤





4α+

(
A2

θmnφ
d−1
2

mn

+ A3

θmnφ
d−2
2

mn

)
α− d−1

2 + A1

θmn
, α ∈ (0, 1]

4α+

(
A2

θmnφ
d−1
2

mn

+ A3

θmnφ
d−2
2

mn

)
α− d−2

2 + A1

θmn
, α ≥ 1

and therefore

Rmn(FW , {Xi}Ni=1) ≤ min(A4, A5), (E.1)

where

A4 := inf
0<α≤1

[
4α+ ηmnα

− d−1
2 +

A1

θmn

]

and

A5 := inf
α≥1

[
4α+ ηmnα

− d−2
2 +

A1

θmn

]
,

where ηmn := A2

θmnφ
d−1
2

mn

+ A3

θmnφ
d−2
2

mn

. It is easy to check that

A4 = 4α∗ + ηmn (α
∗)−

d−1
2 +

A1

θmn

and

A5 = 4α∗∗ + ηmn (α
∗∗)−

d−2
2 +

A1

θmn
,

where α∗ := 1 ∧ ( (d−1)ηmn

8 )
2

d+1 and α∗∗ := 1 ∨ ( (d−2)ηmn

8 )
2
d . Define N0 :=

(d−1)2(A2+A3)
22d

64 . Then for all m,n such that (m ∧ n)d+1 > N0(m ∨ n)d, it is

easy to check that ηmn <
8

d−1 , which implies α∗ = ( (d−1)ηmn

8 )
2

d+1 and α∗∗ = 1.

Therefore, for all m,n such that (m ∧ n)d+1 > N0(m ∨ n)d,

A4 = A6η
2

d+1
mn +

A1

θmn

and

A5 = 4 + ηmn +
A1

θmn
,

where A6 := 4(d−1
8 )

2
d+1 +( 8

d−1)
d−1
d+1 . Using these results in (E.1), we have for all

m,n such that (m ∧ n)d+1 > N0(m ∨ n)d,

Rm(FW , {X(1)
i }mi=1) ≤ A4 ≤ A7

θ
2

d+1
mn φ

d−1
d+1
mn

+
A1

θmn
= A7

(m+ n)
d

d+1

√
mn

+A1

√
m+ n

mn
,

where A7 := A6(A2 +A3)
2

d+1 .



1594 B.K. Sriperumbudur et al.

Appendix F: Proof of (3.11)

Define θmn :=
√

mn
m+n , φmn :=

√
mn

m+n and ηmn := 4 − 12
√
2φmn

θmn
. We showed in

(3.18) that for any α > 0,

Rmn(FW ; {Xi}Ni=1) ≤ ηmnα+
12

θmn

∫ R

αφmn

(√
η log 2

εd/2
+

2
√
R√
ε

)
dε+

12
√
2R

θmn
.

As in Appendix E, we consider three cases:

d = 1 : Define A :=
√
η log 2 + 2

√
R.

Rmn(FW ; {Xi}Ni=1) ≤ ηmnα+
12

θmn

∫ R

αφmn

A√
ε
dε+

12
√
2R

θmn

= ηmnα− 24A
√
φmn

θmn

√
α+

24A
√
R+ 12

√
2R

θmn

and therefore

Rmn(FW ; {Xi}Ni=1) ≤ inf
α>0

[
ηmnα− 24A

√
φmn

θmn

√
α

]
+

24A
√
R+ 12

√
2R

θmn

=
144A2

θmn(12
√
2− 4

√
m+ n)

+
24A

√
R+ 12

√
2R

θmn
.

Since m ∧ n > 9, we have 144A2

θmn(12
√
2−4

√
m+n)

< 6
√
2A2

θmn
and therefore,

Rmn(FW ; {Xi}Ni=1) ≤
24A

√
R+ 12

√
2R + 6

√
2

θmn
.

d = 2 : Define B := 12
(√

2R+ 4R+ logR
√
η log 2

)
and C := 12

√
η log 2 +

24
√
R.

Rmn(FW ; {Xi}Ni=1) ≤ ηmnα+
12

θmn

∫ R

αφmn

(√
η log 2

ε
+

2
√
R√
ε

)
dε+

12
√
2R

θmn

= ηmnα− 24

θmn

(√
η log 2 log

√
αφmn +2

√
R
√
αφmn

)
+

B

θmn

≤ ηmnα− C

θmn
logαφmn +

B − 48
√
R

θmn

and therefore,

Rmn(FW ; {Xi}Ni=1) ≤ inf
α>0

[
ηmnα− C

θmn
logαφmn

]
+
B − 48

√
R

θmn

≤ C

θmn
log(m+ n) +

B − 48
√
R+ C − C log(C/4)

θmn
.
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d > 2 : Define A1 := 24
√
η log 2

d−2 and A2 := 48R+ 12
√
2R− 24

√
η log 2R

2−d
2

d−2 .

Rmn(FW ; {Xi}Ni=1) ≤ ηmnα+
12

θmn

∫ R

αφmn

(√
η log 2

εd/2
+

2
√
R√
ε

)
dε+

12
√
2R

θmn

≤ ηmnα+
12

θmn

∫ R

αφmn

√
η log 2

εd/2
dε+

24
√
R

θmn

∫ R

0

1√
ε
dε

+
12

√
2R

θmn

= ηmnα+
A1

θmnφ
d−2
2

mn

(
1

α

) d−2
2

+
A2

θmn
,

and therefore

Rmn(FW ; {Xi}Ni=1) ≤ inf
α>0

[
ηmnα+

A1

θmnφ
d−2
2

mn

(
1

α

) d−2
2

]
+

A2

θmn

= A3
(m+ n)

d−1
d√

mn
+A2

√
m+ n

mn
,

where C := ( (d−2)A1

2 )2/d and A3 := 2d−2(C +A1C
2−d
2 ).
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