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Observation vs intervention

Conditioning from observation: E[Y|A = a] = Y _ E[Y|a, z]p(z|a)

From our observations of historical hospital data:
m P(Y = cured|A = pills) = 0.80
m P(Y = cured|A = surgery) = 0.72
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Observation vs intervention

Average causal effect (intervention): E[Y(%)] = 3 E[Y|a, z]p(z)

From our intervention (making all patients take a treatment):
m P(Y(®ls) = cyred) = 0.64
m P(Y(ueery) — cured) = 0.75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the

Counterfactual and Graphical Approaches to Causality 2/38



Questions we will solve

/



Outline

Causal effect estimation, observed covariates:

m Average treatment effect (ATE), conditional average treatment effect
(CATE)

Causal effect estimation, hidden covariates:

m ... instrumental variables, proxy variables

What’s new? What is it good for?

m Treatment A, covariates X, etc can be multivariate, complicated...

m ...by using or feature representations
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Model assumption: linear functions of features

All learned functions will take the form:

1z)=7"0(x) = (71,0(z))y

5/38



Model assumption: linear functions of features

All learned functions will take the form:

1(z) =" p(z) = (1,0(2))y
Option 1: Finite dictionaries of learned neural net features ¢4(z)
(linear final layer 7y)

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment.
(ICLR 23)

Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental
Variable Regression. (ICLR 21)

Option 2: Infinite dictionaries of fixed kernel features:

(p(z:), o(2))gy = k(i )

Kernel is feature dot product.

Singh, Xu, G. Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves. (Biometrika, in revision)

Singh, Sahani, G. Kernel Instrumental Variable Regression. (NeurIPS 19)
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Model fitting: ridge regression
Learn 7o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

y = argmip (Z 2)))? +>\H“YHH>

1=1
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Model fitting: ridge regression

Learn 7o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

y = argmip (Z 2)))? +}\H’YHH>

1=1

Kernel solution at =

(as weighted sum of y) ZZ
n 0.4

= vifi(z) g 02

i=1 0

B(z) = (Kxx + )\I)_lka 0z

0.4

(Kxx)y = k(zi,3j) = (o(@i), 0(zj))yy, o 4 2 0 2 4 6 s
(kxz); = k(=i z)
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Observed covariates: (conditional) ATE

Kernel features
(in revision, Biometrika):

ar (iv > econ > arXiv:2010.04855

Economics > Econometrics

[submitted on 10 Oct 2020 ),

ised 23 Aug 2022 (this

ion, vé)]
Kernel Methods for Causal Functions: Dose, Heterogeneous,
and Incremental Response Curves

Rahul Singh, Liyuan Xu, Arthur Gretton

NN features (ICLR 2023):

ar (1v > ¢s > arXiv:2210.06610

Computer Science > Machine Learning
Isubmited on 12 Oct 2022]

A Neural Mean Embedding Approach for Back-door and
Front-door Adjustment

Liyuan Xu, Arthur Gretton

Code for NN and kernel causal estimation with observed covariates:
https://github.com/1iyuan9988/DeepFrontBackDoor/
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Average treatment effect

Potential outcome (intervention):
E[Y()] = /E[Y\a,w]dp(x)

(the average structural function; in epidemiology, for continuous a,

the dose-response curve).
Assume: (1) Stable Unit Treatment Value Assumption (aka “no interference”), (2)
Conditional exchangeability Y () 1L A|X. (3) Overlap.

Example: US job corps, training
for disadvantaged youths:

m A: treatment (training hours)

m Y: outcome (percentage
employment)

m X: covariates (age, education, @
marital status, ...) @
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Y(a,z) :=E[Y]a, z]

Assume we have:

m covariate features p(z) with
kernel k(z, z') @

m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Y(a,z) :=E[Y]a, z]

Assume we have:
m covariate features p(z) with
kernel k(z, z') @
m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)

We use outer product of features ( = product of kernels):
¢(z,a) =p(a)®p(z)  K([a,z][a,2]) = k(a, a')k(z, ')
Ridge regression solution:

A(z,a) = vibi(a,z), Bla,z)=[Kaa® Kxx + M| Kaq © Ky,
1=1



ATE (dose-response curve)

Well-specified setting:
E[Y]a,z] =: 10(a, ) = (710, ¥(a) ® (z))
ATE as feature space dot product:

ATE(a) = E[yo(a, X)]

= E [(70, ¢(a) ® p(X))] @
g
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ATE (dose-response curve)
Well-specified setting:

E[Y’a7 ZL’] = 70(0’7 (L‘) = <70: ‘P(a) ® ‘p(m»
ATE as feature space dot product:

ATE(a) = E[yo(a, X)]

el e@ee()]  [(a)
= (70, ¢(a) ®E[§g{/”>

Feature map of probability P(X),

px = Elpi(X)]...]
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ATE: example
US job corps: training for dis-
advantaged youths:

m X: covariate/context (age,
education, marital status, ...)

m A: treatment (training hours)

m Y: outcome (percent
employment) @
Empirical ATE:
ATE(a) = E (%0, o(X) ® p(a))]

1 n
— E ZYT(KAA © Kxx + ’I‘L)\I)_l(KAa ©®© KX&%)
1=1

Schochet, Burghardt, and McConnell (2008). Does Job Corps work? Impact findings from the national
Job Corps study. 12/38

Singh, Xu, G (2022a).



ATE: results
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m First 12.5 weeks of classes confer employment gain: from 35% to 47%.
m [RKHS] is our K’ITE(&).
| Colangelo, Lee (2020), Double debiased machine learning
nonparametric inference with continuous treatments.
Singh, Xu, G (2022a)
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Conditional average treatment effect

Well-specified setting:

E[Y|a,z,v] =: 70(a,z,v)
= (70, 9(a) ® p(z) ® p(v)) .

Conditional ATE @ @
CATE(CL, ’U) /

=E[Y@|V = v
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Conditional average treatment effect

Well-specified setting:

E[Y|a,z,v] =: 70(a,z,v)
= (70, 9(a) ® p(z) ® p(v)) .

Conditional ATE @
CATE(a, v)

=E[Y@|V = v
=E[{70,0(a) ® p(X) @ o(V)) |V = 1]
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Conditional average treatment effect

Well-specified setting:

E[Y]a,z,v] = 7(a,z,v)
= (70, p(a) ® (z) ® (v)) .

Conditional ATE @
CATE(a, v)

=E[Y|V = v

=E[{70,p(a) ® p(X)® p(V)) |V = v]
=..7

How to take conditional expectation?

Density estimation for p(X|V = v)? Sample from p(X|V = v)?
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Conditional average treatment effect

Well-specified setting:

E[Y]a,z,v] = 7(a,z,v)
= (70, p(a) ® (z) ® (v)) .

Conditional ATE @ @
CATE( a, ’U) /

=E[Y|V = v

=E[{70,p(a) ® p(X)® p(V)) |V = v]
= (70, 9(a) ® E[p(X)|V = v] ® p(v))
KX | V=0

Learn conditional mean embedding: ux|v—, := Ex [@(X)|V = ]
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Regressing from feature space to feature space
Our goal: an operator 7 : Hy —Hx such that

Fop(v) = px|v—y

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.

Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as
regressors.

Grunewalder, G, Shawe-Taylor (2013) Smooth operators.

Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding

Learning 15/38
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Regressing from feature space to feature space

Our goal: an operator 7 : Hy —Hx such that

Fop(v) = px|v—y

Assume

Fy € span{p(z) ® p(v)} < Fy € HS(Hy, Hx)
Implied smoothness assumption:
Er(X)|V =v]€Hy VhEHx

Kernel ridge regression from ¢(v) to infinite features ¢(z):

n
1= argmin ) |lp(ze) — Fp(u)llag, + Aall 7lls
FEHS ;23
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Regressing from feature space to feature space

Our goal: an operator : Hy —Hx such that

o(v) = px|v—v

Assume

€ span{p(z) ® p(v)} <= € HS(Hy, Hx)
Implied smoothness assumption:
Er(X)|V =v]€Hy VhEHx

Kernel ridge regression from ¢(v) to infinite features ¢(z):

n
= argmin ) [lp(ze) = 7(v)l3, + Aol 7 llis
€HS ;=3

Ridge regression solution:

n

pxv—y = E@(X)|V = v]  Fo(v) = o(z)be(v)
=1

B(v) = [Kvv + }\2]]_1 kv, 15/38



Conditional ATE: example

US job corps:
m X: confounder/context
(education, marital
status, ...)

m A: treatment (training
hours)

m Y: outcome (percent @ @
employed)
m V: age

Empirical CATE:
CATE(a,v) = (J0,0(a) ® Fo(v) & p(v))

(with consistency guarantees: see paper!)

Singh, Xu, G (2022a) 16/38



Conditional ATE: results

24

221
9201 <
48.0 AL
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16 ' 49.0 36.0 ——]
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Class-hours

Average percentage employment Y () for class hours a, conditioned
on age v. Given around 12-14 weeks of classes:

m 16 y/o: employment increases from 28% to at most 36%.

m 22 y/o: percent employment increases from 40% to 56%.
Singh, Xu, G (2022a)
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...dynamic treatment effect...

Dynamic treatment effect: sequence A;, A; of treatments.

m potential outcomes Y(a) y(a) y(a,0)
m counterfactuals E [Y(ai’“é)ml =a, Ay = ag]
(c.f. the Robins G-formula)

Singh, Xu, G. (2022b) Kernel Methods for Multistage Causal Inference: Mediation Analysis and
Dynamic Treatment Effects
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What if there are hidden confounders?
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Illustration: ticket prices for air travel

Ticket price A, seats sold Y.

0—0@

What is the effect on seats sold Y (%) of intervening on price a?

Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexiblgo/38
Approach for Counterfactual Prediction.



Illustration: ticket prices for air travel
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Illustration: ticket prices for air travel

Unobserved variable ¢ =desire for travel, affects both price (via airline
algorithms) and seats sold.

m Desire for travel:
ALD g ~ N(p,0.1)
.- 1 1
N B~ u {_57 07 §}
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Illustration: ticket prices for air travel

Unobserved variable ¢ =desire for travel, affects both price (via airline
algorithms) and seats sold.

m Desire for travel:

et
A1 STATS g~ N(u,0.1)
.- 11
{Ell /’LNU{_§7O7§}
- m Price:
A=c¢c¢+ Z,
Z ~ N(5,0.04)

( ) m Seats sold:
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Illustration: ticket prices for air travel

Unobserved variable ¢ =desire for travel, affects both price (via airline

algorithms) and seats sold.

Average treatment effect:

ATE(a) = E[Y(®)] = /(10 —a+2¢)dp(e) =10—a

m Desire for travel:

e~ N(p,0.1)
~U { 1.0,

m Price:
A=¢e+ Z,
Z ~ N(5,0.04)

m Seats sold:
Y =10— A+ 2¢

1

' 2
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Illustration: ticket prices for air travel

Unobserved variable ¢ =desire for travel, affects both price (via airline
algorithms) and seats sold.

5 m Desire for travel:
SIATS e ~ N (,0. >
.- 1 1
Y p~U { 3 5}

m Price:
/\ A=¢e+ Z,
Z ~ N(5,0.04)

()
@ w Y m Seats sold:

s 72 Y=10—-A+2
il S ‘

Z is an instrument (cost of fuel). Condition on Z,
E[Y|Z] =10 — E[A|Z] + 2E[e| Z]
——

=0
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Illustration: ticket prices for air travel

Unobserved variable ¢ =desire for travel, affects both price (via airline

algorithms) and seats sold.

541

5.2

E[Y|Z]

4.8

4.6

T
4.6

T
4.8

T
5.0

ElA|Z]

T
5.2

m Desire for travel:
e~ N(u,0.1)
e 30.3)

m Price:

A=¢e+ Z,
Z ~ N(5,0.04)

m Seats sold:
Y=10—- A+ 2¢

Z is an instrument (cost of fuel). Condition on Z,

E[Y|Z] = 10 — E[A|Z] + 2E[¢| Z]
gt}

=0

Regressing from E[A|Z] to E[Y|Z] recovers ATE! 21/38



Instrumental variable regression

The Sveriges Riksbank Prize in

Economic Sciences in Memory of
Alfred Nobel 2021

Nobel Prize Outreach. Photo: © Nobel Prize Outreach. Photo: © Nobel Prize Outreach. Photo:
Paul Kennedy Risdon Photography Paul Kennedy
David Card Joshua D. Angrist

Prize share: 1/4

Guido W. Imbens
Prize share: 1/2

Prize share: 1/4

The Sveriges Riksbank Prize in Economic Sciences
in Memory of Alfred Nobel 2021 was divided, one
half awarded to David Card "for his empirical
contributions to labour economics", the other half
jointly to Joshua D. Angrist and Guido W. Imbens

"for their methodological contributions to the
analysis of causal relationships"
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Instrumental variable regression with NN features

Definitions:

m ¢: unobserved confounder. -
m A: treatment

B Y: outcome

-:‘E ‘l
B Z: instrument f\/ \
Z A Y
O—E@O—O)

Assumptions
Ele] =0  Elg|Z] =0
Z ) A
(Y L Z[A)g,
Y =7"¢s(A) +¢
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Instrumental variable regression with NN features

Definitions:

m ¢: unobserved confounder.

m A: treatment
m Y: outcome

m Z: instrument
Assumptions
Ele] =0 Ele|Z] =0
Z LA
(Y L Z[A)g,
Y =7 ¢o(A) +¢

Average treatment effect:

ATE(a /E (Yle, a)dp(e) = 7" ¢o(a)
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Instrumental variable regression with NN features

Definitions:
m ¢: unobserved confounder.
m A: treatment

m Y: outcome

-:‘E. ‘l
B Z: instrument / \
Assumptions

Ele] =0 Ele|Z] =0 Average treatment effect:
Z1A ]
(Y L Z|A)c, ATE(a) = /E(Y\E, a)dp(e) =71 ¢s(a)

Y =7 ¢o(A) +¢
IV regression: Condition both sides on Z,
E[Y|Z] = v E[$s(A)| Z] + E¢| Z]
N—_——

=0 23/38



Two-stage least squares for IV regression

Kernel features (NeurIPS 2019): NN features (ICLR 2021):

tielp | Ad
Computer Science > Machine Learning

EI‘(iV > ¢s > arXiv:2010.07154

[Submiteed on 1Jun 2019 (v1, It revised 15 ul 2020 (this version, v6)
Kernel Instrumental Variable Regression

Computer Science > Machine Learning
Rahul Singh, Maneesh Sahani, Arthur Gretton

[subrmitted on 14 Oct 2020 (v1, last revised 1 Nov 2020 (tis version, v3)

Learning Deep Features in Instrumental Variable Regression

Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton

Code for NN and kernel IV methods:
https://github.com/liyuan9988/DeepFeaturelV/
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Two-stage least squares for IV regression

Kernel features (NeurIPS 2019): NN features (ICLR 2021):

Computer Science > Machine Learning

Help | Ad

ar (1V > ¢s > arXiv:2010.07154

[Submiteed on 1Jun 2019 (v1, It revised 15 ul 2020 (this version, v6)
Kernel Instrumental Variable Regression

Computer Science > Machine Learning
Rahul Singh, Maneesh Sahani, Arthur Gretton

[submitted on 14 Oct 2020 (v1), last revised 1 Nov 2020 (tis version, v3)]

Learning Deep Features in Instr

| Variable Reg i
Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton

Code for NN and kernel IV methods:
https://github.com/liyuan9988/DeepFeaturelV/
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IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

Eyz |(Y -7 "Elgs(A4)|2])°] + Al

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 26/38
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IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:
Eyz [(Y = 7 Elge(A) 21| + Aoy
learn NN features ¢/(Z) and linear layer
Elgs(A)|Z] ~ F¢:(Z)
with RR loss
Ell¢s(A) = o (2)|1? + Al F s
Challenge: how to learn 67

From Stage 2 regression?
...which requires E[¢y(A)|Z] from regression
...which requires ¢¢(A)... which requires 6...

Use the linear final layers! (ie. y and F)

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 26/38



IV using neural net features

Stage 1 regression: learn NN features ¢.(Z) and linear layer /"
Elgs(A)|Z] ~ F¢:(Z)
with RR loss
E [[lgs(4) = F¢:(2)I] + Ml 7 Ihs
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IV using neural net features

learn NN features ¢/(Z) and linear layer
E[¢e(A)|Z] ~ F¢:(Z)
with RR loss
E [l(A) — 7 (Z)17] + Ml 7%
g, in closed form wrt ¢g, ¢.:
6 = Caz(Czz + MI) ' Caz =Elgs(A)g! (2)]
Czz = Elp(2)$](2)]
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IV using neural net features

learn NN features ¢/(Z) and linear layer
Elgs(A)|Z] = F¢.(Z)
with RR loss
E [l(A) — 7 (Z)17] + Ml 7%
g, in closed form wrt ¢g, ¢.:
o0 = Caz(Czz +MI) 1 Caz = E[¢s(A)¢/ (2))]
Czz = Elp.(2)$/(2)]
Plug 74 into 51 loss, take gradient steps for ( (...but not 6...)

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
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Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 28/38
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obtain Y with RR loss:
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= Evz[(Y =7 Fo, 6(2))2] + hall7]?
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Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol
=Evz[(Y — 7' Foc¢:(2))%] + X712
% in closed form wrt ¢g:
4 := Cyz(Czz + X\I)™*  Cyz =E [Y [Focd (Z)]T]
Czz =E [[Fo,$:(2)] [Fo,6(2)]]
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Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol
=Evz[(Y — 7' Foc¢:(2))%] + X712
% in closed form wrt ¢g:
4 := Cyz(Czz + X\I)™*  Cyz =E [Y [Focd (Z)]T]
Czz =E [[Fo,$:(2)] [Fo,6(2)]]

From linear final layers in Stages 1,2:
Learn ¢4(A) by plugging 9 into S2 loss, taking gradient steps for 4
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Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol
= Evz[(Y =7 Fo, 6c(2))2) + dalln?

9o in closed form wrt ¢g:

Y9 := Cyz(Czz + AI)™"  Cyz =E [Y [Focd (Z)]T]
Czz =E [[Fo,$:(2)] [Fo,6(2)]]

From linear final layers in Stages 1,2:

Learn ¢4(A) by plugging 9 into S2 loss, taking gradient steps for 4
...but  changes with 6

...s0 alternate first and second stages until convergence.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 28/38



Neural IV in reinforcement learning

5 @
¢
(a) Catch (b) Mountain Car (¢) Cartpole
B

(a) Cartpole Swingup ~ (b) Cheetah Run (¢) Humanoid Run (d) Walker Walk

Policy evaluation: want Q-value:

Q"(s,a) = Z’th So=s,4=a
t=0

for policy 7(A|S = s).
Osband et al (2019). Behaviour suite for reinforcement learning.https://github.com/deepmind/bsuite

Tassa et al. (2020). dm_ control:Software and tasks for continuous control. 29/38
https://github.com/deepmind/dm_control


https://github.com/deepmind/bsuite
https://github.com/deepmind/dm_control

Application of IV: reinforcement learning

Q value is a minimizer of Bellman loss
Lpeliman = Esar [(R+’Y[ [Q™(5, A)]S, A QW(S,A))Z] :
Corresponds to “IV-like” problem
Loetiman = Evz (Y - E[f(X)|2))?]

with
Y = R,
=(8, A" S, A)
Z =(S,A),

fO(X): QW(S7 CL) - nyw(sI) a’l)
RL experiments and data:
https://github.com/1liyuan9988/IVOPEwithACME

Bradtke and Barto (1996). Linear least-squares algorithms for temporal difference learning.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)

Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressiogdysg
Deep Offline Policy Evaluation.


https://github.com/liyuan9988/IVOPEwithACME

Results on mountain car problem

mountain_car

-
T e—

104 =
— — [ ; Algorithm
"

T - e
N ='= :% |

ES FOE

=LY
| . L] :
| . L DRIV

Absolute Errar

oo 01 02 03 04 05
Noise Level

Good performance compared with FQE.

Warning: IV assumption can fail when regression underfits. See
papers for details.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)

Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressioxsf9§8
Deep Offline Policy Evaluation.



...but seriously, what if there are hidden
confounders?
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The proxy correction

Unobserved ¢ with (possibly) complex nonlinear effects on A, YV

The definitions are:

m ¢: unobserved confounder.

m A: treatment ,—6'"

m Y: outcome =

If ¢ were observed (which it @
isn't),

E[Y(®] = [E[Yle, aldp(e)

33/38



The proxy correction

Unobserved ¢ with (possibly) complex nonlinear effects on A, YV
The definitions are:

m ¢: unobserved confounder.

m A: treatment

Visited bike website Interest in cycling Gym member
m Y: outcome S P A
Z " E ) W)X
cannondale P <
m Z: treatment proxy [V
m W outcome proxy
Viewed ad ( ) Bike purchase

;. OF
i

Lo ®

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.

Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.

Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially
Observable Dynamical Systems.
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The proxy correction

Unobserved ¢ with (possibly) complex nonlinear effects on A, YV
The definitions are:

m ¢: unobserved confounder.

m A: treatment Lt

( : Je—— € 1<--n-
® Y: outcome ¢ Se
m 7: treatment proxy \ /

m W outcome proxy

Structural assumption:
W 1L (Z,A)le
Y 1L Z|(A,¢€)

— Can recover E(Y (%) from observational data!

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.

Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.

Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially 33/38
Observable Dynamical Systems.



Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544

Search,

Help | Advan{
Computer Science > Machine Learning

[submitted on 10 May 2021 (v1), last revised 9 Oct 2021 (his version, va)]

Proximal Causal Learning with Kernels: Two-Stage
Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet

1
23

Code for NN and kernel proxy methods:

NN features (NeurIPS 2021):

arXiv.org > ¢s > arXiv:2106.03907

Search
Help | Advand
Computer Science > Machine Learning

[Submitted on 7 Jun 2021 (v1), last revised 7 Dec 2021 (this version, v2)]

Deep Proxy Causal Learning and its Application to
Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

https://github.com/1iyuan9988/DeepFeatureProxyVariable/ 3438


https://github.com/liyuan9988/DeepFeatureProxyVariable/

Conclusions

Neural net and kernel solutions:

m ..for ATE, CATE, dynamic treatment effects

m ...even for unobserved covariates/confounders (IV and proxy
methods)

m ..with treatment A, covariates X, V, proxies (W, Z) multivariate,
“complicated”

m Convergence guarantees for kernels and NN

Not in this talk:

m Elasticities

m Regression to potential outcome distributions over Y (not just
E(Y(@)]..)

35/38
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Questions?
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Counterfactual: average treatment on treated
Conditional mean:

E[Y]a, z] = 70(a, z)
Average treatment on treated:

QATT(a, )

= E[y(*)|4 = a] @
D
o

Empirical ATT:

64T (a, o')
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Conditional mean:

E[Y’aﬁ :IZ] = ’YO(G’: IIZ) = <707 ‘P(a) ® (p((IZ))
Average treatment on treated:

QATT(Q, )

=E[y\*)|4 = d] @
G
g
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Average treatment on treated:

QATT(a, )

:E[y( )|A= al @
=Ep [(10,0(a)) ® p(X)) |A = a]
=<;,<p( ) ® Ep[p(X)|A = a]) /

MEX|A=a

Empirical ATT:
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Counterfactual: average treatment on treated
Conditional mean:

E[Y]a, z] = 70(a, z)
Average treatment on treated:

QATT(a, )

:E[y( )|A= al @
=Ep [(10,0(a)) ® p(X)) |A = a]
=<;,<p( ) ® Ep[p(X)|A = a]) /

MEX|A=a

Empirical ATT:
éATT ( a, )

= YT (Kaa © Kxx + nA) N (Kaw © Kxx(Kaa+nAI) K a,)

from fixja=a 38/38



