Adaptive two-sample testing

Arthur Gretton

Gatsby Computational Neuroscience Unit,
Google Deepmind

Cambridge, 2023

Comparing two samples

■ Given: Samples from unknown distributions P and Q.
$■$ Goal: do P and Q differ?

A real-life example: two-sample tests

\square Goal: do P and Q differ?

CIFAR 10 samples

Cifar 10.1 samples

Significant difference?

Feng, Xu, Lu, Zhang, G., Sutherland, Learning Deep Kernels for Non-Parametric Two-Sample Tests, ICML 2020
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.

Two-sample problem

■ Samples $\mathbb{X}_{m}:=\left(x_{1}, \ldots, x_{m}\right), x_{i} \stackrel{\text { iid }}{\sim} p$ in \mathbb{R}^{d}
■ Samples $\mathbb{Y}_{n}:=\left(y_{1}, \ldots, y_{n}\right), y_{i} \stackrel{\mathrm{iid}}{\sim} q$ in \mathbb{R}^{d}
where $m \leq n$ and $n \leq C m$.
Hypothesis test: function $\Delta_{\alpha}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)$
$\mathcal{H}_{0}: p=q$
against
$\Delta_{\alpha}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)=1$
$\Delta_{\alpha}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)=0$

$\mathcal{H}_{1}: p \neq q$
reject \mathcal{H}_{0}
fail to reject \mathcal{H}_{0}

Type II error β

$$
\mathbb{P}_{p \times q}\left(\Delta\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)=0\right) \leq \beta
$$

Type I error: controlled by α by design

$$
\mathbb{P}_{p \times p}\left(\Delta\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)=1\right) \leq \alpha
$$

Outline

Two sample testing

■ Test statistic: Maximum Mean Discrepancy (MMD)...

- ...as a difference in feature means
- ...as an integral probability metric

■ Statistical testing with the MMD
■ "How to choose the best kernel"

- using aggregation (no sample splitting)
- minimax guarantees with Sobolev smoothness assumption

Maximum Mean Discrepancy

Kernel methods, feature representation

Kernels: dot products of
features

Feature $\operatorname{map} \varphi(x) \in \mathcal{F}$,
$\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}$

For positive definite k,
$k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}$
Infinitely many features $\varphi(x)$, dot product in closed form!

Kernel methods, feature representation

Kernels: dot products of features

Feature $\operatorname{map} \varphi(x) \in \mathcal{F}$,

$$
\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}
$$

For positive definite k,
$k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}$
Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel
$k\left(x, x^{\prime}\right)=\exp \left(-\gamma\left\|x-x^{\prime}\right\|^{2}\right)$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4.

Kernels and bandwidths

Kernel: $k_{\lambda}(x, y):=\prod_{i=1}^{d} \frac{1}{\lambda_{i}} K_{i}\left(\frac{x_{i}-y_{i}}{\lambda_{i}}\right)$
Bandwidth: $\lambda \in(0, \infty)^{d}$
Assumptions: K_{1}, \ldots, K_{d} integrable (to 1) and square integrable
Eg: Gaussian $\left(K_{i}(u) \propto e^{-u^{2}}\right)$, Laplace $\left(K_{i}(u) \propto e^{-|u|}\right)$, Matérn,...
Gaussian kernel: $k_{\lambda}(x-y):=\frac{1}{(\pi)^{d / 2}} \prod_{i=1}^{d} \frac{1}{\lambda_{i}} \exp \left(-\frac{\left(x_{i}-y_{i}\right)^{2}}{\lambda_{i}^{2}}\right)$

Kernel mean embedding

Function evaluation in an RKHS:

$$
f(x)=\left\langle f, \varphi_{x}\right\rangle_{\mathcal{F}}
$$

Expectation evaulation in an RKHS:

$$
\mathrm{E}_{P}(f(X))=\mathrm{E}_{P}\left\langle f, \varphi_{X}\right\rangle_{\mathcal{F}}=\left\langle f, \mathrm{E}_{P} \varphi_{X}\right\rangle_{\mathcal{F}}=:\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}}
$$

as long as feature map Bochner integrable: $\mathrm{E}_{P}\left\|\varphi_{X}\right\|=\mathrm{E}_{P} \sqrt{k_{\lambda}(X, X)}<\infty$.

$$
\mu_{P} \text { gives you expectations of all RKHS functions }
$$

"Kernel trick" for mean embeddings:

$$
\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}}=\mathrm{E}_{P, Q} k_{\lambda}(X, Y)
$$

for $X \sim P$ and $Y \sim Q$.

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
\operatorname{MMD}_{\lambda}^{2}(p, q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\underbrace{\mathrm{E}_{P} k_{\lambda}\left(X, X^{\prime}\right)}_{\text {(a) }}+\underbrace{\mathrm{E}_{Q} k_{\lambda}\left(Y, Y^{\prime}\right)}_{\text {(a) }}-2 \underbrace{\mathrm{E}_{P, Q} k_{\lambda}(X, Y)}_{\text {(b) }}
\end{aligned}
$$

(a)= within distrib. similarity, $(b)=$ cross-distrib. similarity.

Characteristic kernels on \mathbb{R}^{d}

Characteristic kernel: $\operatorname{MMD}_{\lambda}^{2}(p, q)=0$ iff $p=q$ Fukumizu et al. [NIPSorb],
Sriperumbudur et al.[COLT08]
When are translation invariant kernels $k_{\lambda}(x, y)=k_{\lambda}(x-y)$ characteristic on \mathbb{R}^{d} ?

Characteristic kernels on \mathbb{R}^{d}

Characteristic kernel: $\operatorname{MMD}_{\lambda}^{2}(p, q)=0$ iff $p=q$ Fukumizu et al. [NIPSorf], Sriperumbudur et al.[COLT08]
When are translation invariant kernels $k_{\lambda}(x, y)=k_{\lambda}(x-y)$ characteristic on \mathbb{R}^{d} ?
Bochner's theorem:

$$
k_{\lambda}(x-y)=\int_{\mathbb{R}^{d}} e^{-i(x-y)^{\top} \omega} d \Lambda(\omega)
$$

$\Lambda(\omega)$ finite non-negative Borel measure.
Characteristic function of P via Fourier transform

$$
\varphi_{P}(\omega)=\int_{\mathbb{R}^{d}} e^{i x^{\top} \omega} d P(x)
$$

Characteristic kernels on \mathbb{R}^{d}

Fourier representation of MMD on \mathbb{R}^{d} :

$$
\operatorname{MMD}_{\lambda}^{2}(p, q)=\int\left|\varphi_{P}(\omega)-\varphi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
$$

Proof:

$$
\begin{aligned}
& \operatorname{MMD}_{\lambda}^{2}(p, q) \\
& :=E_{P} k_{\lambda}\left(x-x^{\prime}\right)+E_{Q} k_{\lambda}\left(y-y^{\prime}\right)-2 E_{P, Q} k_{\lambda}(x, y) \\
& =\iint[k(s-t) d(P-Q)(s)] d(P-Q)(t) \\
& =\iint_{\mathbb{R}^{d}}\left|\phi_{P}(\omega)-\phi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
\end{aligned}
$$

Characteristic kernels on \mathbb{R}^{d}

Fourier representation of MMD on \mathbb{R}^{d} :

$$
\operatorname{MMD}_{\lambda}^{2}(p, q)=\int\left|\varphi_{P}(\omega)-\varphi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
$$

Proof:

$$
\begin{aligned}
& \operatorname{MMD}_{\lambda}^{2}(p, q) \\
& :=E_{P} k_{\lambda}\left(x-x^{\prime}\right)+E_{Q} k_{\lambda}\left(y-y^{\prime}\right)-2 E_{P, Q} k_{\lambda}(x, y) \\
& =\iint\left[k_{\lambda}(s-t) d(P-Q)(s)\right] d(P-Q)(t) \\
& =\int_{\mathbb{R}^{d}}\left|\phi_{P}(\omega)-\phi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
\end{aligned}
$$

Characteristic kernels on \mathbb{R}^{d}

Fourier representation of MMD on \mathbb{R}^{d} :

$$
\operatorname{MMD}_{\lambda}^{2}(p, q)=\int\left|\varphi_{P}(\omega)-\varphi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
$$

Proof:

$$
\begin{aligned}
& \operatorname{MMD}_{\lambda}^{2}(p, q) \\
& :=E_{P} k_{\lambda}\left(x-x^{\prime}\right)+E_{Q} k_{\lambda}\left(y-y^{\prime}\right)-2 E_{P, Q} k_{\lambda}(x, y) \\
& =\iint\left[k_{\lambda}(s-t) d(P-Q)(s)\right] d(P-Q)(t) \\
& =\int_{\mathbb{R}^{d}}\left|\phi_{P}(\omega)-\phi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
\end{aligned}
$$

Summary: characteristic kernels on \mathbb{R}^{d}

A translation invariant k_{λ} is characteristic for prob. measures on \mathbb{R}^{d} if and only if

$$
\operatorname{supp}(\Lambda)=\mathbb{R}^{d}
$$

(i.e. support zero on at most a countable set) Sriperumbudur et al. [COLT08, JMLR10]

Corollary: any continuous, compactly supported k_{λ} characteristic (since Fourier spectrum $\Lambda(\omega)$ cannot be zero on an interval).

Summary: characteristic kernels on \mathbb{R}^{d}

A translation invariant k_{λ} is characteristic for prob. measures on \mathbb{R}^{d} if and only if

$$
\operatorname{supp}(\Lambda)=\mathbb{R}^{d}
$$

(i.e. support zero on at most a countable set) Sriperumbudur et al. [COLT08, JMLR10]

Corollary: any continuous, compactly supported k_{λ} characteristic (since Fourier spectrum $\Lambda(\omega)$ cannot be zero on an interval).
1-D proof sketch from [Mallat, 99, Theorem 2.6], proof on \mathbb{R}^{d} via distribution theory in Sriperumbudur et al. [JMLR10, Corollary 10 p. 1535]

Two-Sample Testing with MMD

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)=\frac{1}{m(m-1)} \sum_{i \neq j} k_{\lambda}\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k_{\lambda}\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{m n} \sum_{i, j} k_{\lambda}\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Two-sample MMD test:

$$
\Delta_{\alpha}^{\lambda}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right):=\mathbb{1}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)>q_{1-\alpha}^{\lambda}\right)
$$

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)=\frac{1}{m(m-1)} \sum_{i \neq j} k_{\lambda}\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k_{\lambda}\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{m n} \sum_{i, j} k_{\lambda}\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Two-sample MMD test:

$$
\Delta_{\alpha}^{\lambda}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right):=\mathbb{1}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)>q_{1-\alpha}^{\lambda}\right)
$$

Want threshold $q_{1-\alpha}^{\lambda}$ for test $\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)$ to get false positive rate α

Asymptotics of $\widehat{M M D}^{2}$ when $P=Q$

$P=Q=\mathcal{N}(0,1)$, statistic has asymptotic distribution

$$
(m+n) \widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right) \sim \sum_{l=1}^{\infty} \lambda_{l}\left[z_{l}^{2}-2\right]
$$

where

$$
\begin{aligned}
\lambda_{i} \psi_{i}\left(x^{\prime}\right) & =\int_{\mathcal{X}} \underbrace{\tilde{k}_{\lambda}\left(x, x^{\prime}\right)}_{\text {centred }} \psi_{i}(x) d P(x) \\
z_{l} & \sim \mathcal{N}(0,2) \quad \text { i.i.d. }
\end{aligned}
$$

How do we get the test threshold $q_{1-\alpha}^{\lambda}$?

Original empirical MMD for dogs and fish:

$$
\begin{aligned}
& X=\left[\begin{array}{ll}
\text { Mn m }
\end{array} \mathrm{m}\right. \\
& Y=[\operatorname{lec} . .
\end{aligned}
$$

$$
\begin{aligned}
\widehat{M M D}^{2}= & \frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right) \\
& +\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
& -\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{aligned}
$$

How do we get test threshold $q_{1-\alpha}^{\lambda}$?

Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
& \tilde{X}=\left[\begin{array}{ll}
\ln & \operatorname{mot} . .]
\end{array}\right. \\
& \tilde{Y}=[\text { 且 } 1 . .]
\end{aligned}
$$

How do we get test threshold $q_{1-\alpha}^{\lambda}$?
Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
& \tilde{X}=[\text { me. } n] \\
& \tilde{Y}=[M \mathrm{M} . \mathrm{M}]
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right) \\
& \frac{1}{m(m-1)} \sum_{i \neq j} k\left(\tilde{x}_{i}, \tilde{x}_{j}\right) \\
& +\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\tilde{y}_{i}, \tilde{y}_{j}\right) \\
& -\frac{2}{m n} \sum_{i, j} k\left(\tilde{x}_{i}, \tilde{y}_{j}\right)
\end{aligned}
$$

MMD test thresholds: permutation, wild bootstrap
Two-sample MMD test:

$$
\Delta_{\alpha}^{\lambda, B}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right):=\mathbb{1}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)>\hat{q}_{1-\alpha}^{\lambda}\right)
$$

Quantile: $\hat{q}_{1-\alpha}^{\lambda}$ is the $\lceil(B+1)(1-\alpha)\rceil$-th largest value of $\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)$ and $B \mathcal{H}_{0}$-simulated test statistics

Permutations: $\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}^{\sigma}, \mathbb{Y}_{n}^{\sigma}\right)$ where $\left(\mathbb{X}_{m}^{\sigma}, \mathbb{Y}_{n}^{\sigma}\right)=\sigma\left(\mathbb{X}_{m} \cup \mathbb{Y}_{n}\right)$

MMD test thresholds: permutation, wild bootstrap
Two-sample MMD test:

$$
\Delta_{\alpha}^{\lambda, B}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right):=\mathbb{1}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)>\hat{q}_{1-\alpha}^{\lambda}\right)
$$

Quantile: $\hat{q}_{1-\alpha}^{\lambda}$ is the $\lceil(B+1)(1-\alpha)\rceil$-th largest value of $\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)$ and $B \mathcal{H}_{0}$-simulated test statistics

Permutations: $\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}^{\sigma}, \mathbb{Y}_{n}^{\sigma}\right)$ where $\left(\mathbb{X}_{m}^{\sigma}, \mathbb{Y}_{n}^{\sigma}\right)=\sigma\left(\mathbb{X}_{m} \cup \mathbb{Y}_{n}\right)$
Non-asymptotic level (permutation): $\mathbb{P}_{p \times p}\left(\Delta_{\alpha}^{\lambda, B}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)=1\right) \leq \alpha$,
Time complexity: $\mathcal{O}\left(B(m+n)^{2}\right)$

Approx. null distribution of $\widehat{M M D}^{2}$ via permutation

Null distribution estimated from 500 permutations
Example: $P=Q=\mathcal{N}(0,1)$

Kernel choice: MMD as an IPM

Maximum mean discrepancy: smooth function for P vs Q

$$
\operatorname{MMD}_{\lambda}(p, q):=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right]
$$

Kernel Choice: MMD as an IPM

- Simple choice: Gaussian

$$
k_{\lambda}(x, y)=\frac{1}{(\pi)^{d / 2}} \prod_{i=1}^{d} \frac{1}{\lambda_{i}} \exp \left(-\frac{\left(x_{i}-y_{i}\right)^{2}}{\lambda_{i}{ }^{2}}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

Kernel Choice: MMD as an IPM

- Simple choice: Gaussian

$$
k_{\lambda}(x, y)=\frac{1}{(\pi)^{d / 2}} \prod_{i=1}^{d} \frac{1}{\lambda_{i}} \exp \left(-\frac{\left(x_{i}-y_{i}\right)^{2}}{\lambda_{i}{ }^{2}}\right)
$$

■ Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
■ But choice of $\lambda_{1} \cdots \lambda_{d}$ is very important for finite $m, n \ldots$

Kernel Choice: MMD as an IPM

- Simple choice: Gaussian

$$
k_{\lambda}(x, y)=\frac{1}{(\pi)^{d / 2}} \prod_{i=1}^{d} \frac{1}{\lambda_{i}} \exp \left(-\frac{\left(x_{i}-y_{i}\right)^{2}}{\lambda_{i}^{2}}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
\square But choice of $\lambda_{1} \cdots \lambda_{d}$ is very important for finite $m, n \ldots$

Kernel Choice: MMD as an IPM

- Simple choice: Gaussian

$$
k_{\lambda}(x, y)=\frac{1}{(\pi)^{d / 2}} \prod_{i=1}^{d} \frac{1}{\lambda_{i}} \exp \left(-\frac{\left(x_{i}-y_{i}\right)^{2}}{\lambda_{i}{ }^{2}}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

■ But choice of $\lambda_{1} \cdots \lambda_{d}$ is very important for finite $m, n \ldots$

Kernel Choice: MMD as an IPM

- Simple choice: Gaussian

$$
k_{\lambda}(x, y)=\frac{1}{(\pi)^{d / 2}} \prod_{i=1}^{d} \frac{1}{\lambda_{i}} \exp \left(-\frac{\left(x_{i}-y_{i}\right)^{2}}{\lambda_{i}^{2}}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
\square But choice of $\lambda_{1} \cdots \lambda_{d}$ is very important for finite $m, n \ldots$

Test power for known smoothness of $p-q$

Sobolev balls

Regularity/smoothness assumption: $p-q \in \mathcal{S}_{d}^{s}(R)$
Sobolev balls:

$$
\mathcal{S}_{d}^{s}(R):=\left\{f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}}\|\xi\|_{2}^{2 s}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi \leq(2 \pi)^{d} R^{2}\right\}
$$

radius $R>0$ dimension d
smoothness parameter $s>0$
Fourier transform $\widehat{f}(\xi):=\int_{\mathbb{R}^{d}} f(x) e^{-i x^{\top} \xi} \mathrm{d} x$

Sobolev balls

Regularity/smoothness assumption: $p-q \in \mathcal{S}_{d}^{s}(R)$
Sobolev balls:

$$
\mathcal{S}_{d}^{s}(R):=\left\{f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}}\|\xi\|_{2}^{2 s}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi \leq(2 \pi)^{d} R^{2}\right\}
$$

radius $R>0$ dimension d
smoothness parameter $s>0$
Fourier transform $\widehat{f}(\xi):=\int_{\mathbb{R}^{d}} f(x) e^{-i x^{\top} \xi} \mathrm{d} x$

MMD test power, known smoothness
Theorem (MMD test minimax optimality)
For known smoothness s, assuming $p-q \in \mathcal{S}_{d}^{s}(R)$ and setting

$$
\lambda_{i}^{\star}:=(m+n)^{-2 /(4 s+d)}
$$

for $i=1, \ldots, d$, the condition

$$
\|p-q\|_{2} \geq \frac{C}{\sqrt{\beta}}(m+n)^{-2 s /(4 s+d)}
$$

guarantees control of the type II error of the MMD test

$$
\mathbb{P}_{p \times q \times r}\left(\Delta_{\alpha}^{\lambda, B}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)=0\right) \leq \beta .
$$

Minimax rate over Sobolev balls: $(m+n)^{-2 s /(4 s+d)}$

Proof of theorem 1 (next few slides)

For $\alpha, \beta \in(0,1)$, Type II error control

$$
\mathbb{P}_{p \times q \times r}\left(\Delta_{\alpha}^{\lambda, B}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)=0\right) \leq \beta
$$

is implied by (Chebyshev)
$\mathbb{P}_{p \times q \times r}\left(\operatorname{MMD}_{\lambda}^{2}(p, q) \geq \sqrt{\frac{2}{\beta} \operatorname{var}_{p \times q}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)\right)}+\widehat{q}_{1-\alpha}^{\lambda}\right) \geq 1-\frac{\beta}{2}$

Proof of theorem 1 (next few slides)

$$
\underbrace{\operatorname{MMD}_{\lambda}^{2}(p, q)}_{(A)} \geq \underbrace{\sqrt{\frac{2}{\beta} \operatorname{var}_{p \times q}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)\right)}}_{(B)}+\underbrace{\widehat{q}_{1-\alpha}^{\lambda}}_{(C)}
$$

We address each of the three terms (A), (B), (C) in turn.

Breakdown of the MMD (A)

The MMD can be decomposed

$$
\begin{aligned}
\operatorname{MMD}_{\lambda}^{2}(p, q)= & \left\langle p-q, k_{\lambda} *(p-q)\right\rangle_{2} \\
= & \frac{1}{2}\left(\|p-q\|_{2}^{2}+\left\|k_{\lambda} *(p-q)\right\|_{2}^{2}\right. \\
& \left.\quad-\left\|k_{\lambda} *(p-q)-(p-q)\right\|_{2}^{2}\right)
\end{aligned}
$$

Breakdown of the MMD (A)

The MMD can be decomposed

$$
\begin{aligned}
\operatorname{MMD}_{\lambda}^{2}(p, q)= & \left\langle p-q, k_{\lambda} *(p-q)\right\rangle_{2} \\
= & \frac{1}{2}\left(\|p-q\|_{2}^{2}+\left\|k_{\lambda} *(p-q)\right\|_{2}^{2}\right. \\
& \left.\quad-\left\|k_{\lambda} *(p-q)-(p-q)\right\|_{2}^{2}\right)
\end{aligned}
$$

■ Keep the first term (test "radius" for power $1-\beta$): $\|p-q\|_{2}^{2}$

- Get rid of second term using variance (next slides): $\left\|k_{\lambda} *(p-q)\right\|_{2}^{2}$

■ Bound the final term:if $p-q \in \mathcal{S}_{d}^{s}(R)$, then $\exists S \in(0,1)$ such that

$$
\left\|k_{\lambda} *(p-q)-(p-q)\right\|_{2}^{2}-S^{2}\|p-q\|_{2}^{2} \leq C_{0}(d, s, R) \sum_{i=1}^{d} \lambda_{i}{ }^{2 s}
$$

Updating the power condition after (A)

The power condition (which needs to hold with probability $1-\beta / 2$)

$$
\underbrace{\operatorname{MMD}_{\lambda}^{2}(p, q)}_{(A)} \geq \underbrace{\sqrt{\frac{2}{\beta} \operatorname{var}_{p \times q}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)\right)}}_{(B)}+\underbrace{\hat{q}_{1-\alpha}^{\lambda}}_{(C)},
$$

Updating the power condition after (A)

The power condition (which needs to hold with probability $1-\beta / 2$)

$$
\underbrace{\operatorname{MMD}_{\lambda}^{2}(p, q)}_{(A)} \geq \underbrace{\sqrt{\frac{2}{\beta} \operatorname{var}_{p \times q}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)\right)}}_{(B)}+\underbrace{\hat{q}_{1-\alpha}^{\lambda}}_{(C)},
$$

after updating (A), then becomes

$$
\begin{aligned}
\left(1-S^{2}\right)\|p-q\|_{2}^{2} \geq C_{0} & \sum_{i=1}^{d} \lambda_{i}{ }^{2 s}-\left\|k_{\lambda} *(p-q)\right\|_{2}^{2} \\
& +2 \underbrace{2 \sqrt{\frac{2}{\beta} \operatorname{var}_{p \times q}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)\right)}}_{(B)}+2 \underbrace{\widehat{q}_{1-\alpha}^{\lambda}}_{(C)}
\end{aligned}
$$

Bound on the variance (B)

Assume that $\max \left(\|p\|_{\infty},\|q\|_{\infty}\right) \leq M$ for some $M>0$.

$$
\begin{aligned}
& \operatorname{var}_{p \times q}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)\right) \\
& \leq C_{1}(M, d)\left(\frac{\left\|k_{\lambda} *(p-q)\right\|_{2}^{2}}{m+n}+\frac{1}{(m+n)^{2} \lambda_{1} \cdots \lambda_{d}}\right)
\end{aligned}
$$

Bound on the variance (B)
Assume that $\max \left(\|p\|_{\infty},\|q\|_{\infty}\right) \leq M$ for some $M>0$.

$$
\begin{aligned}
& \operatorname{var}_{p \times q}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)\right) \\
& \leq C_{1}(M, d)\left(\frac{\left\|k_{\lambda} *(p-q)\right\|_{2}^{2}}{m+n}+\frac{1}{(m+n)^{2} \lambda_{1} \cdots \lambda_{d}}\right)
\end{aligned}
$$

Assuming $\lambda_{1} \cdots \lambda_{d} \leq 1$,

$$
\begin{aligned}
(B)= & 2 \sqrt{\frac{2}{\beta} \operatorname{var}_{p \times q}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)\right)} \\
& \leq\left\|k_{\lambda} *(p-q)\right\|_{2}^{2}+\frac{C_{1}^{\prime}}{\sqrt{\beta}(m+n) \sqrt{\lambda_{1} \cdots \lambda_{d}}}
\end{aligned}
$$

Term $\left\|k_{\lambda} *(p-q)\right\|_{2}^{2}$ will cancel in the power condition.

Updating the power condition after (A), (B)

The power condition (which needs to hold with probability $1-\beta / 2$)

$$
\begin{aligned}
\left(1-S^{2}\right)\|p-q\|_{2}^{2} \geq C_{0} & \sum_{i=1}^{d} \lambda_{i}{ }^{2 s}-\left\|k_{\lambda} *(p-q)\right\|_{2}^{2} \\
& +2 \underbrace{2 \sqrt{\frac{2}{\beta} \operatorname{var}_{p \times q}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)\right)}}_{(B)}+2 \underbrace{\widehat{q}_{1-\alpha}^{\lambda}}_{(C)}
\end{aligned}
$$

Updating the power condition after (A), (B)

The power condition (which needs to hold with probability $1-\beta / 2$)

$$
\begin{aligned}
\left(1-S^{2}\right)\|p-q\|_{2}^{2} \geq C_{0} & \sum_{i=1}^{d} \lambda_{i}^{2 s}-\left\|k_{\lambda} *(p-q)\right\|_{2}^{2} \\
& +2 \underbrace{2 \sqrt{\frac{2}{\beta} \operatorname{var}_{p \times q}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)\right)}}_{(B)}+2 \underbrace{\widehat{q}_{1-\alpha}^{\lambda}}_{(C)}
\end{aligned}
$$

After bounding (B), becomes

$$
\left(1-S^{2}\right)\|p-q\|_{2}^{2} \geq \frac{C_{1}^{\prime}}{\sqrt{\beta}(m+n) \lambda_{1} \cdots \lambda_{d}}+C_{0} \sum_{i=1}^{d} \lambda_{i}{ }^{2 s}+2 \underbrace{\widehat{q}_{1-\alpha}^{\lambda}}_{(C)} .
$$

Bound on estimated $1-\alpha$ quantile (C)

Assume that $\max \left(\|p\|_{\infty},\|q\|_{\infty}\right) \leq M$ for some $M>0$. We have

$$
\mathbb{P}_{p \times q \times r}\left(\hat{q}_{1-\alpha}^{\lambda} \leq C_{2}(M, d) \frac{\ln \left(\frac{1}{\alpha}\right)}{\sqrt{\beta}(m+n) \sqrt{\lambda_{1} \cdots \lambda_{d}}}\right) \geq 1-\frac{\beta}{2}
$$

for $B \geq \frac{3}{\alpha^{2}}\left(\ln \left(\frac{8}{\beta}\right)+\alpha(1-\alpha)\right)$ and $\alpha \in(0,0.5)$.

Updating the power condition after (A), (B), (C)

The power condition (which needs to hold with probability $1-\beta / 2$)

$$
\left(1-S^{2}\right)\|p-q\|_{2}^{2} \geq \frac{C_{1}^{\prime}}{\sqrt{\beta}(m+n) \sqrt{\lambda_{1} \cdots \lambda_{d}}}+C_{0} \sum_{i=1}^{d} \lambda_{i}{ }^{2 s}+2 \underbrace{\widehat{q}_{1-\alpha}^{\lambda}}_{(C)} .
$$

Fine print: $\alpha \in\left(0, e^{-1}\right), B \geq \frac{3}{\alpha^{2}}\left(\ln \left(\frac{8}{\beta}\right)+\alpha(1-\alpha)\right)$, and $\lambda_{1} \cdots \lambda_{d} \leq 1$.

Updating the power condition after (A), (B), (C)

The power condition (which needs to hold with probability $1-\beta / 2$)

$$
\left(1-S^{2}\right)\|p-q\|_{2}^{2} \geq \frac{C_{1}^{\prime}}{\sqrt{\beta}(m+n) \sqrt{\lambda_{1} \cdots \lambda_{d}}}+C_{0} \sum_{i=1}^{d} \lambda_{i}^{2 s}+2 \underbrace{\hat{q}_{1-\alpha}^{\lambda}}_{(C)} .
$$

After updating (C)

$$
\|p-q\|_{2}^{2} \geq \frac{C_{4}(M, d, s, S, R)}{\sqrt{\beta}}\left(\sum_{i=1}^{d} \lambda_{i}^{2 s}+\frac{\ln \left(\frac{1}{\alpha}\right)}{(m+n) \sqrt{\lambda_{1} \cdots \lambda_{d}}}\right) .
$$

Fine print: $\alpha \in\left(0, e^{-1}\right), B \geq \frac{3}{\alpha^{2}}\left(\ln \left(\frac{8}{\beta}\right)+\alpha(1-\alpha)\right)$, and $\lambda_{1} \cdots \lambda_{d} \leq 1$.

Updating the power condition after (A), (B), (C)

The power condition (which needs to hold with probability $1-\beta / 2$)

$$
\left(1-S^{2}\right)\|p-q\|_{2}^{2} \geq \frac{C_{1}^{\prime}}{\sqrt{\beta}(m+n) \sqrt{\lambda_{1} \cdots \lambda_{d}}}+C_{0} \sum_{i=1}^{d} \lambda_{i}^{2 s}+2 \underbrace{\hat{q}_{1-\alpha}^{\lambda}}_{(C)} .
$$

After updating (C)

$$
\|p-q\|_{2}^{2} \geq \frac{C_{4}(M, d, s, S, R)}{\sqrt{\beta}}\left(\sum_{i=1}^{d} \lambda_{i}^{2 s}+\frac{\ln \left(\frac{1}{\alpha}\right)}{(m+n) \sqrt{\lambda_{1} \cdots \lambda_{d}}}\right) .
$$

Picking $\lambda_{i}^{\star}:=(m+n)^{-2 /(4 s+d)}$ controls the Type II error when

$$
\|p-q\|_{2} \geq \frac{C}{\sqrt{\beta}}(m+n)^{-2 s /(4 s+d)}
$$

Fine print: $\alpha \in\left(0, e^{-1}\right), B \geq \frac{3}{\alpha^{2}}\left(\ln \left(\frac{8}{\beta}\right)+\alpha(1-\alpha)\right)$, and $\lambda_{1} \cdots \lambda_{d} \leq 1$.

Optimizing kernel parameters: aggregation

MMDAgg for a collection of bandwidths Λ

MMDAgg (MMD Aggregation): non-asymptotic level α

positive weights $\left(w_{\lambda}\right)_{\lambda \in \Lambda}$ satisfying $\sum_{\lambda \in \Lambda} w_{\lambda} \leq 1$
Correction u_{α} defined as

more powerful than Bonferroni correction as $u_{\alpha} \geq \alpha$
Time complexity $\mathcal{O}\left(|A|\left(B_{1}+B_{2}\right)(m+n)^{2}\right)$

MMDAgg (MMD Aggregation): non-asymptotic level α

$$
\Delta_{\alpha}^{\Lambda}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right):=\mathbb{1}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)>\widehat{q}_{1-u_{\alpha} w_{\lambda}}^{\lambda} \text { for some } \lambda \in \Lambda\right)
$$

positive weights $\left(w_{\lambda}\right)_{\lambda \in \Lambda}$ satisfying $\sum_{\lambda \in \Lambda} w_{\lambda} \leq 1$
Correction u_{α} defined as
$\sup \left\{u>0: \mathbb{P}_{p \times p}\left(\max _{\lambda \in \Lambda}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)-\widehat{q}_{1-u w_{\lambda}}^{\lambda}\right)>0\right) \leq \alpha\right\}$
more powerful than Bonferroni correction as $u_{\alpha} \geq \alpha$
Time complevity $O\left(|\wedge|\left(B_{1}+B_{2}\right)(m+n)^{2}\right)$

MMDAgg for a collection of bandwidths Λ

MMDAgg (MMD Aggregation): non-asymptotic level α

$$
\Delta_{\alpha}^{\Lambda}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right):=\mathbb{1}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)>\hat{q}_{1-u_{\alpha} w_{\lambda}}^{\lambda} \text { for some } \lambda \in \Lambda\right)
$$

positive weights $\left(w_{\lambda}\right)_{\lambda \in \Lambda}$ satisfying $\sum_{\lambda \in \Lambda} w_{\lambda} \leq 1$
Correction u_{α} defined as

$$
\sup \left\{u>0: \mathbb{P}_{p \times p}\left(\max _{\lambda \in \Lambda}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)-\widehat{q}_{1-u w_{\lambda}}^{\lambda}\right)>0\right) \leq \alpha\right\}
$$

more powerful than Bonferroni correction as $u_{\alpha} \geq \alpha$
Time complexity $\mathcal{O}\left(|\Lambda|\left(B_{1}+B_{2}\right)(m+n)^{2}\right)$

MMDAgg for a collection of bandwidths Λ

MMDAgg (MMD Aggregation): non-asymptotic level α

$$
\Delta_{\alpha}^{\Lambda}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right):=\mathbb{1}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)>\widehat{q}_{1-u_{\alpha} w_{\lambda}}^{\lambda} \text { for some } \lambda \in \Lambda\right)
$$

positive weights $\left(w_{\lambda}\right)_{\lambda \in \Lambda}$ satisfying $\sum_{\lambda \in \Lambda} w_{\lambda} \leq 1$
Correction u_{α} defined as

$$
\sup \left\{u>0: \mathbb{P}_{p \times p}\left(\max _{\lambda \in \Lambda}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)-\widehat{q}_{1-u w_{\lambda}}^{\lambda}\right)>0\right) \leq \alpha\right\}
$$

more powerful than Bonferroni correction as $u_{\alpha} \geq \alpha$
Time complexity $\mathcal{O}\left(|\Lambda|\left(B_{1}+B_{2}\right)(m+n)^{2}\right)$

Multiple testing correction comparison

Simple example: 3-d Gaussians with different means

$$
\begin{aligned}
\Lambda(i) & :=\left\{2^{\ell} \lambda_{\text {med }}: \ell \in\{-i, \ldots, i\}\right\} \text { for } i \in\{0,10,20,30,40,50\} \\
w_{\lambda} & :=1 /|\Lambda|
\end{aligned}
$$

MMDAgg test power guarantee

Theorem (MMDAgg minimax adaptivity)

$$
\Lambda^{\star}:=\left\{2^{-\ell} \mathbb{1}_{d}: \ell \in\left\{1, \ldots,\left[\frac{2}{d} \log _{2}\left(\frac{m+n}{\ln (\ln (m+n))}\right)\right]\right\}\right\}, w_{\lambda}:=\frac{6}{\pi^{2} \ell^{2}}
$$

Assuming $p-q \in \mathcal{S}_{d}^{s}(R)$, the condition

$$
\|p-q\|_{2} \geq \frac{C}{\sqrt{\beta}}\left(\frac{m+n}{\ln (\ln (m+n))}\right)^{-2 s /(4 s+d)}
$$

guarantees control of the type II error of MMDAgg

$$
\mathbb{P}_{p \times q}\left(\Delta_{\alpha}^{\Lambda^{+}}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)=0\right) \leq \beta .
$$

Minimax rate over Sobolev balls: $(m+n)^{-2 s /(4 s+d)}$
Minimax adaptive over $\left\{\mathcal{S}_{d}^{s}(R): s>0, R>0\right\}$
Unlike the MMD test $\Delta_{\alpha}^{\lambda^{*}}$, MMDAgg $\Delta_{\alpha}^{\Lambda^{\star}}$ is independent of s

MMDAgg parameter-free user-friendly implementation
Radial basis function (RBF) kernel: $k_{\lambda}(x, y):=K$
Collection of bandwidths Λ : discretisation of the interval where $\lambda_{\min }$ and $\lambda_{\max }$ are the (robust) minimum and maximum of

$$
\left\{\|x-y\|: x \in \mathbb{X}_{m}, y \in \mathbb{Y}_{n}\right\}
$$

Possible to aggregate several kernels each with multiple bandwidths
Uniform weights: of. :- $1 /|\wedge|$
Number of permutations / wild bootstraps: $B_{1}=B_{2}=2000$
JAX: runs on either CPU or GPU (significant speed improvements)
■ JAX GPU runs 100 times faster than Numpy CPU
mmdagg package: github.com/antoninschrab/mmdagg
from mmdagg import mmdagg
output $=\operatorname{mmdagg}(\mathrm{X}, \mathrm{Y})$

MMDAgg parameter-free user-friendly implementation Radial basis function (RBF) kernel: $k_{\lambda}(x, y):=K\left(\left\|\frac{x-y}{\lambda}\right\|\right)$
Collection of bandwidths Λ : discretisation of the interval $\left[\lambda_{\min }, \lambda_{\text {n }}\right.$
where $\lambda_{\min }$ and $\lambda_{\max }$ are the (robust) minimum and maximum of Possible to aggregate several kernels each with multiple bandwidths Uniform weights: ou, $:=1 /|\wedge|$ Number of permutations / wild bootstraps: $B_{1}=B_{2}=2000$ JAX: runs on either CPU or GPU (significant speed improvements)
\square
mmdagg package: github.com/antoninschrab/mmdagg
from mmdagg import mmdagg
output $=\operatorname{mmdagg}(\mathrm{X}, \mathrm{Y})$

MMDAgg parameter-free user-friendly implementation

 Radial basis function (RBF) kernel: $k_{\lambda}(x, y):=K\left(\left\|\frac{x-y}{\lambda}\right\|\right)$ Collection of bandwidths Λ : discretisation of the interval $\left[\lambda_{\min }, \lambda_{\max }\right]$ where $\lambda_{\min }$ and $\lambda_{\max }$ are the (robust) minimum and maximum of$$
\left\{\|x-y\|: x \in \mathbb{X}_{m}, y \in \mathbb{Y}_{n}\right\}
$$

Possible to aggregate several kernels each with multiple bandwidths

from mmdagg import mmdagg
output $=\operatorname{mmdagg}(X, Y)$

MMDAgg parameter-free user-friendly implementation

 Radial basis function (RBF) kernel: $k_{\lambda}(x, y):=K\left(\left\|\frac{x-y}{\lambda}\right\|\right)$ Collection of bandwidths Λ : discretisation of the interval $\left[\lambda_{\min }, \lambda_{\max }\right]$ where $\lambda_{\min }$ and $\lambda_{\max }$ are the (robust) minimum and maximum of$$
\left\{\|x-y\|: x \in \mathbb{X}_{m}, y \in \mathbb{Y}_{n}\right\}
$$

Possible to aggregate several kernels each with multiple bandwidths
\square
from mmdagg import mmdagg
output $=\operatorname{mmdagg}(X, V)$

MMDAgg parameter-free user-friendly implementation

 Radial basis function (RBF) kernel: $k_{\lambda}(x, y):=K\left(\left\|\frac{x-y}{\lambda}\right\|\right)$ Collection of bandwidths Λ : discretisation of the interval $\left[\lambda_{\min }, \lambda_{\max }\right.$] where $\lambda_{\min }$ and $\lambda_{\max }$ are the (robust) minimum and maximum of$$
\left\{\|x-y\|: x \in \mathbb{X}_{m}, y \in \mathbb{Y}_{n}\right\}
$$

Possible to aggregate several kernels each with multiple bandwidths Uniform weights: $w_{\lambda}:=1 /|\Lambda|$

Number of permutations / wild bootstraps: JAX: runs on either CPU or GPU (significant speed improvements)
from mmdagg import mmdagg
output $=\operatorname{mmdagg}(X, Y)$

MMDAgg parameter-free user-friendly implementation

 Radial basis function (RBF) kernel: $k_{\lambda}(x, y):=K\left(\left\|\frac{x-y}{\lambda}\right\|\right)$ Collection of bandwidths Λ : discretisation of the interval $\left[\lambda_{\min }, \lambda_{\max }\right.$] where $\lambda_{\min }$ and $\lambda_{\max }$ are the (robust) minimum and maximum of$$
\left\{\|x-y\|: x \in \mathbb{X}_{m}, y \in \mathbb{Y}_{n}\right\}
$$

Possible to aggregate several kernels each with multiple bandwidths
Uniform weights: $w_{\lambda}:=1 /|\Lambda|$
Number of permutations / wild bootstraps: $B_{1}=B_{2}=2000$
from mmdagg import mmdagg
output $=\operatorname{mmdagg}(X, Y)$ \#

MMDAgg parameter-free user-friendly implementation

 Radial basis function (RBF) kernel: $k_{\lambda}(x, y):=K\left(\left\|\frac{x-y}{\lambda}\right\|\right)$ Collection of bandwidths Λ : discretisation of the interval $\left[\lambda_{\min }, \lambda_{\max }\right]$ where $\lambda_{\min }$ and $\lambda_{\max }$ are the (robust) minimum and maximum of$$
\left\{\|x-y\|: x \in \mathbb{X}_{m}, y \in \mathbb{Y}_{n}\right\}
$$

Possible to aggregate several kernels each with multiple bandwidths
Uniform weights: $w_{\lambda}:=1 /|\Lambda|$
Number of permutations / wild bootstraps: $B_{1}=B_{2}=2000$ JAX: runs on either CPU or GPU (significant speed improvements)
■ JAX GPU runs 100 times faster than Numpy CPU

> from mmdagg import mmdagg
output $=\operatorname{mmdagg}(X, Y)$ \#

MMDAgg parameter-free user-friendly implementation

 Radial basis function (RBF) kernel: $k_{\lambda}(x, y):=K\left(\left\|\frac{x-y}{\lambda}\right\|\right)$ Collection of bandwidths Λ : discretisation of the interval $\left[\lambda_{\min }, \lambda_{\max }\right.$] where $\lambda_{\min }$ and $\lambda_{\max }$ are the (robust) minimum and maximum of$$
\left\{\|x-y\|: x \in \mathbb{X}_{m}, y \in \mathbb{Y}_{n}\right\}
$$

Possible to aggregate several kernels each with multiple bandwidths Uniform weights: $w_{\lambda}:=1 /|\Lambda|$

Number of permutations / wild bootstraps: $B_{1}=B_{2}=2000$ JAX: runs on either CPU or GPU (significant speed improvements)
■ JAX GPU runs 100 times faster than Numpy CPU mmdagg package: github.com/antoninschrab/mmdagg

$$
\begin{aligned}
& \text { from mmdagg import mmdagg } \\
& \text { output }=\operatorname{mmdagg}(\mathrm{X}, \mathrm{Y}) \# 0 \text { or } 1
\end{aligned}
$$

```
# X shape (m, d)
# Y shape (n, d)
```


Experiment on perturbed uniform $d=1$

3 perturbations

Experiment on perturbed uniform $d=1$

- $\begin{array}{ll}\text { - } & \text { MMDAgg } \\ \text {----- } & \text { MMD median } \\ \text {........ MMD extra data }\end{array}$

Experiment on perturbed uniform $d=2$

Experiment on perturbed uniform $d=2$

-

---- MMD median MMD extra data

Experiment on MNIST digits

Experiment on MNIST digits

Experiment on MNIST digits

Experiment on MNIST digits

0	1	2	3	5	7
0	1	2	3	5	7
9	1	2	3	5	7
0	1	2	3	5	9
6	2	3	5	7	9

Experiment on MNIST digits

Experiment on MNIST digits

Experiment on MNIST digits

Experiment on image shifts on MNIST \& CIFAR-10
Failing Loudly Benchmark: Rabanser et al., 2019

Experiment on image shifts on MNIST \& CIFAR-10

Failing Loudly Benchmark: Rabanser et al., 2019

Experiment on image shifts on MNIST \& CIFAR-10

※ MMDAgg --- AutoML

MMD kernel choice without data splitting

MMD Aggregated Two-Sample Test (JMLR 2023):

Statistics > Machine Learning

[Submitted on 28 Oct 2021 (v1), last revised 29 May 2023 (this version, v3)]

MMD Aggregated Two-Sample Test

Antonin Schrab, Ilmun Kim, Mélisande Albert, Béatrice Laurent, Benjamin Guedj, Arthur Gretton

Code:
https://github.com/antoninschrab/mmdagg-paper

Research support

Work supported by:

The Gatsby Charitable Foundation

Google Deepmind
(9) DeepMind

Questions?

