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A motivation: comparing two samples

Given: Samples from unknown distributions P and Q .
Goal: do P and Q differ?

2/73



A real-life example: two-sample tests

Have: Two collections of samples X;Y from unknown distributions
P and Q .
Goal: do P and Q differ?

MNIST samples Samples from a GAN

Significant difference in GAN and MNIST?
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NIPS 2016
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.
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Training generative models
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Training generative models

Have: One collection of samples X from unknown distribution P .
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q , MMD GAN

Using MMD to train a GAN
(Binkowski, Sutherland, Arbel, G., ICLR 2018)̄,
(Arbel, Sutherland, Binkowski, G., arXiv 2018)̄
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Not covered: testing goodness of fit

Given: A model P and samples and Q .
Goal: is P a good fit for Q?

Chicago crime data
Model is Gaussian mixture with two components.
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Not covered: testing independence

Given: Samples from a distribution PXY

Goal: Are X and Y independent?

Their	noses	guide	them	
through	life,	and	they're	
never	happier	than	when	
following	an	interesting	scent.	

A	large	animal	who	slings	slobber,	
exudes	a	distinctive	houndy odor,	
and	wants	nothing	more	than	to	
follow	his	nose.	

Text	from	dogtime.com and	petfinder.com

A responsive,		interactive	
pet,	one	that	will	blow	in	
your	ear	and	follow	you	
everywhere.

YX

7/73



Outline

Maximum Mean Discrepancy (MMD)...
• ...as a difference in feature means
• ...as an integral probability metric (not just a technicality!)

A statistical test based on the MMD

Training generative adversarial networks with MMD
• Gradient regularisation and data adaptivity
• Evaluating GAN performance? Problems with Inception and FID.
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Maximum Mean Discrepancy
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Feature mean difference

Simple example: 2 Gaussians with different means

Answer: t-test
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Feature mean difference

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form '(x ) = x 2
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Feature mean difference

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs
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Feature mean difference

Gaussian and Laplace distributions
Same mean and same variance
Difference in means using higher order features...RKHS
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!

Exponentiated quadratic kernel

k(x ; x 0) = exp
�
� kx � x 0k2

�

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 13/73



Infinitely many features of distributions

Given P a Borel probability measure on X , define feature map of
probability P ,

�P = [: : :EP ['i (X )] : : :]

For positive definite k(x ; x 0),

h�P ; �QiF = EP ;Qk(x ; y)

for x � P and y � Q .

Fine print: feature map '(x) must be Bochner integrable for all probability measures considered.
Always true if kernel bounded.
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2(P ;Q) = k�P � �Qk2F
= h�P ; �P iF + h�Q ; �QiF � 2 h�P ; �QiF
= EPk(X ;X 0)| {z }

(a)

+ EQk(Y ;Y 0)| {z }
(a)

� 2EP ;Qk(X ;Y )| {z }
(b)
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2(P ;Q) = k�P � �Qk2F
= h�P ; �P iF + h�Q ; �QiF � 2 h�P ; �QiF
= EPk(X ;X 0)| {z }

(a)

+ EQk(Y ;Y 0)| {z }
(a)

� 2EP ;Qk(X ;Y )| {z }
(b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

15/73



Illustration of MMD

Dogs (= P) and fish (= Q) example revisited
Each entry is one of k(dogi ;dogj ), k(dogi ;fishj ), or k(fishi ;fishj )
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Illustration of MMD
The maximum mean discrepancy:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(dogi ;dogj ) +
1

n(n � 1)

X
i 6=j

k(fishi ;fishj )

�

2
n2

X
i ;j

k(dogi ;fishj )
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MMD as an integral probability metric

Are P and Q different?
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MMD as an integral probability metric

Are P and Q different?
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MMD as an integral probability metric
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EP f (X )�EQ f (Y )

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

f(
x
)

Smooth function

20/73



MMD as an integral probability metric
Integral probability metric:
Find a "well behaved function" f (x ) to maximize
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

Functions are linear combinations of features:
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

Expectations of functions are linear combinations
of expected features

EP (f (X )) = hf ;EP'(X )iF = hf ; �P iF

(always true if kernel is bounded)
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

For characteristic RKHS F , MMD(P ;Q ;F ) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

22/73



Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]

= sup
f 2F

hf ; �P � �QiF

use

EP f (X ) = h�P ; f iF
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]

= sup
f 2F

hf ; �P � �QiF
f*
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]

= sup
f 2F

hf ; �P � �QiF
= k�P � �Qk

Function view and feature view equivalent

23/73



Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = fx1; : : : ; xng � P

Observe Y = fy1; : : : ; yng � Q
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

v
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

v
witness(v)| {z }
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q
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The empirical feature mean for P

b�P :=
1
n

nX
i=1

'(xi )
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q

The empirical feature mean for P

b�P :=
1
n

nX
i=1

'(xi )

The empirical witness function at v

f �(v) = hf �; '(v)iF
/ hb�P � b�Q ; '(v)iF
=

1
n

nX
i=1

k(xi ; v)� 1
n

nX
i=1

k(yi ; v)

Don’t need explicit feature coefficients f � :=
h

f �1 f �2 : : :
i
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Interlude: divergence measures
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Divergences
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Divergences

28/73



Divergences
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Divergences

30/73



Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)
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Two-Sample Testing with MMD
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A statistical test using MMD
The empirical MMD:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(xi ; xj ) +
1

n(n � 1)

X
i 6=j

k(yi ; yj )

�

2
n2

X
i ;j

k(xi ; yj )

How does this help decide whether P = Q?

Perspective from statistical hypothesis testing:

Null hypothesis H0 when P = Q
• should see\MMD

2
“close to zero”.

Alternative hypothesis H1 when P 6= Q
• should see\MMD

2
“far from zero”

Want Threshold c� for\MMD
2
to get false positive rate �
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Behaviour of\MMD
2
when P 6= Q

Draw n = 200 i.i.d samples from P and Q

Laplace with different y-variance.
p

n �\MMD
2
= 1:2
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p
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Behaviour of\MMD
2
when P 6= Q

Draw n = 200 new samples from P and Q

Laplace with different y-variance.
p

n �\MMD
2
= 1:5
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Behaviour of\MMD
2
when P 6= Q

Repeat this 150 times : : :
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Behaviour of\MMD
2
when P 6= Q

Repeat this 3000 times : : :
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Asymptotics of\MMD
2
when P 6= Q

When P 6= Q , statistic is asymptotically normal,

\MMD
2 �MMD(P ;Q)p
Vn(P ;Q)

D�! N (0; 1);

where variance Vn(P ;Q) = O
�
n�1

�
.
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Behaviour of\MMD
2
when P = Q

What happens when P and Q are the same?
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Behaviour of\MMD
2
when P = Q

Case of P = Q = N (0; 1)
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Asymptotics of\MMD
2
when P = Q

Where P = Q , statistic has asymptotic distribution

n\MMD
2 �

1X
l=1

�l

h
z 2
l � 2

i

-2 0 2 4 6

0
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where

�i i (x 0) =
Z
X

~k(x ; x 0)| {z }
centred

 i (x )dP(x )

zl � N (0; 2) i:i:d:
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A statistical test

A summary of the asymptotics:
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A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)
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How do we get test threshold c�?
Original empirical MMD for dogs and fish:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(xi ; xj )

+
1

n(n � 1)

X
i 6=j

k(yi ; yj )

�

2
n2

X
i ;j

k(xi ; yj )

k(xi, yj)k(xi, xj)

k(yi, yj)
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How do we get test threshold c�?
Permuted dog and fish samples (merdogs):

44/73



How do we get test threshold c�?
Permuted dog and fish samples (merdogs):

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(~xi ; ~xj )

+
1

n(n � 1)

X
i 6=j

k(~yi ;~yj )

�

2
n2

X
i ;j

k(~xi ;~yj )

Permutation simulates
P = Q

k(x̃i, ỹj)k(x̃i, x̃j)

k(ỹi, ỹj)
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How to choose the best kernel:
optimising the kernel parameters
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Graphical illustration

Maximising test power same as minimizing false negatives
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�
! �

 
nMMD2(P ;Q)p

Vn(P ;Q)
� c�p

Vn(P ;Q)

!

where

� is the CDF of the standard normal distribution.

ĉ� is an estimate of c� test threshold.
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�

! �

 
MMD2(P ;Q)p

Vn(P ;Q)| {z }
O(n1=2)

� c�
n
p

Vn(P ;Q)| {z }
O(n�1=2)

!

Variance under H1 decreases as
p

Vn(P ;Q) � O(n�1=2)
For large n , second term negligible!
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Optimizing kernel for test power
The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�
! �

 
MMD2(P ;Q)p

Vn(P ;Q)
� c�

n
p

Vn(P ;Q)

!

To maximize test power, maximize

MMD2(P ;Q)p
Vn(P ;Q)

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017)
Code: github.com/dougalsutherland/opt-mmd
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Troubleshooting for generative adversarial networks

MNIST samples Samples from a GAN
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Troubleshooting for generative adversarial networks

MNIST samples Samples from a GAN

ARD map

Power for optimzed ARD
kernel: 1.00 at � = 0:01

Power for optimized RBF
kernel: 0.57 at � = 0:01
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Troubleshooting generative adversarial networks
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Training GANs with MMD
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What is a Generative Adversarial Network (GAN)?
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Why is classification not enough?
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MMD for GAN critic
Can you use MMD as a critic to train GANs?
From ICML 2015:

From UAI 2015:
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MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.
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How to improve the critic witness

Add convolutional features!

The critic (teacher) also needs to be trained.

How to regularise?

MMD GAN Li et al., [NIPS 2017]
Coulomb GAN Unterthiner et al., [ICLR 2018]

54/73



WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017]
WGAN-GP Gukrajani et al. [NIPS 2017]
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WGAN-GP Gukrajani et al. [NIPS 2017]

Given a generator G� with parameters � to be trained.
Samples Y � G�(Z ) where Z � R

Given critic features h with parameters  to be trained. f 
a linear function of h .
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017]
WGAN-GP Gukrajani et al. [NIPS 2017]

Given a generator G� with parameters � to be trained.
Samples Y � G�(Z ) where Z � R

Given critic features h with parameters  to be trained. f 
a linear function of h .

WGAN-GP gradient penalty:

max
 

EX�P f (X )�EZ�Rf (G�(Z )) + �EeX �reX f (fX )
� 1

�2
where fX = xi + (1� )G�(zj )

 � U([0; 1]) xi 2 fx`gm`=1 zj 2 fz`gn`=1
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The (W)MMD
Train MMD critic features with the witness function gradient penalty
Binkowski, Sutherland, Arbel, G. [ICLR 2018], Bellemare et al. [2017] for energy distance:

max
 

MMD2(h (X ); h (G�(Z ))) + �EeX �reX f (fX )
� 1

�2
where

fX = xi + (1� )G�(zj )

 � U([0; 1]) xi 2 fx`gm`=1 zj 2 fz`gn`=1

Remark by Bottou et al. (2017): gradient penalty modifies the function class. So critic is
not an MMD in RKHS F .
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MMD for GAN critic: revisited

From ICLR 2018:
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MMD for GAN critic: revisited

Samples are better!
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MMD for GAN critic: revisited

Samples are better!

Can we do better still?
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Convergence issues for WGAN-GP penalty
WGAN-GP style gradient penalty may not converge near solution
Nagarajan and Kolter [NIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al. [ICML
2018]

The Dirac-GAN

P = �0 Q = �� f (x ) =  � x

Figure from Mescheder et al. [ICML 2018] 58/73



Convergence issues for WGAN-GP penalty
WGAN-GP style gradient penalty may not converge near solution
Nagarajan and Kolter [NIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al. [ICML
2018]

The Dirac-GAN
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A better gradient penalty

New MMD GAN witness regulariser (NIPS 2018)
Arbel, Sutherland, Binkowski, G. [NIPS 2018]
Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]
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A better gradient penalty

New MMD GAN witness regulariser (NIPS 2018)
Arbel, Sutherland, Binkowski, G. [NIPS 2018]
Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness function:

where

Problem: not computationally feasible: O(n3) per iteration.
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A better gradient penalty

New MMD GAN witness regulariser (NIPS 2018)
Arbel, Sutherland, Binkowski, G. [NIPS 2018]
Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]

The scaled MMD:
SMMD = �k ;P ;� MMD

where

�k ;P ;� =

 
�+

Z
k(x ; x )dP(x ) +

dX
i=1

Z
@i@i+dk(x ; x ) dP(x )

!�1=2
Replace expensive constraint with cheap upper bound:

kf k2S � ��1k ;P ;� kf k2k
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A better gradient penalty

New MMD GAN witness regulariser (NIPS 2018)
Arbel, Sutherland, Binkowski, G. [NIPS 2018]
Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]

The scaled MMD:
SMMD = �k ;P ;� MMD

where

�k ;P ;� =

 
�+

Z
k(x ; x )dP(x ) +

dX
i=1

Z
@i@i+dk(x ; x ) dP(x )

!�1=2
Replace expensive constraint with cheap upper bound:

kf k2S � ��1k ;P ;� kf k2k

Idea: rather than regularise the critic or witness function, regularise
features directly
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Evaluation and experiments
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Evaluation of GANs

The inception score? Salimans et al. [NIPS 2016]

Based on the classification output p(y jx ) of the inception model Szegedy

et al. [ICLR 2014],
EX expKL(P(y jX )kP(y)):

High when:

predictive label distribution P(y jx ) has low entropy (good quality
images)

label entropy P(y) is high (good variety).
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Evaluation of GANs

The inception score? Salimans et al. [NIPS 2016]

Based on the classification output p(y jx ) of the inception model Szegedy

et al. [ICLR 2014],
EX expKL(P(y jX )kP(y)):

High when:

predictive label distribution P(y jx ) has low entropy (good quality
images)

label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new
categories (celeb, bedroom...)
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Evaluation of GANs
The Frechet inception distance? Heusel et al. [NIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P ;Q) = k�P � �Qk2 + tr(�P ) + tr(�Q)� 2tr
�
(�P�Q)

1
2
�

where �P and �P are the feature mean and covariance of P
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Evaluation of GANs
The Frechet inception distance? Heusel et al. [NIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P ;Q) = k�P � �Qk2 + tr(�P ) + tr(�Q)� 2tr
�
(�P�Q)

1
2
�

where �P and �P are the feature mean and covariance of P

Problem: bias. For
finite samples can
consistently give
incorrect answer.

Bias demo,
CIFAR-10 train vs
test 0 2000 4000 6000 8000 10000

n

0

10

20

30

40

50

FI
D
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Evaluation of GANs
The FID can give the wrong answer in theory.
Assume m samples from P and n !1 samples from Q .
Given two alternatives:

P1 � N (0; (1�m�1)2) P2 � N (0; 1) Q � N (0; 1):

Clearly,

FID(P1;Q) =
1

m2 > FID(P2;Q) = 0

Given m samples from P1 and P2,

FID(cP1;Q) < FID(cP2;Q):
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Evaluation of GANs
The FID can give the wrong answer in practice.
Let d = 2048, and define

P1 = relu(N (0; Id)) P2 = relu(N (1; :8�+:2Id)) Q = relu(N (1; Id))

where � = 4
d CCT , with C a d � d matrix with iid standard normal

entries.
For a random draw of C :

FID(P1;Q) � 1123:0 > 1114:8 � FID(P2;Q)

With m = 50 000 samples,

FID(cP1;Q) � 1133:7 < 1136:2 � FID(cP2;Q)

At m = 100 000 samples, the ordering of the estimates is correct.
This behavior is similar for other random draws of C . 64/73
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k(x ; y) =
�
1
d
x>y + 1

�3
:

Checks match for feature
means, variances, skewness

Unbiased : eg CIFAR-10
train/test 0 250 500 750 1000 1250 1500 1750 2000

n

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

K
ID

65/73



The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k(x ; y) =
�
1
d
x>y + 1

�3
:

Checks match for feature
means, variances, skewness

Unbiased : eg CIFAR-10
train/test 0 250 500 750 1000 1250 1500 1750 2000

n

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

K
ID

...“but isn’t KID is computationally costly?”
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The kernel inception distance (KID)
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k(x ; y) =
�
1
d
x>y + 1

�3
:

Checks match for feature
means, variances, skewness

Unbiased : eg CIFAR-10
train/test 0 250 500 750 1000 1250 1500 1750 2000

n
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0.002
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0.003
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K
ID

...“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper
(or use Tensorflow implementation)!
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The kernel inception distance (KID)
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k(x ; y) =
�
1
d
x>y + 1

�3
:

Checks match for feature
means, variances, skewness

Unbiased : eg CIFAR-10
train/test 0 250 500 750 1000 1250 1500 1750 2000

n

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

K
ID

Also used for automatic learning rate adjustment: if KID( bP t+1;Q)

not significantly better than KID( bP t ;Q) then reduce learning rate.
[Bounliphone et al. ICLR 2016]

Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al. [arxiv,
June 2018]
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Benchmarks for comparison (all from ICLR 2018)

66/73



Results: what does MMD buy you?

Critic features from DCGAN: an f -filter critic has f , 2f , 4f and 8f
convolutional filters in layers 1-4. LSUN 64� 64.

MMD GAN samples, f = 64,
KID=3

WGAN samples, f = 64,
KID=4 67/73



Results: what does MMD buy you?

Critic features from DCGAN: an f -filter critic has f , 2f , 4f and 8f
convolutional filters in layers 1-4. LSUN 64� 64.

MMD GAN samples, f = 16,
KID=9

WGAN samples, f = 16,
f = 64, KID=37 67/73



The kernel inception distance (KID)

Faster training: performance scores vs generator iterations on MNIST
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Results: celebrity faces 160�160

KID scores:

Sobolev GAN:
14

SN-GAN:
18

Old MMD
GAN:
13

SMMD GAN:
6

202 599 face images, re-
sized and cropped to 160
� 160
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Results: imagenet 64�64

KID (FID)
scores:

BGAN:
47

SN-GAN:
44

SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 im-
ages, resized to 64 × 64.
Around 20 000 classes.
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Summary
MMD critic gives state-of-the-art performance for GAN training
(FID and KID)

• use convolutional input features
• train with new gradient regulariser

Faster training, simpler critic network
Reasons for good performance:

• Unlike WGAN-GP, MMD loss still a valid critic when features not
optimal

• Kernel features do some of the “work”, so simpler h features possible.
• Better gradient/feature regulariser gives better critic

“Demystifying MMD GANs,” including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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Questions?
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