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A motivation: comparing two samples

Given: Samples from unknown distributions P and Q .

Goal: do P and Q differ?
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A real-life example: two-sample tests
Goal: do P and Q differ?

CIFAR 10 samples Cifar 10.1 samples

Significant difference?
Feng, Xu, Lu, Zhang, G., Sutherland, Learning Deep Kernels for Non-Parametric Two-Sample Tests,
ICML 2020
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.

3/75



Training generative models
Have: One collection of samples X from unknown distribution P .
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q , MMD GAN

Training a Generative Adversarial Network
(Binkowski, Sutherland, Arbel, G., ICLR 2018)̄,
(Arbel, Sutherland, Binkowski, G., NeurIPS 2018)̄ 4/75



Testing goodness of fit
Given: a model P and samples Q .
Goal: is P a good fit for Q?

Chicago crime data

Model is Gaussian mix-
ture with two compo-
nents. Is this a good
model?
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Model comparison
Have: two candidate models P and Q , and samples fxigni=1 from
reference distribution R
Goal: which of P and Q is better?

P : two components Q : ten components
6/75



Causality: observation vs intervention
Conditioning from observation: E[Y jA = a ] =

∑
x E[Y ja ; x ]p(x ja)Hidden context observed

X

A Y

8/9

or

or

From our observations of historical hospital data:

P(Y = curedjA = pills) = 0:80
P(Y = curedjA = surgery) = 0:72

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality
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Causality: observation vs intervention
Average causal effect (intervention): E[Y (a)] =

∑
x E[Y ja ; x ]p(x )

Hidden context observed, do(a), SWIG

X

A

a
Y a
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or

or

From our intervention (making all patients take a treatment):

P(Y (pills) = cured) = 0:64
P(Y (surgery) = cured) = 0:75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality 7/75



Overview

1 Construction of RKHS
2 The maximum mean discrepancy

1 Two-sample testing
2 Training generative models

3 Conditional mean embeddings for causality

4 Relative goodness-of-fit testing with Stein’s method

5 Testing independence and higher order interactions
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Reproducing Kernel Hilbert Spaces

9/75



Kernels and feature space (1): XOR example
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No linear classifier separates red from blue

Map points to higher dimensional feature space:
�(x ) =

[
x1 x2 x1x2

] 2 R
3
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Kernels and feature space (2): document classification

Kernels let us compare objects on the basis of features
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Kernels and feature space (3): smoothing
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Kernel methods can control smoothness and avoid
overfitting/underfitting.
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Outline: reproducing kernel Hilbert space

We will describe in order:

1 Hilbert space (very simple)

2 Kernel (lots of examples: e.g. you can build kernels from simpler
kernels)

3 Reproducing property
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Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function h�; �iH : H�H ! R is an
inner product on H if

1 Linear: h�1f1 + �2f2; giH = �1 hf1; giH + �2 hf2; giH
2 Symmetric: hf ; giH = hg ; f iH
3 hf ; f iH � 0 and hf ; f iH = 0 if and only if f = 0.

Norm induced by the inner product: kf kH :=
√hf ; f iH

Definition (Hilbert space)
Inner product space containing Cauchy sequence limits.
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Kernel
Definition

Let X be a non-empty set. A function k : X � X ! R is a kernel if
there exists a Hilbert space H and a feature map � : X ! H such
that 8x ; x 0 2 X ,

k(x ; x 0) :=
〈
�(x ); �(x 0)

〉
H :

Almost no conditions on X (X itself doesn’t need an inner product,
eg. documents).
A single kernel can correspond to several possible features. A trivial
example for X := R:

�1(x ) = x and �2(x ) =
[
x=
p
2

x=
p
2

]
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New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)
Given � > 0 and k, k1 and k2 all kernels on X , then �k and
k1 + k2 are kernels on X .

(Proof via positive definiteness: later!) A difference of kernels may not
be a kernel (why?)

Theorem (Mappings between spaces)

Let X and X̃ be sets, and define a map A : X ! X̃ . Define the
kernel k on X̃ . Then the kernel k(A(x );A(x 0)) is a kernel on X .

Example: k(x ; x 0) = x 2 (x 0)2 :
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New kernels from old: products

Theorem (Products of kernels are kernels)
Given k1 on X1 and k2 on X2, then k1 � k2 is a kernel on X1 �X2.
If X1 = X2 = X , then k := k1 � k2 is a kernel on X .

Proof: Main idea only!
H1 space of kernels between shapes,

�1(x ) =
[
I�

I4

]
�1(�) =

[
1
0

]
; k1(�;4) = 0:

H2 space of kernels between colors,

�2(x ) =
[
I�
I�

]
�2(�) =

[
0
1

]
k2(�; �) = 1:
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New kernels from old: products

“Natural” feature space for colored shapes:

�(x ) =
[
I� I4
I� I4

]
=

[
I�
I�

] [
I� I4

]
= �2(x )�>1 (x )

Kernel is:

k(x ; x 0) =
∑

i2f�;�g

∑
j2f�;4g

�ij (x )�ij (x 0) = tr

�1(x )�>2 (x )�2(x
0)︸ ︷︷ ︸

k2(x ;x 0)

�>1 (x
0)


= tr

�>1 (x
0)�1(x )︸ ︷︷ ︸

k1(x ;x 0)

 k2(x ; x 0) = k1(x ; x 0)k2(x ; x 0)
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Sums and products =) polynomials

Theorem (Polynomial kernels)

Let x ; x 0 2 R
d for d � 1, and let m � 1 be an integer and c � 0 be

a positive real. Then

k(x ; x 0) :=
(〈
x ; x 0

〉
+ c
)m

is a valid kernel.

To prove: expand into a sum (with non-negative scalars) of kernels
hx ; x 0i raised to integer powers. These individual terms are valid
kernels by the product rule.
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Infinite sequences

The kernels we’ve seen so far are dot products between finitely many
features. E.g.

k(x ; y) =
[
sin(x ) x 3 log x

]> [
sin(y) y3 log y

]
where �(x ) =

[
sin(x ) x 3 log x

]
Can a kernel be a dot product between infinitely many features?
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Taylor series kernels
Definition (Taylor series kernel)
For r 2 (0;1], with an � 0 for all n � 0

f (z ) =
1∑
n=0

anz n jz j < r ; z 2 R;

Define X to be the
p
r -ball in R

d , so kxk < p
r ,

k(x ; x 0) = f
(〈
x ; x 0

〉)
=

1∑
n=0

an
〈
x ; x 0

〉n
:

Exponential kernel:

k(x ; x 0) := exp
(〈
x ; x 0

〉)
:
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Taylor series kernel (proof)

Proof: Non-negative weighted sums of kernels are kernels, and
products of kernels are kernels, so the following is a kernel if it
converges:

k(x ; x 0) =
1∑
n=0

an
(〈
x ; x 0

〉)n
By Cauchy-Schwarz, ∣∣〈x ; x 0〉∣∣ � kxkkx 0k < r ;

so the sum converges.
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Exponentiated quadratic kernel

Exponentiated quadratic kernel: This kernel on R
d is defined as

k(x ; x 0) := exp
(
�
�2 ∥∥x � x 0

∥∥2) :
Proof: an exercise! Use product rule, mapping rule, exponential
kernel.
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Infinite sequences
Definition
The space `2 (square summable sequences) comprises all sequences
a := (ai )i�1 for which

kak2`2 =
1∑
`=1

a2
` <1:

Definition
Given sequence of functions (�`(x ))`�1 in `2 where �` : X ! R is the
ith coordinate of �(x ). Then

k(x ; x 0) :=
1∑
`=1

�`(x )�`(x 0) (1)
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Infinite sequences (proof)

Why square summable? By Cauchy-Schwarz,∣∣∣∣∣
1∑
`=1

�`(x )�`(x 0)

∣∣∣∣∣ � k�(x )k`2
∥∥�(x 0)∥∥

`2
;

so the sequence defining the inner product converges for all x ; x 0 2 X
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Positive definite functions

If we are given a function of two arguments, k(x ; x 0), how can we
determine if it is a valid kernel?

1 Find a feature map?
1 Sometimes this is not obvious (eg if the feature vector is infinite

dimensional, e.g. the exponentiated quadratic kernel in the last slide)
2 The feature map is not unique.

2 A direct property of the function: positive definiteness.
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Positive definite functions

Definition (Positive definite functions)

A symmetric function k : X � X ! R is positive definite if
8n � 1; 8(a1; : : : an) 2 R

n ; 8(x1; : : : ; xn) 2 X n ,

n∑
i=1

n∑
j=1

aiaj k(xi ; xj ) � 0:

The function k(�; �) is strictly positive definite if for mutually distinct
xi , the equality holds only when all the ai are zero.
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Kernels are positive definite
Theorem

Let H be a Hilbert space, X a non-empty set and � : X ! H.
Then h�(x ); �(y)iH =: k(x ; y) is positive definite.

Proof.

n∑
i=1

n∑
j=1

aiaj k(xi ; xj ) =
n∑
i=1

n∑
j=1

hai�(xi ); aj�(xj )iH

=

∥∥∥∥∥
n∑
i=1

ai�(xi )

∥∥∥∥∥
2

H
� 0:

Reverse also holds: positive definite k(x ; x 0) is inner product in a
unique H (Moore-Aronsajn: coming later!).

28/75



Sum of kernels is a kernel

Proof by positive definiteness:
Consider two kernels k1(x ; x 0) and k2(x ; x 0). Then

n∑
i=1

n∑
j=1

aiaj [k1(xi ; xj ) + k2(xi ; xj )]

=
n∑
i=1

n∑
j=1

aiaj k1(xi ; xj ) +
n∑
i=1

n∑
j=1

aiaj k2(xi ; xj )

� 0
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The reproducing kernel Hilbert space



First example: finite space, polynomial features

Reminder: XOR example:

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2
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Example: finite space, polynomial features

Reminder: Feature space from XOR motivating example:

� : R2 ! R
3

x =

[
x1
x2

]
7! �(x ) =

 x1
x2
x1x2

 ;
with kernel

k(x ; y) =

 x1
x2
x1x2

>  y1
y2
y1y2


(the standard inner product in R

3 between features). Denote this
feature space by H.
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Example: finite space, polynomial features
Define a linear function of the inputs x1; x2; and their product x1x2,

f (x ) = f1x1 + f2x2 + f3(x1x2):

f in a space of functions mapping from X = R
2 to R. Equivalent

representation for f ,

f (�) = [ f1 f2 f3
]>

:

f (�) or f refers to the function as an object (here as a vector in R
3)

f (x ) 2 R is function evaluated at a point (a real number).

f (x ) = f (�)>�(x ) = hf (�); �(x )iH
Evaluation of f at x is an inner product in feature space (here
standard inner product in R

3)
H is a space of functions mapping R

2 to R.
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Functions of infinitely many features
Functions are linear combinations of features:

k(x ; y) =
1∑
`=1

�`(x )�`(x 0)

f (x ) =
1∑
`=1

f`�`(x )
1∑
`=1

f 2` <1:
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Expressing the functions with kernels
Function with exponentiated quadratic kernel:

f (x ) =
1∑
`=1

f`�`(x )

=
1∑
`=1

(
m∑
i=1

�i�`(xi )

)
︸ ︷︷ ︸

f`

�`(x )

=

〈
m∑
i=1

�i�(xi )︸ ︷︷ ︸
f

; �(x )

〉
H

=
m∑
i=1

�ik(xi ; x )

-6 -4 -2 0 2 4 6 8

x

0

0.2

0.4

0.6

0.8

f(
x
)
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f :=
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i=1 �i�(xi )

Function of infinitely many features expressed using f(�i ; xi )gmi=1.
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The feature map is also a function

On previous page,

f (x ) :=
m∑
i=1

�ik(xi ; x ) = hf (�); �(x )iH where f` =
m∑
i=1

�i�`(xi ):

What if m = 1 and �1 = 1?
Then

f (x ) = k(x1; x ) =

〈
k(x1; �)︸ ︷︷ ︸

f (�)

; �(x )

〉
H
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Then

f (x ) = k(x1; x ) =

〈
k(x1; �)︸ ︷︷ ︸

f (�)

; �(x )

〉
H
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....so the feature map is a (very simple) function!
We can write without ambiguity

k(x ; y) = hk (�; x ) ; k (�; y)iH:
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Features vs functions
A subtle point: H can be larger than all �(x ).

E.g. f (�) = [1 1 � 1] 2 H cannot be obtained by �(x ) = [x1 x2 (x1x2)].
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The reproducing property

This example illustrates the two defining features of an RKHS:

The reproducing property: (kernel trick)
8x 2 X ; 8f (�) 2 H; hf (�); k(�; x )iH = f (x )
: : :or use shorter notation hf ; �(x )iH.
The feature map of every point is a function: k(�; x ) = �(x ) 2 H for
any x 2 X , and

k(x ; x 0) =
〈
�(x ); �(x 0)

〉
H =

〈
k(�; x ); k(�; x 0)〉H :
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Understanding smoothness in the RKHS



Infinite feature space via fourier series
Function on the interval [��; �] with periodic boundary.
Fourier series:

f (x ) =
1∑

`=�1
f̂` exp({`x ) =

1∑
l=�1

f̂` (cos(`x ) + { sin(`x )) :

using the orthonormal basis on [��; �],
1
2�

∫ �

��
exp({`x )exp({mx )dx =

{
1 ` = m ;

0 ` 6= m :

Example: “top hat” function,

f (x ) =

{
1 jx j < T ;

0 T � jx j < �:

f̂` :=
sin(`T )

`�
f (x ) =

1∑
`=0

2f̂` cos(`x ):
41/75
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Fourier series for top hat function
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Fourier series for kernel function
Assume kernel translation invariant,

k(x ; y) = k(x � y);

Fourier series representation of k

k(x � y) =
1∑

`=�1
k̂` exp ({`(x � y))

=
1∑

`=�1

[√
k̂` exp ({`(x )︸ ︷︷ ︸

�`(x )

][√
k̂` exp (�{`y)︸ ︷︷ ︸

�`(y)

]
:

Example: Jacobi theta kernel:

k(x � y) =
1
2�

#

(
(x � y)

2�
;
{�2

2�

)
; k̂` =

1
2�

exp

(��2`2
2

)
:

# is Jacobi theta function, close to Gaussian when �2 much narrower than [��; �].
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Fourier series for Gaussian-spectrum kernel
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RKHS via fourier series
Recall standard dot product in L2:

hf ; giL2 =
1
2�

∫ �

��
f (x )g(x )dx

=
1
2�

∫
�

�

[ 1∑
`=�1

f̂` exp({`x )

][ 1∑
m=�1

ĝm exp({mx )

]
dx

=
1∑

`=�1

1∑
m=�1

f̂`ĝm
1
2�

∫ �

��
exp({`x ) exp(�{mx )

=
1∑

`=�1
f̂`ĝ`:

Define the dot product in H to have a roughness penalty,

hf ; giH =
1∑

`=�1

f̂`ĝ`
k̂`

:
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Roughness penalty explained

The squared norm of a function f in H enforces smoothness:

kf k2H = hf ; f iH =
1∑

l=�1

f̂`f̂`
k̂`

=
1∑

l=�1

∣∣∣f̂`∣∣∣2
k̂`

:

If k̂` decays fast, then so must f̂` if we want kf k2H <1.
Recall f (x ) =

∑
1

`=�1
f̂` (cos(`x ) + { sin(`x )) :

Question: is the top hat function in the “Gaussian spectrum” RKHS?
Warning: need stronger conditions on kernel than L2 convergence: Mercer’s theorem.
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Feature map and reproducing property
Reproducing property: define a function

g(x ) := k(x � z ) =
1∑

`=�1
exp ({`x ) k̂` exp (�{`z )︸ ︷︷ ︸

ĝ`

Then for a function f (�) 2 H,

hf (�); k(�; z )iH = hf (�); g(�)iH

1∑
`=�1

f̂`

ĝ`︷ ︸︸ ︷
k̂` exp({`z )
k̂`

1∑
`=�1

f̂` exp({`z ) = f (z ):
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Feature map and reproducing property
Reproducing property for the kernel:
Recall kernel definition:

k(x � y) =
1∑

`=�1
k̂` exp ({`(x � y)) =

1∑
`=�1

k̂` exp ({`x ) exp (�{`y)

Define two functions

f (x ) := k(x � y) =
1∑

`=�1
k̂` exp ({`(x � y))

=
1∑

`=�1
exp ({`x ) k̂` exp (�{`y)︸ ︷︷ ︸

f̂`

g(x ) := k(x � z ) =
1∑

`=�1
exp ({`x ) k̂` exp (�{`z )︸ ︷︷ ︸

ĝ`
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Feature map and reproducing property

Check the reproducing property:

hk(�; y); k(�; z )iH = hf (�); g(�)iH

=
1∑

`=�1

f̂`ĝ`
k̂`

=
1∑

`=�1

(
k̂` exp(�{`y)

)(
k̂` exp(�{`z )

)
k̂`

=
1∑

`=�1
k̂` exp({`(z � y)) = k(z � y):
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Link back to original RKHS function definition

Original form of a function in the RKHS was
(detail: sum now from �1 to 1, complex conjugate)

f (z ) =
1∑

`=�1
f`�`(z ) = hf (�); �(z )iH :

We’ve defined the RKHS dot product as

hf ; giH =
1∑

l=�1

f̂`ĝ`
k̂`

hf (�); k(�; z )iH =
1∑

`=�1

f̂`
(
k̂` exp(�{`z )

)
k̂`
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We’ve defined the RKHS dot product as

hf ; giH =
1∑

l=�1

f̂`ĝ`
k̂`

hf (�); k(�; z )iH =
1∑

`=�1

f̂`
(
k̂` exp(�{`z )

)
(√

k̂`
)2

By inspection

f` = f̂`=
√
k̂` �`(z ) =

√
k̂` exp(�{`z ):
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Infinite feature space on R
Define a probability measure on X := R. We’ll use the Gaussian
density,

p(x ) =
1p
2�

exp
(�x 2)

Define the eigenexpansion of k(x ; x 0) wrt this measure:

�`e`(x ) =
∫

k(x ; x 0)e`(x 0)p(x 0)dx 0
∫

ei (x )ej (x )p(x )dx =

{
1 i = j

0 i 6= j :

We can write

k(x ; x 0) =
1∑
`=1

�`e`(x )e`(x 0);

which converges in L2(p) for a square integrable kernel.
Warning: again, need stronger conditions on kernel than L2 convergence.
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Infinite feature space on R
Exponentiated quadratic kernel,

k(x ; x 0) = exp

(
�kx � x 0k2

2�2

)
=

1∑
`=1

(√
�`e`(x )

)
︸ ︷︷ ︸

�`(x )

(√
�`e`(x 0)

)
︸ ︷︷ ︸

�`(x 0)

�`e`(x ) =
∫

k(x ; x 0)e`(x 0)p(x 0)dx 0;

p(x ) = N (0; �2):
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Exponentiated quadratic kernel,

k(x ; x 0) = exp

(
�kx � x 0k2

2�2

)
=

1∑
`=1

(√
�`e`(x )

)
︸ ︷︷ ︸

�`(x )

(√
�`e`(x 0)

)
︸ ︷︷ ︸

�`(x 0)

�`e`(x ) =
∫

k(x ; x 0)e`(x 0)p(x 0)dx 0;

p(x ) = N (0; �2):

e
1
(x)

e
2
(x)

e
3
(x)

�` / b` b < 1

e`(x ) / exp(�(c � a)x 2)H`(x
p

2c);

a ; b; c are functions of �,
and H` is `th order Her-
mite polynomial.
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Infinite feature space on R
Reminder: for two functions f ; g in L2(p),

f (x ) =
1∑
`=1

f̂`e`(x ) g(x ) =
1∑

m=1

ĝmem(x );

dot product is

hf ; giL2(p) =
∫ 1

�1
f (x )g(x )p(x )dx

=

∫
1

�1

( 1∑
`=1

f̂`e`(x )

)( 1∑
m=1

ĝmem(x )

)
p(x )dx

=
1∑
`=1

f̂`ĝ`

Define the dot product in H to have a roughness penalty,

hf ; giH =
1∑
`=1

f̂`ĝ`
�`

kf k2H =
1∑
`=1

f̂ 2`
�`

:
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Does the reproducing property hold?
Check the reproducing property:

hf ; giH =
1∑
l=1

f̂`ĝ`
�`
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Check the reproducing property:
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f̂`ĝ`
�`

g(�) = k(�; z ) =
1∑
`=1

�`e`(z )︸ ︷︷ ︸
ĝ`

e`(�)

Then:

hf (�); k(�; z )iH =
1∑
`=1

f̂`���`e`(z )

���`

=
1∑
`=1

f̂`e`(z ) = f (z )
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Link back to the original RKHS definition
Original form of a function in the RKHS was

f (z ) =
1∑
`=1

f`�`(z ) = hf (�); �(z )iH

Expansion of f (�) in terms of kernel eigenbasis:

f (�) =
1∑
`=1

f̂`e`(�) k(x ; z ) =
1∑
`=1

�`e`(x )e`(z )

Same expression with “roughness penalised” dot product:

hf ; giH =
1∑
l=1

f̂`ĝ`
�`

g(�) = k(�; z ) =
1∑
`=1

�`e`(z )︸ ︷︷ ︸
ĝ`

e`(�)

Thus: hf (�); k(�; z )iH =

By inspection: f` = f̂`=
p
�` �`(z ) =

p
�`e`(z ):

64/75



Link back to the original RKHS definition
Original form of a function in the RKHS was

f (z ) =
1∑
`=1

f`�`(z ) = hf (�); �(z )iH

Expansion of f (�) in terms of kernel eigenbasis:

f (�) =
1∑
`=1

f̂`e`(�) k(x ; z ) =
1∑
`=1

�`e`(x )e`(z )

Same expression with “roughness penalised” dot product:

hf ; giH =
1∑
l=1

f̂`ĝ`
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ĝ`

e`(�)

Thus: hf (�); k(�; z )iH =

By inspection: f` = f̂`=
p
�` �`(z ) =

p
�`e`(z ):

64/75



Link back to the original RKHS definition
Original form of a function in the RKHS was

f (z ) =
1∑
`=1

f`�`(z ) = hf (�); �(z )iH

Expansion of f (�) in terms of kernel eigenbasis:

f (�) =
1∑
`=1

f̂`e`(�) k(x ; z ) =
1∑
`=1

�`e`(x )e`(z )

Same expression with “roughness penalised” dot product:

hf ; giH =
1∑
l=1

f̂`ĝ`
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ĝ`︷ ︸︸ ︷
(�`e`(z ))

�`

By inspection: f` = f̂`=
p
�` �`(z ) =

p
�`e`(z ):

64/75



Link back to the original RKHS definition
Original form of a function in the RKHS was

f (z ) =
1∑
`=1

f`�`(z ) = hf (�); �(z )iH

Expansion of f (�) in terms of kernel eigenbasis:

f (�) =
1∑
`=1

f̂`e`(�) k(x ; z ) =
1∑
`=1

�`e`(x )e`(z )

Same expression with “roughness penalised” dot product:

hf ; giH =
1∑
l=1

f̂`ĝ`
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RKHS function, exponentiated quadratic kernel:

f (x ) =
m∑
i=1

�ik(xi ; x ) =
m∑
i=1

�i

 1∑
j=1

�j ej (xi )ej (x )

 =
1∑
`=1

f`
[√

�`e`(x )
]

︸ ︷︷ ︸
�`(x )

where f` =
∑m

i=1 �i
p
�`e`(xi ):

-6 -4 -2 0 2 4 6 8

x

-0.4

-0.2

0

0.2

0.4

0.6

0.8

f(
x
)

NOTE that this
enforces smoothing:

�` decay as e` become
rougher,

f` decay since
kf k2H =

∑
` f

2
` <1.
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Main message

Small RKHS norm results in smooth functions.
E.g. kernel ridge regression with exponentiated quadratic kernel:

f � = argmin
f 2H

(
n∑
i=1

(yi � hf ; �(xi )iH)2 + �kf k2H
)
:

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

λ=0.1, σ=0.6

−0.5 0 0.5 1 1.5
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0

0.5

1

λ=10, σ=0.6

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

λ=1e−07, σ=0.6
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Some reproducing kernel Hilbert space
theory



Reproducing kernel Hilbert space (1)

Definition
H a Hilbert space of R-valued functions on non-empty set X . A
function k : X � X ! R is a reproducing kernel of H, and H is a
reproducing kernel Hilbert space, if

8x 2 X ; k(�; x ) 2 H,

8x 2 X ; 8f 2 H; hf (�); k(�; x )iH = f (x ) (the reproducing property).

In particular, for any x ; y 2 X ,

k(x ; y) = hk (�; x ) ; k (�; y)iH: (2)

Original definition: kernel an inner product between feature maps.
Then �(x ) = k(�; x ) a valid feature map.

68/75



Reproducing kernel Hilbert space (2)
Another RKHS definition:
Define �x to be the operator of evaluation at x , i.e.

�x f = f (x ) 8f 2 H; x 2 X :

Definition (Reproducing kernel Hilbert space)
H is an RKHS if the evaluation operator �x is bounded: 8x 2 X there
exists �x � 0 such that for all f 2 H,

jf (x )j = j�x f j � �xkf kH

=) two functions identical in RHKS norm agree at every point:

jf (x )� g(x )j = j�x (f � g)j � �xkf � gkH 8f ; g 2 H:
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RKHS definitions equivalent

Theorem (Reproducing kernel equivalent to bounded �x )
H is a reproducing kernel Hilbert space (i.e., its evaluation
operators �x are bounded linear operators), if and only if H has a
reproducing kernel.

Proof: If H has a reproducing kernel =) �x bounded

j�x [f ]j = jf (x )j
= jhf ; k(�; x )iHj
� kk(�; x )kH kf kH
= hk(�; x ); k(�; x )i1=2H kf kH
= k(x ; x )1=2 kf kH

Cauchy-Schwarz in 3rd line . Consequently, �x : F ! R bounded
with �x = k(x ; x )1=2.
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RKHS definitions equivalent

Proof: �x bounded =) H has a reproducing kernel
We use: : :

Theorem
(Riesz representation) In a Hilbert space H, all bounded linear
functionals are of the form h�; giH, for some g 2 H.

If �x : F ! R is a bounded linear functional, by Riesz 9f�x 2 H such
that

�x f = hf ; f�x iH; 8f 2 H:

Define k(�; x ) = f�x (�), 8x ; x 0 2 X . By its definition, both
k(�; x ) = f�x (�) 2 H and hf (�); k(�; x )iH = �x f = f (x ). Thus, k is the
reproducing kernel.
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Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)
Let k : X � X ! R be positive definite. There is a unique RKHS
H � R

X with reproducing kernel k.

Recall feature map is not unique (as we saw earlier):
only kernel is unique.
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Main message
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