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Model Criticism
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Model Criticism

e Is this a good model?
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Model Criticism

"All models are wrong."

G. Box (1976)
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Model comparison

m Have: two candidate models P and @, and samples {z;}? ; from
reference distribution R
m Goal: which of P and @ is better?
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P : two components Q@ : ten components
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Most interesting models have latent structure

Graphical model representation of hierarchical LDA with a nested
CRP prior, Blei et al. (2003)
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Outline

Relative goodness-of-fit tests for Models with
Latent Variables

The Maximum Mean Discrepancy: an integral probability metric
maximize difference in expectations using an RKHS witness class
The kernel Stein discrepancy

Comparing a sample and a model: Stein modification of the witness
class

Constructing a relative hypothesis test using the KSD

Relative hypothesis tests with latent variables
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Kernel Stein Discrepancy

m Model P, data {z;}]" ; ~ Q.
m “All models are wrong” (P # Q).

KSD,(Q)
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Comparing a sample and model

Can we compute MMD with samples from ¢) and a model P?

Problem: usualy can’t compute E,f in closed form.

MMD(P, Q) = supys|z<1[Eqf — Epf]
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Stein idea

To get rid of E,f in

sup [qu - Epf]
Ifll=<1

we use the (1-D) Langevin Stein operator

4:f1(2) = S5 g5 ((@)p()

Then
E,Apf =0

subject to appropriate boundary conditions.

Ep[Apf]=/[Md (f(z)p(z ]Mdl‘— (z)p(2)]Z

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)
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Stein idea

To get rid of E,f in

sup [qu - Epf]
Ifll=<1

we use the (1-D) Langevin Stein operator

1 d

[Apf](2) =

Then
E, A, f =0

subject to appropriate boundary conditions.

Do not need to normalize p, or sample from it.

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)
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Kernel Stein Discrepancy

Stein operator

Apf =

Kernel Stein Discrepancy (KSD)

KSD,(Q) = sup EjA,9-E, A9
llgllz<1
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Kernel Stein Discrepancy

Stein operator
1

p(z)
Kernel Stein Discrepancy (KSD)

Aof = 2 (f(a)p(a))

KSD,(Q) = sup EjA,0 —E.A75= sup EjA,g
llgll=<1 llgllF<1

— p(x)
— q(x)
— g'(x)
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Kernel Stein Discrepancy

Stein operator L4
oa 4 F(@r(a)

Kernel Stein Discrepancy (KSD)

Apf =

KSD,(Q) = sup EjA,0 —E.A75= sup EjA,g
llgll=<1 llgllF<1

— p(x)
— q(x)
— g'(x)
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Computing the kernel Stein discrepancy

How do we get the KSD in closed form (with kernels)?

Can we define “Stein features”?

Auf1(2) = s g (F(@)p(@)
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Computing the kernel Stein discrepancy

How do we get the KSD in closed form (with kernels)?

Can we define “Stein features”?

Auf1(2) = s g (F(@)p(@)
d 1 d
= @)+ F(@) s o n(a)

= /(2) o 10g p(2) + = f(2)
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Computing the kernel Stein discrepancy

How do we get the KSD in closed form (with kernels)?

Can we define “Stein features”?

] (@) = —— L (F(2)p(2))

p(z) dz
d 1 d

= @)+ (@) s ()

= /(2) o 10g p(2) + = f(2)

L0 ) )

stein features

where E;.,£(z) = 0.
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Computing the kernel Stein discrepancy

How do we get the KSD in closed form (with kernels)?

Can we define “Stein features”?

Apf] (2) = &

= f(a) o 10g p(e) + <1 (a)

?
1, @) )y
N’
stein features

where E;.,£(z) = 0.

Intended destination:

KSD(p, Q:]:) = sup (9:Ez~q£z>_7: = HEZngzH]:
llgll=<1
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Stein RKHS features
Reproducing property for the derivative: for differentiable k(z, z'),

2@ =(fap@)  (Zee)e)) = k)

F F

Steinwart, Christmann, Support Vector Machines (2008), Lemma 4.3.4
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Stein RKHS features
Reproducing property for the derivative: for differentiable k(z, z'),

2@ =(fge@)  (Ge@ee)) = Lkae)

F

Using kernel derivative trick in ,

(A:f)(2) = (52 108 5(2)) £(2) + -1(2)
- <f, (5 1o82(2)) w(z) + ;‘iw(x)>
~——F

= {£,¢(2)) -

Steinwart, Christmann, Support Vector Machines (2008), Lemma 4.3.4
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Proof: kernel derivative trick (on [—,7])

Proof: differentiable translation invariant k(z, z'), X := [-7, 7],
periodic boundary

(gol@he(e)) =2 k(z,a)

dz F

+f(@) = (£, 5 vl@)

]__
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Proof: kernel derivative trick (on [—,7])

Proof: differentiable translation invariant k(z, z'), X := [—m, 7],
periodic boundary

(gol@he(e)) =2 k(z,a)

F

+f(@) = (£, 5 vl@)

]__

Fourier series representation:

flg)= > feexp(ulz), fo= % /trf(m)exp(—zlz) dez.

{=—c0

Fourier series representation of derivative:

2 f2) 5 {0k

(oo}
=
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Proof: kernel derivative trick (on [—,7])

Proof: differentiable translation invariant k(z, z'), X := [—m, 7],
periodic boundary

d B d 1 _d 1
@ =(fige@)  (Ge@he) = fkee)
Fourier series representation:

flg)= > feexp(ulz), fo= % /trf(m)exp(—zlac) dez.

=0
Fourier series representation of derivative:
d F.S. 2\ > -
1@ =5 {0k}, = 3" ()kexp (l(c - )

{——o0
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Proof: kernel derivative trick (on [—,7])

From previous slide,

[e e}

= > (W)kexp («(z —-))

2 f(2) % {0k} Py

[o¢]
=

— 00

We can write

(7 )= A
.
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Kernel Stein discrepancy: derivation

Closed-form expression for KSD: given independent z,z’ ~ @, then

KSD,(Q) = sup E;q([Apg](z))
llgll=<1
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Kernel Stein discrepancy: derivation

Closed-form expression for KSD: given independent z,z’ ~ @, then

KSD,(Q) = sup E;q([Apg](z))
llgll=<1

= sup Ez~q<9:£m>}'
llgll=<1
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Kernel Stein discrepancy: derivation

Closed-form expression for KSD: given independent z,z’ ~ @, then

KSD,(Q) = sup E;q([Apg](z))
llgll=<1

= sup Eiq(9,é2)r
lgllF<1

sup <g; Ezwq&z)y: = ||Ez~q£z||]:
llgll=<1

Caution: requires boundedness (Riesz),

| Beng (F1€2) £l < Ifll 7 Bang €2l £
———

bounded?
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Kernel Stein discrepancy: derivation

Closed-form expression for KSD: given independent z,z’ ~ @, then

KSD,(Q) = sup E;q([Apg](z))
llgll=<1

= sup Eiq(9,é2)r
lgllF<1

sup <g; Ezwq&:r)]: = ||Ez~q£z||]:
llgll=<1

Caution: requires boundedness (Riesz),

| Beng (F1€2) £l < Ifll 7 Bang €2l £
———

bounded?
Leading term

1€:11F = <<jlogp ) k(z,"), <:zlogp(z)) k(z, -)>F +...
implies Eq-, (dilogp( )) < 0.
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Kernel Stein discrepancy: derivation

Closed-form expression for KSD: given independent z,z’ ~ @, then

KSD,(Q) = sup E;q([Apg](z))
llgll=<1

= sup Eiq(9,é2)r
lgllF<1

sup <g; Ezwq&:r)]: = ||Ez~q£z||]:
llgll=<1

Kernel expression in R:

2
[Eongéallz

2

Bovq ((e) g o 2(2) + 50(e) )|

=Ez g (k(:c, z') 6p(z) Op(z') 1 0p(z')

p(z)

15/54
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Does the Riesz condition matter?

Consider the standard normal,

p(z) = \/127 exp (—m2/2) .
Then

d
T logp(z) = —z.
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Does the Riesz condition matter?

Consider the standard normal,

p(z) = \/127 exp (—m2/2) .
Then

diw logp(z) = —z.

If g is a Cauchy distribution, then the integral

Bavg (dlogp<x))2 = [7 2qe)as

dzr —

is undefined.
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Kernel Stein discrepancy: population expression

Population kernel Stein discrepancy (in RP):
KSD3(Q) = Eswrnohy(z,2')
where

hy(z, ') = s,(z) s, (2" ) k(z, 2') + 5, (2) o2, ')
+sp(z") ki (z, 2') + tr [Riz(z, 2')]
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Kernel Stein discrepancy: population expression

Population kernel Stein discrepancy (in RP):
KSD2(Q) = Egwinghp(z, 2')

where

m ki(a,b) = Vik(z, ') 220,026 € RP,
Ba(a,b) = Vark(2, &) acawi—s € BD,
m kia(a, b) =V, Vyk(z,z')|g—a0—p € RPXP
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Kernel Stein discrepancy: population expression
Population kernel Stein discrepancy (in RP):
KSD2(Q) = Eq,ormhp(z, ')
where
hy(z,2') = s,(z) 'sp(2')k(z, 2") + 5,(2)  Ra(2, 2")
+sp(2") ki (z, 2') + tr [kiz(z, )]

$)|:v a,z'= bERD
$)|x a:v’ beRD

If kernel is Co-universal and Q satisfies E;..q HV (log p(m)) H2 < 00,

q(z)
then KSD2(Q) = 0iff P = Q.
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KSD for discrete-valued variables
Discrete domains: X = {1,..., L}? with L € N.
The population KSD (discrete):
KSD3(Q) = Ez z'nghp(z, 2')
where
hy(z,2') = s,(z) 'sp(2')k(z, 2") — s,(z)  Ra(z, 2")
—s,(z")7 + tr [kio(z, 2')]

, A1 is difference on z, s,(z) = Apz(JS)

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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KSD for discrete-valued variables
Discrete domains: X = {1,..., L}? with L € N.
The population KSD (discrete):
KSD3(Q) = Ez z'nghp(z, 2')
where
hy(z,2') = s,(z) 'sp(2')k(z, 2") — s,(z)  Ra(z, 2")
—s,(z")7 + tr [kio(z, 2')]

, A1 is difference on z, s,(z) = Apz(JS)

A discrete kernel: k(z,z') = exp(—dy(z,z')), where
du(z, ') = D 10 I(zg # z)).

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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K&SD for discrete-valued variables
Discrete domains: X = {1,..., L}? with L € N.
The population KSD (discrete):
KSD2(Q) = Ezznohp(z, ')
where
hy(z,2') = s,(z) 'sp(2')k(z, 2") — s,(z)  Ra(z, 2")
—sp(z')" +t1 [ki2(z, )]

, A1 is difference on z, s,(z) = Apz(JS)

A discrete kernel: k(z,z') = exp(—dy(z,z')), where
du(z, ') = D 10 I(zg # z)).

KSD2(Q) =0iff P = Q if

B Gram matrix over all the configurations in X is strictly positive definite,

B P>0and @ >0.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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Constructing threshold for a statistical test
Given samples {2;}7 ; ~ g, empirical KSD (test statistic) is:

——

KSD(p,q,F) Zzh Z“Zj
1=177#1
When g = p, U-statistic is degenerate. Estimate of null distribution
with wild bootstrap:

KSD(p, q,F) =

szo’] (2, %)
n o 1 1=1j#1
where {o;}" , i.i.d, E(0;) =0, and E(c?) =1

m Consistent estimate of the null distribtion when ¢ = p

m Consistent test (Type II error goes to zero) under a rich class of
a].ternatlves Chwialkowski, Strathmann, G., ICML 2016
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Model Criticism

\XJ
cu
3
S| &
O I
™ ol L M
Sed e A8,
A Ty A
THY TR R
! S

Data = robbery events in
Chicago in 2016.

ni

o\ .

* ;.

S A
o

20/54



The witness function: Chicago Crime

‘3..'.' ]

< 4. Model »p 10-component
"_- |21\ Gaussian mixture.
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The witness function: Chicago Crime

Witness function g shows
mismatch




Empirical statistic, asymptotic normality for P # @

The empirical statistic:

KSDZ(Q Zh (zi, 7).
175]

Asymptotic distribution when ¢ # p:
Jn <KSD§,(Q) - KSDP(Q)> 4 N©O,02) o} = 4VarlFalhy(z,2)]).

Prob

0.5

0.0 —>
KSD3(Q) KSD(Q) 22/54



Relative goodness-of-fit testing

m Two latent variable models P and @, data {z;}]; iid p

m Distinct models p # ¢

Hypotheses:
Hp : KSD,(R) < KSD,(R) vs. H; : KSD,(R) > KSD,(R)
(Ho : ‘P is as good as @, or better’ vs. H; : ‘Q is better’ )
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Relative GOF testing: joint asymptotic normality

Joint asymptotic normality when P # R and @Q # R

‘l%> N 0 , (T;ZJ (T}%;hq
0 Ohyhyg Uhq

KSDZ(R) — KSD,(R)

e

KSD?(R) — KSDy(R)

n

KSD;(R)

A

KSD(R) ’

KSDXR)  KSD(R)
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Relative GOF testing: joint asymptotic normality
Joint asymptotic normality when P # R and @ # R

ﬁ(@m)—KSDp(R)uNQO] l %, %D
| KSD(R) — KSD,(R) | 0 |"| onn, Ot

Difference in statistics is asymptotically normal:
Vn {KSDZ(R) — KSD?I(R) — (KSD,(R) — KSD,(R))
AN (O, a,%p + a,zlq — 2ahphq)

— a statistical test with KSD,(R) — KSD,(R) <0
is straightforward.
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Latent variable models
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Latent variable models

Can we compare latent variable
models with KSD?

Multi-dimensional Stein operator:

_ Vp(z)
[T,f] (2) = <f(x), e > +(9,7(2).
——
Expression requires marginal p(z), often intractable. ..
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What Lm to do

Approximate the integral using {2;}]2; ~ p(z):

p(a) = / p(al2)p(z)dz
1 m
e~ = z:: p(z|2)
Estimate KSD with approximate density:

KSD2(R) ~ KSD? (R)
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What Lm to do

Approximate the integral using {2;}]2; ~ p(z):

p(a) = / p(al2)p(z)dz
1 m
e~ = z:: p(z|2)
Estimate KSD with approximate density:

KSD2(R) ~ KSD? (R)

Problem: KSDf,m(R) asymptotically normal but slow bias decay.
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MCMC approximation of score function

Result we use:
sp(z) = Bz z[sp(z]2)]
Proof:

p(2)

Vp (z]2) p(xIZ)dp(Z)_
- / ey = Eeplea(ale)

Friel, N., Mira, A. and Oates, C. J. (2016) Exploiting multi-core architectures for reduced-variance
estimation with intractable likelihoods. Bayesian Analysis, 11, 215-245.
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MCMC approximation of score function
Result we use:

5p(z) = Ezjo[sp(2]2)]
Proof:

p(2)

Votels) ekt ) _
- / ey = Eeplea(ale)

sp(z) =

Approximate intractable posterior E, g, [s,(z;|2)]

m

Sp(xz; i = Z $7,|z sp(mi)

with zi(t) = (zi(,tl), . (t)) via MCMC (after t burn-in steps)

’zm

Friel, N., Mira, A. and Oates, C. J. (2016) Exploiting multi-core architectures for reduced-variance
estimation with intractable likelihoods. Bayesian Analysis, 11, 215-245.

29/54



KSD for latent variable models

Recall earlier KSD estimate:
1

Un(P) “a(n—1) ; hy(zi,z;) (= KSD3(R))
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KSD for latent variable models

Recall earlier KSD estimate:

1

) =m

> hyp(zi, ;) (= KSDZ(R))
1#]

KSD estimate for latent variable models:

t t

V(P = atn 1) ;H z;,27), (%7, 2\")] (~ KSD?(R))
(t))_

where H, is the Stein kernel h, with s,(z;) replaced with §,(z;; 2,
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Return to relative GOF test, latent variable models

Hypotheses:

Hp : KSD,(R) < KSD,(R) vs. Hy : KSD,(R) > KSD,(R)
(Ho : ‘P is as good as @, or better’ vs. Hy : ‘Q is better’ )
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Return to relative GOF test, latent variable models

Hypotheses:

Hp : KSD,(R) < KSD,(R) vs. Hy : KSD,(R) > KSD,(R)
(Ho : ‘P is as good as @, or better’ vs. Hy : ‘Q is better’ )

Strategy:
m Estimate the difference KSD%(R) - KSD?Z(R) by

p(p, @) = viP(P) — Ui Q).

m If D%t)(P, Q) is sufficiently large, reject Hp.
“Sufficient™ control type-I error (falsely rejecting Hp)
Requires the (asymptotic) behaviour of D,(Lt)(P, Q)
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Asymptotic distribution for relative KSD test

Asymptotic distribution of approximate KSD estimate n, ¢t — oo:

Vn [DE(P, Q) - wro] 5 N(0,030)

where
ueq = KSDY(R) — KSD(R),
. ¢
0123@ = nltlgloon - Var [DT(L )(P, Q)] .
Fine print:

m The double limit requires fast bias decay
VR[E{DI(P, Q)} = nrg] — 0

m The fourth moment of I:IZSt) — Ingt)has finite limit sup. (¢ — 00).
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Asymptotic distribution for relative KSD test
Asymptotic distribution of approximate KSD estimate n,t — oo:
v [D(P, Q) — upo| 5 N(0,0%0)
where
upo = KSD(R) — KSD2(R),
U%Q = lim n-Var [Dgt)(P, Q)] .

Level-a test:
Reject Hy if D(P, Q) > 22%¢; 4
- Jn

B C1_o is (1 — a)-quantile of N(0, 1).
m 0po estimated via jackknife
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Experiments
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Experiment 1: sensitivity to model difference
m Data R : Probabilistic Principal Component Analysis PPCA(A):

z; € R ~ N(Az, I), z € R® ~ N(0, I,)

m Generate P, Q : perturb (1,1)-entry : As = A+ 6E1
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Experiment 1: sensitivity to model difference

m Data R : Probabilistic Principal Component Analysis PPCA(A):

z; € R0 ~ N(Az;, I), 2z € R ~ N(0, I)

m Generate P, Q : perturb (1,1)-entry : As = A+6E1

© 1.07 .y _______ Yessssaae 7
45 .
—
=
20.5] ¥
o}
o' .
0_07 Beverenns YTIELEEE @rnannnnn Qrernrnns ©
20 400
Sample size n
-0« MMD cemee KSD

Hoffman and Gelman (JMLR 2014)

m Alt. Hy (Q is better):
P’s perturbation ép = 2
Q’s perturbation 6o =1

m IMQ kernel: k(z,z') =
~1/2
(1+ e = o|I3/02ea)
m NUTS-HMC with sample

size m = 500
(after t = 200 steps).
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Experiment 1: sensitivity to model difference

m Data R : Probabilistic Principal Component Analysis PPCA(A):

z; € R ~ N(Az, ), z

i € Rlo NN(Oi IZ)

m Generate P, Q : perturb (1,1)-entry : As = A+6E1

© 1.07 .y ‘‘‘‘‘‘‘‘ Yessssaae 7
45 .
—
=
20.5] ¥
o}
o' .
0.0’ Beverenns YTIELEEE @rnannnnn Qrernrnns ©
20 400
Sample size n
-0« MMD cemee KSD

Hoffman and Gelman (JMLR 2014)

(L)KSD = higher power
m Sample-wise difference in

models = subtle
(MMD fails)

m Model information is
helpful
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Experiment 2: topic models for arXiv articles

m Data R : arXiv articles from category stat.TH (stat theory) :

m Models P, @ : LDAs trained on articles from different categories
P : math.PR (math probability theory)
Q : stat.ME (stat methodology). Hi: Q is better

Graphical model of LDA

Blei, Ng, Jordan (JMLR 2003)
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Experiment 2: topic models for arXiv articles

m Data R : arXiv articles from category stat.TH (stat theory) :
m Models P, @ : LDAs trained on articles from different categories (100

topics)

P : math.PR (math probability theory)
Q : stat.ME (stat methodology). Hi: Q is better

. 10 “““ CATTRITL Fernnnene v
g .V'"
— R
=
.S
203
Koy v )
= @rennnnns PYTTERILE O XTI ot
200 400
Sample size n
==0-- MMD cemes LKSD

s X={1,...,L}?, D= 100,
L =126, 190.

m IMQ kernel in BoW rep.:
k(z,z') =

2y —1/2

(1+11B(z) — B(z')[I3)

m MCMC size m = 5000
(after ¢ = 500 steps).
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A failure mode

m Data R : arXiv articles from category stat.TH (stat theory) :
m Models P, @ : LDAs trained on articles from different categories (100

topics)

Rejection rate

—_
=)

<
ot

<
o

P : cs.LG (CS machine learning)

Q : stat.ME (stat methodology). Hi:

J @eennnnns GBI o Qreennnnnn ©
,,,,, v
Yernnnnnn Woannnnnns Frrrnnnn v-“
200 400
Sample size n

Q@ is better

s X={1,...,L}?, D= 100,
L = 208,671.

m IMQ kernel in BoW rep.:
k(z,z') =

2y —1/2

(1+11B(z) — B(z')[I3)

m MCMC size m = 5000
(after ¢ = 500 steps).

38/54



What went wrong?

Recall (one-dimension, informally)

Numerical instability arises when

m Observed word z has low probability

m Word next to z in vocabulary has non-negligible probability
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Zanella-Barker Stein operator

Zanella-Barker Stein operator (1-D):

ZB (g — P(E)  rrimy p(s
AZE( )_5e{x§z_1}?’(i)+?($) {f(&) - f(=)}

m More stable: the ratio p(Z)/{p(Z) + p(z)} is always between 0 and 1.

m Similarly applies to latent variable models.

Hodgkinson, Salomone, and Roosta (2020); Shi, Zhou, Hwang, Titsias, and Mackey. (2022)
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A resolution to the failure mode

m Data R : arXiv articles from category stat.TH (stat theory) :
m Models P, @ : LDAs trained on articles from different categories (100
topics)
P : cs.LG (CS machine learning)
Q : stat.ME (stat methodology). Hi: Q is better

. 10 @eennnnss GYTTTE o Qeaeeee g = Improved performance by
= Ly . an alternative Stein
% e operator
= 0.57
O .
RER &
O
o' eV

OO Prnasnnnn AT \~ A v i

200 400

Sample size n
o MMD e LKSD e LKSD (Alt.)
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Can sampler influence test power?

How important is the quality of % Z]m:l sp(:z:|zj(t))?
Experiment with PPCA:

m P : MALA with a bad step size (poor sampler)
m Q: NUTS-HMC (good sampler)

Expectation:

If poor, the test would reject even if P and @ are equally good

42/54



Can sampler influence test power?

How important is the quality of % Z]m:l s,(z] Z]»(t))?
Experiment with PPCA:

m P : MALA with a bad step size (poor sampler)
m Q: NUTS-HMC (good sampler)

m Null Hy (should not reject)

m Significance level a = 0.05

1.0

m Sample size n = 100

Rejection rate
)
ot

0.0% 250 500
Burn-in size ¢
—— m=1 —<— m=10 -- m =100 e = 1000



Can sampler influence test power?
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Can sampler influence test power?

How important is the quality of % Z]m:l s,(z] Z]»(t))?
Experiment with PPCA:

m P : MALA with a bad step size (poor sampler)
m Q: NUTS-HMC (good sampler)

m Null Hy (should not reject)

m Significance level a = 0.05
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Conclusion

Relative goodness-of-fit tests for Models with
Latent Variables

m The kernel Stein discrepancy

Comparing two models via samples: MMD and the witness function.
Comparing a sample and a model: Stein modification of the witness
class

m Constructing a relative hypothesis test using the KSD

m Relative hypothesis tests with latent variables
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KSD Riesz condition proof (detailed)

The KSD is written:

(T1(2) = (52 Yo82(2)) £(2) + 25(2)

(£ (1o p(2)) ba )+ k()
=:(f, &) 7 -
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(1 (G108 n()) ke + k(=)
=:(f, &) F-

Step 2: show that

Ezwq [Tpf] = Ezwq <f7£z>]-' = (f: Ez~q£Z>J:‘

Riesz theorem!
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Next step: taking expectations

Riesz theorem: need boundedness,

| Bong (f,€2) 2l < IIfII2 A

for some A € R.
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Next step: taking expectations

Riesz theorem: need boundedness,

| Bong (f,€2) 2l < IIfII2 A

for some A € R.

By Jensen and Cauchy-Schwarz,

|Bong (f1€2) 7l < Bang [{f1€2) £

<l g Bzng Izl £-
—_————
bounded?
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Next step: taking expectations

Compute the squared norm:

€217 = (€20 €2) 5
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First two (easy) terms

First term (A):
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First two (easy) terms

Second term (B):

(B) = (ke k(e )

z—z'=2
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First two (easy) terms

Second term (B):
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Third term

Third term (C):

(€)= ( (45 Yoer(e) ) ke, k("))
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Third term

Third term (C):

(€)= ( (45 Yoer(e) ) ke, k("))

[ exp(—zla:)] [(—zl) exp(—zl:c')]

d (o]

= (dzlogp(z)) ZZZ_:OO
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Third term

Third term (C):

(1€) kpexp (14(z' — )
—
=1 when z—=2'

53/54



Putting it all together
We found:

d 2
3 = 0+ (2 logn(2)) e
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Putting it all together
We found:

d 2
3 = 0+ (2 logn(2)) e

Thus for boundedness, we have the condition:

d 2
EZNq HEZH]—' = EZNq\/C + (diL‘ log p(x)) c
d 2
< | Beng |CF (dzlogp(z)> C],

2
So Riesz holds when E,., (d% log p(z)) < 0o
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