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Questions we will solve

/



Outline

Previous slides: Causal effect estimation, observed covariates:

m Average treatment effect (ATE), conditional average treatment effect
(CATE)

These slides: Causal effect estimation, hidden covariates:

m ... instrumental variables, proxy variables

What’s new? What is it good for?

m Treatment A, covariates X, etc can be multivariate, complicated...

m ...by using or feature representations
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Model assumption: linear functions of features

All learned functions will take the form:

1z)=7"0(x) = (71,0(z))y

4/39



Model assumption: linear functions of features

All learned functions will take the form:

1(z) =" p(z) = (1,0(2))y
Option 1: Finite dictionaries of learned neural net features ¢4(z)
(linear final layer 7y)

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment.
(ICLR 23)

Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental
Variable Regression. (ICLR 21)

Option 2: Infinite dictionaries of fixed kernel features:

(p(z:), o(2))gy = k(i )

Kernel is feature dot product.

Singh, Xu, G. Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves. (Biometrika, in revision)

Singh, Sahani, G. Kernel Instrumental Variable Regression. (NeurIPS 19)
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Model fitting: ridge regression
Learn 7o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

y = argmip (Z 2)))? +>\H“YHH>

1=1
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Model fitting: ridge regression
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Model fitting: ridge regression

Learn 7o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

y = argmip (Z 2)))? +}\H’YHH>

1=1

Kernel solution at =

(as weighted sum of y) ZZ
n 0.4

= vifi(z) g 02

i=1 0

B(z) = (Kxx + )\I)_lka 0z

0.4

(Kxx)y = k(zi,3j) = (o(@i), 0(zj))yy, o 4 2 0 2 4 6 s
(kxz); = k(=i z)
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What if there are hidden confounders?
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Illustration: ticket prices for air travel

Ticket price A, seats sold Y.

0—0@

What is the effect on seats sold Y (%) of intervening on price a?

Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexible7/39
Approach for Counterfactual Prediction.



Illustration: ticket prices for air travel

Ticket price A, seats sold Y.
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Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexible7/39
Approach for Counterfactual Prediction.



Illustration: ticket prices for air travel

Unobserved variable ¢ =desire for travel, affects both price (via airline
algorithms) and seats sold.

m Desire for travel:
ALD g ~ N(p,0.1)
.- 1 1
N B~ u {_57 07 §}

8/39



Illustration: ticket prices for air travel

Unobserved variable ¢ =desire for travel, affects both price (via airline
algorithms) and seats sold.

m Desire for travel:

At
,ﬁi‘"’ ,,<‘ €~ N(u,0.1)
.- 11
{Ell /’LNU{_§7O7§}
- m Price:
A=c¢c¢+ Z,
Z ~ N(5,0.04)
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Illustration: ticket prices for air travel

Unobserved variable ¢ =desire for travel, affects both price (via airline
algorithms) and seats sold.

m Desire for travel:

et
A1 STATS g~ N(u,0.1)
.- 11
{Ell /’LNU{_§7O7§}
- m Price:
A=c¢c¢+ Z,
Z ~ N(5,0.04)

( ) m Seats sold:

Y=10—-A+2
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Illustration: ticket prices for air travel

Unobserved variable ¢ =desire for travel, affects both price (via airline

algorithms) and seats sold.

Average treatment effect:

ATE(a) = E[Y(®)] = /(10 —a+2¢)dp(e) =10—a

m Desire for travel:

e~ N(p,0.1)
~U { 1.0,

m Price:
A=¢e+ Z,
Z ~ N(5,0.04)

m Seats sold:
Y =10— A+ 2¢

1

' 2

8/39



Illustration: ticket prices for air travel

Unobserved variable ¢ =desire for travel, affects both price (via airline
algorithms) and seats sold.

5 m Desire for travel:
SIATS e ~ N (,0. >
.- 1 1
Y p~U { 3 5}

m Price:
/\ A=¢e+ Z,
Z ~ N(5,0.04)

()
@ w Y m Seats sold:

s 72 Y=10—-A+2
il S ‘

Z is an instrument (cost of fuel). Condition on Z,
E[Y|Z] =10 — E[A|Z] + 2E[e| Z]
——

=0
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Illustration: ticket prices for air travel

Unobserved variable ¢ =desire for travel, affects both price (via airline

algorithms) and seats sold.

541

5.2

E[Y|Z]

4.8

4.6

T
4.6

T
4.8

T
5.0

ElA|Z]

T
5.2

m Desire for travel:
e~ N(u,0.1)
e 30.3)

m Price:

A=¢e+ Z,
Z ~ N(5,0.04)

m Seats sold:
Y=10—- A+ 2¢

Z is an instrument (cost of fuel). Condition on Z,

E[Y|Z] = 10 — E[A|Z] + 2E[¢| Z]
gt}

=0

Regressing from E[A|Z] to E[Y|Z] recovers ATE! 8/39



IV: the linear case

Output y € R, noise € € R, input a with NN features ¢y(a).
Crucially, ¢ £ a and

Cue := E[ps(A)e] £ 0
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IV: the linear case

Output y € R, noise € € R, input a with NN features ¢y(a).
Crucially, ¢ £ a and

Coe :=E[gpg(A)e] #0
Average treatment effect:
y=70 ¢s(a)+e E(e)=0
ATE = E(Y®) = [(307¢o(a) + €)dP(e) =70 4o(a).
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IV: the linear case

Output y € R, noise € € R, input a with NN features ¢y(a).
Crucially, ¢ £ a and

Cae = E[po(A)e] £ 0
Average treatment effect:
y=7 ¢o(a)+e E(e) =0
ATE = E(Y®) = [(307¢o(a) + €)dP(e) =70 4o(a).
Least-squares loss for 7,6:

£01,0) =E|Y 7" ¢o(4) — e
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IV: the linear case

Output y € R, noise € € R, input a with NN features ¢y(a).
Crucially, ¢ £ a and

Coe :=E[gpg(A)e] #0

Average treatment effect:

y=70 ¢s(a)+e E(e)=0

ATE == E(Y®) = (0" ¢u(a) + e)aP(e) = 70 dil(e).
Least-squares loss for 7,6:

2
L(1,0)=E|Y -7 ge(4) —¢|
Minimizing for 7,
Yo = C;zl(cay — Cae) Caa = E[¢9(A)¢€(A)T]

...but we don'’t have C,;. 9/39



Instrumental variable regression

The Sveriges Riksbank Prize in

Economic Sciences in Memory of
Alfred Nobel 2021

Nobel Prize Outreach. Photo: © Nobel Prize Outreach. Photo: © Nobel Prize Outreach. Photo:
Paul Kennedy Risdon Photography Paul Kennedy
David Card Joshua D. Angrist

Prize share: 1/4

Guido W. Imbens
Prize share: 1/2

Prize share: 1/4

The Sveriges Riksbank Prize in Economic Sciences
in Memory of Alfred Nobel 2021 was divided, one
half awarded to David Card "for his empirical
contributions to labour economics", the other half
jointly to Joshua D. Angrist and Guido W. Imbens

"for their methodological contributions to the
analysis of causal relationships"
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Instrumental variable regression with NN features

Definitions:

m ¢: unobserved confounder. -
m A: treatment

B Y: outcome

-:‘E ‘l
B Z: instrument f\/ \
Z A Y
O—E@O—O)

Assumptions
Ele] =0  Elg|Z] =0
Z ) A
(Y L Z[A)g,
Y =7"¢s(A) +¢
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Instrumental variable regression with NN features

Definitions:

m ¢: unobserved confounder.

m A: treatment
m Y: outcome

m Z: instrument
Assumptions
Ele] =0 Ele|Z] =0
Z LA
(Y L Z[A)g,
Y =7 ¢o(A) +¢

Average treatment effect:

ATE(a /E (Yle, a)dp(e) = 7" ¢o(a)
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Instrumental variable regression with NN features

Definitions:
m ¢: unobserved confounder.
m A: treatment

m Y: outcome

-:‘E. ‘l
B Z: instrument / \
Assumptions

Ele] =0 Ele|Z] =0 Average treatment effect:
Z1A ]
(Y L Z|A)c, ATE(a) = /E(Y\E, a)dp(e) =71 ¢s(a)

Y =7 ¢o(A) +¢
IV regression: Condition both sides on Z,
E[Y|Z] = v E[$s(A)| Z] + E¢| Z]
N—_——

=0 11/39



Two-stage least squares for IV regression

Kernel features (NeurIPS 2019): NN features (ICLR 2021):

tielp | Ad
Computer Science > Machine Learning

EI‘(iV > ¢s > arXiv:2010.07154

[Submiteed on 1Jun 2019 (v1, It revised 15 ul 2020 (this version, v6)
Kernel Instrumental Variable Regression

Computer Science > Machine Learning
Rahul Singh, Maneesh Sahani, Arthur Gretton

[subrmitted on 14 Oct 2020 (v1, last revised 1 Nov 2020 (tis version, v3)

Learning Deep Features in Instrumental Variable Regression

Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton

Code for NN and kernel IV methods:
https://github.com/liyuan9988/DeepFeaturelV/

12/39


https://github.com/liyuan9988/DeepFeatureIV/

Two-stage least squares for IV regression

Kernel features (NeurIPS 2019): NN features (ICLR 2021):

Computer Science > Machine Learning

Help | Ad

ar (1V > ¢s > arXiv:2010.07154

[Submiteed on 1Jun 2019 (v1, It revised 15 ul 2020 (this version, v6)
Kernel Instrumental Variable Regression

Computer Science > Machine Learning
Rahul Singh, Maneesh Sahani, Arthur Gretton

[submitted on 14 Oct 2020 (v1), last revised 1 Nov 2020 (tis version, v3)]

Learning Deep Features in Instr

| Variable Reg i
Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton

Code for NN and kernel IV methods:
https://github.com/liyuan9988/DeepFeaturelV/
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https://github.com/liyuan9988/DeepFeatureIV/

IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

Eyz |(Y -7 "Elgs(A4)|2])°] + Al

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 14/39



IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

Evz [(Y =7 Elge(4)|2])] + Xl
learn NN features ¢/(Z) and linear layer
El¢e(A)|Z] = F'¢:(Z)
with RR loss
Ellge(A) = 7o (2|7 + Al 7 Ils

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 14/39



IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

Eyz [(Y = 7 Elge(A) 21| + Aoy
learn NN features ¢/(Z) and linear layer
El¢e(A)|Z] = F'¢:(Z)
with RR loss

Ellgs(A) — 7 (Z)I1” + Xl 7lls
Challenge: how to learn 67

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 14/39



IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

Eyz [(Y = 7 Elge(A) 21| + Aoy
learn NN features ¢/(Z) and linear layer
El¢e(A)|Z] = F'¢:(Z)
with RR loss
Ellge(A) = 7o (2|7 + Al 7 Ils
Challenge: how to learn 67

From Stage 2 regression?

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
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IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

Eyz [(Y = 7 Elge(A) 21| + Aoy
learn NN features ¢/(Z) and linear layer
El¢e(A)|Z] = F'¢:(Z)
with RR loss
Ellge(A) = 7o (2|7 + Al 7 Ils
Challenge: how to learn 67

From Stage 2 regression?
...which requires E[¢y(A)|Z] from regression
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IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:
Eyz [(Y = 7 Elge(A) 21| + Aoy
learn NN features ¢/(Z) and linear layer
Elgs(A)|Z] ~ F¢:(Z)
with RR loss
Ell¢s(A) = o (2)|1? + Al F s
Challenge: how to learn 67

From Stage 2 regression?
...which requires E[¢y(A)|Z] from regression
...which requires ¢¢(A)... which requires 6...

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
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IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:
Eyz [(Y = 7 Elge(A) 21| + Aoy
learn NN features ¢/(Z) and linear layer
Elgs(A)|Z] ~ F¢:(Z)
with RR loss
Ell¢s(A) = o (2)|1? + Al F s
Challenge: how to learn 67

From Stage 2 regression?
...which requires E[¢y(A)|Z] from regression
...which requires ¢¢(A)... which requires 6...

Use the linear final layers! (ie. y and F)

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 14/39



IV using neural net features

Stage 1 regression: learn NN features ¢.(Z) and linear layer /"
Elgs(A)|Z] ~ F¢:(Z)
with RR loss
E [[lgs(4) = F¢:(2)I] + Ml 7 Ihs

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 15/39



IV using neural net features

learn NN features ¢/(Z) and linear layer
E[¢e(A)|Z] ~ F¢:(Z)
with RR loss
E [l(A) — 7 (Z)17] + Ml 7%
g, in closed form wrt ¢g, ¢.:
6 = Caz(Czz + MI) ' Caz =Elgs(A)g! (2)]
Czz = Elp(2)$](2)]

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 15/39



IV using neural net features

learn NN features ¢/(Z) and linear layer
Elgs(A)|Z] = F¢.(Z)
with RR loss
E [l(A) — 7 (Z)17] + Ml 7%
g, in closed form wrt ¢g, ¢.:
o0 = Caz(Czz +MI) 1 Caz = E[¢s(A)¢/ (2))]
Czz = Elp.(2)$/(2)]
Plug 74 into 51 loss, take gradient steps for ( (...but not 6...)

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 15/39



Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 16/39



Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol
= Evz[(Y =7 Fo, 6(2))2] + hall7]?
RS

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 16/39



Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol
=Evz[(Y — 7' Foc¢:(2))%] + X712
% in closed form wrt ¢g:
4 := Cyz(Czz + X\I)™*  Cyz =E [Y [Focd (Z)]T]
Czz =E [[Fo,$:(2)] [Fo,6(2)]]

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 16/39



Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol
=Evz[(Y — 7' Foc¢:(2))%] + X712
% in closed form wrt ¢g:
4 := Cyz(Czz + X\I)™*  Cyz =E [Y [Focd (Z)]T]
Czz =E [[Fo,$:(2)] [Fo,6(2)]]

From linear final layers in Stages 1,2:
Learn ¢4(A) by plugging 9 into S2 loss, taking gradient steps for 4
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Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol
= Evz[(Y =7 Fo, 6c(2))2) + dalln?

9o in closed form wrt ¢g:

Y9 := Cyz(Czz + AI)™"  Cyz =E [Y [Focd (Z)]T]
Czz =E [[Fo,$:(2)] [Fo,6(2)]]

From linear final layers in Stages 1,2:

Learn ¢4(A) by plugging 9 into S2 loss, taking gradient steps for 4
...but  changes with 6

...s0 alternate first and second stages until convergence.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 16/39



Neural IV in reinforcement learning

5 @
¢
(a) Catch (b) Mountain Car (¢) Cartpole
B

(a) Cartpole Swingup ~ (b) Cheetah Run (¢) Humanoid Run (d) Walker Walk

Policy evaluation: want Q-value:

Q"(s,a) = Z’th So=s,4=a
t=0

for policy 7(A|S = s).
Osband et al (2019). Behaviour suite for reinforcement learning.https://github.com/deepmind/bsuite

Tassa et al. (2020). dm_ control:Software and tasks for continuous control. 17/39
https://github.com/deepmind/dm_control


https://github.com/deepmind/bsuite
https://github.com/deepmind/dm_control

Application of IV: reinforcement learning

Q value is a minimizer of Bellman loss
Lpeliman = Esar [(R+’Y[ [Q™(5, A)]S, A QW(S,A))Z] :
Corresponds to “IV-like” problem
Loetiman = Evz (Y - E[f(X)|2))?]

with
Y = R,
=(8, A" S, A)
Z =(S,A),

fO(X): QW(S7 CL) - nyw(sI) a’l)
RL experiments and data:
https://github.com/1liyuan9988/IVOPEwithACME

Bradtke and Barto (1996). Linear least-squares algorithms for temporal difference learning.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)

Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressioqgggg
Deep Offline Policy Evaluation.


https://github.com/liyuan9988/IVOPEwithACME

Results on mountain car problem

mountain_car

-
T e—

104 =
— — [ ; Algorithm
"

T - e
N ='= :% |

ES FOE

=LY
| . L] :
| . L DRIV

Absolute Errar

oo 01 02 03 04 05
Noise Level

Good performance compared with FQE.

Warning: IV assumption can fail when regression underfits. See
papers for details.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)

Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressioq§9§9
Deep Offline Policy Evaluation.



...but seriously, what if there are hidden
confounders?
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The proxy correction

Unobserved ¢ with (possibly) complex nonlinear effects on A, YV

The definitions are:

m ¢: unobserved confounder.

m A: treatment ,—6'"

m Y: outcome =

If ¢ were observed (which it @
isn't),

E[Y(®] = [E[Yle, aldp(e)
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The proxy correction

Unobserved ¢ with (possibly) complex nonlinear effects on A, YV
The definitions are:

m ¢: unobserved confounder.

= A: treatment Visited bike website Interest in cycling Gym member

m Y: outcome TrrErC :’g‘. w) X A
cannondale N ?‘

m Z: treatment proxy [\

m W outcome proxy

Viewed ad

@ Bike purchase

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.

Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.

Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially
Observable Dynamical Systems.
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Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544

Search,

Help | Advan{
Computer Science > Machine Learning

[submitted on 10 May 2021 (v1), last revised 9 Oct 2021 (his version, va)]

Proximal Causal Learning with Kernels: Two-Stage
Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet

1
23

Code for NN and kernel proxy methods:

NN features (NeurIPS 2021):

arXiv.org > ¢s > arXiv:2106.03907

Search
Help | Advand
Computer Science > Machine Learning

[Submitted on 7 Jun 2021 (v1), last revised 7 Dec 2021 (this version, v2)]

Deep Proxy Causal Learning and its Application to
Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

https://github.com/1iyuan9988/DeepFeatureProxyVariable/ 2239


https://github.com/liyuan9988/DeepFeatureProxyVariable/

The proxy correction

Unobserved ¢ with (possibly) complex nonlinear effects on A, YV
The definitions are:

m ¢: unobserved confounder.
m A: treatment RS
{ : }4—- €
® Y: outcome Se
h
A
F—0

€
Y 1L Z|(A,€)

<€ == == >

m Z: treatment proxy

m W outcome proxy

Structural assumption:

— Can recover E(Y(%) from observational data!

23/39



Main theorem

If € were observed, we would write

p(y|do(a /p yla,€)p

...but we do not observe ¢.
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Main theorem

If € were observed, we would write

p(y|do(a /p yla,€)p

...but we do not observe ¢.

Main theorem: Assume we solved:
plylz,a) = [ hy(w, a)p(wlz, o)du

(Fredholm integral equation of the first kind)
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Main theorem

If € were observed, we would write

p(y|do(a /p yla,€)p

...but we do not observe ¢.

Main theorem: Assume we solved:

p(vlz,@) = [ hy(w, 0)p(ulz, o)du

(Fredholm integral equation of the first kind)
Average treatment effect with p(w):

p(yldo(a /h (a,w)p(w)dw

Both p(y|a, z) and p(w|a, z) are in terms of observed quantities, and
can be learned from data.

24/39



Proof (1)

Because e, we have

p(wla, z) = /p(w|s)p(e|a,z)de @75“\*?

@0
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Proof (1)

Because €, we have

p(w|a/)z) = /p(w|€)p(e|a,,z)de 4—-:.5_:'4____->

Because Y 1L Z|(A,€e) we have @—>@

p(vle,2) = [ p(vla,e)p(ela, 2)de

25/39



Given the solution h, to:

p(v]a,2) = [ hy(w, )p(w|a, z)du

(well defined under identifiability conditions for Fredholm equation of first kind)
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Proof (3)

Given the solution h, to:

p(v]a,2) = [ hy(w, )p(w|a, z)du

(well defined under identifiability conditions for Fredholm equation of first kind)
From last slide

/py|ae azds—/h wa/pw|e )p(ela, z)dedw
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Proof (3)
Given the solution h, to:
plvle,2) = [ hy(w, a)p(wla, 2)du

(well defined under identifiability conditions for Fredholm equation of first kind)
From last slide

/py|ae azds—/h wa/pw|e )p(ela, z)dedw

This implies:
p(vla,e) = [ hy(w, a)p(wle)du

under identifiability condition

E[f(e)JA=a,Z = z] =0, Pgja=gas. < f(e) =0, Pga—gas. (4)

26/39



Proof (4)

From last slide,

p(vlae) = [ hy(w, @)p(ule)du
Thus

p(y|do(a)) = / p(yla,e)p(e) du
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Proof (4)

From last slide,
p(vlae) = [ hy(w, @)p(ule)du

Thus
p(yldo(a)) = | p(yla,€)p(e)du

U hy(w, @) p(wle)dw| p(e)de

I
ST~ o
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Proof (4)

From last slide,

p(vlae) = [ hy(w, @)p(ule)du

Thus
p(yldo(@)) = [ p(yla,e)p(e)du
= [ [ tw a)p(wle)du] ple)de
= [ hy(w, e)p(w)dw

27/39



Feature implementation

Stage 2: minimize
2
hy, = argmin By, (v= (Poiw o ®9(a))) + Xallnll3,
which is conditional feature mean implementation of

p(y|a, 2) :/hy(w, a)p(w|a, z)dw

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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Feature implementation
Stage 2: minimize
. = argmin By,ae (v = (B @ 9(a))) + dalll
which is conditional feature mean implementation of
p(vle,z) = [ hulw, )plula,2)dw
Stage 1: ridge regression
= arg min Byq .z [|¢(w) - /[4(a) ® $(2)]I134y,, + Al I

which gives us

= . [¢(a) ® ¢(2)]

Deaner (2021).
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Feature implementation

Stage 2: minimize
. = argmin By,ae (v = (B @ 9(a))) + dalll
which is conditional feature mean implementation of
p(vle,z) = [ hulw, )plula,2)dw
Stage 1: ridge regression
= arg min Byq .z [|¢(w) - /[4(a) ® $(2)]113, + Al 7l s

which gives us
= . [¢(a) ® ¢(2)]

Average treatment effect estimate:

Ey(yldo(a)) = (. ¢(a) ® pw),
where py = Ew¢(W)

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021). 28/39
Xu, Kanagawa, G. (2021).



Failures of identifiability assumptions (1)

Recall (one of the) identifiability assumptions:
E[f(e)]A=a,Z =2]=0, Pga—qas. < f(e) =0, Pja—gas. (4)

For conciseness, assume conditioning on some a.

Failure 1: Z 1L € (no information about € in proxy)

g(e) = §(e) — Ecgle)
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Failures of identifiability assumptions (2)
Failure 2: “exploitable invariance” of p(e|z)
e ~N(0,1),
= le[ + N (0, 1),

where p(e|z) x p(z|e)p(e) symmetric in €. Consider square integrable
antisymmetric function g(¢) = —g(—¢). Then

| sepelde

_/ ple|2 d6+/g

If distribution of €| Z retains the same “symmetry class” over a set of
Z with nonzero measure, then the assumption is violated by g(e) with
zero mean on this class.
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How not to do it
Stage 2: minimize
ha, = argmin By o, (y - <h, >)2 + Xo||R|I3,
which is conditional feature mean implementation of
p(vle,z) = [ hutw, )plule,2)dw
Stage 1: ridge regression

= argminy q - |4(w) ® ¢(a) — [#(a) ® ¢(2)]l[34,, + Adll #1s

which gives us

= . [¢(a) ® ¢(2)]
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How not to do it

Stage 2: minimize
ha, = argmin By o, (y - <h, >)2 + Xo||R|I3,
which is conditional feature mean implementation of
p(vle,z) = [ hutw, )plule,2)dw
Stage 1: ridge regression
= argminBy q . |4(w) ® ¢(a) — F[p(a) ® $(2)]l3s,, + Ml 71

which gives us
= . [¢(a) ® ¢(2)]
Problem: ridge regressing from ¢(a) to ¢(a).
Theoretical issue: 73, is not Hilbert-Schmidt so consistency of /' not
established.
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Demo: bias introduced by stage 1 RR

Implementation issue: this can introduce unnecessary bias.

1.5
Stage 1:
a ~ N(0,0?).
Stage 2:
a ~U[-3,3].
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Demo: bias introduced by stage 1 RR

Implementation issue: this can introduce unnecessary bias.

1.5
Stage 1:
a ~ N(0,0?).
Stage 2:
—wrong a~U[-3,3].
== correct | -
* data
-1.5 ‘ ‘ ‘ ‘ ‘
-3 -2 -1 0 1 2 3
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Synthetic experiment, adaptive neural net features

dSprite example:
B X = {scale,rotation, posX,posY}

B Treatment A is the image generated (with
Gaussian noise)

m Outcome Y is quadratic function of A with
multiplicative confounding by posY.

B Z = {scale,rotation, posX},
W = noisy image sharing posY

N
o

10

Out-of-Sample MSE

1000 5000
Data Size

Algorithm
KPV
£ PMMR

CEVAE
=1 DFPV
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Confounded offline policy evaluation

Synthetic dataset, demand prediction
for flight purchase. 1ol T ? -

m Treatment A is ticket price. 5
m Policy A ~ m(Z) depends on fuel LE )
price. é
E
0.1
1500 7500
Data Size

Algorithm
%PV

& PMMR
£ DFPV
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Conclusions

Neural net and kernel solutions:

m ...for instrumental variable regression
m ...for proxy methods

m ...with treatment A, covariates X, V, proxies (W, Z) multivariate,
“complicated”

m Convergence guarantees for kernels and NN
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Questions?

37/39



Proxy proof (discrete variables)

If X were observed,
D

P(Y|do(a)) := ) P(ylzi, a) P(z:)

1=1

AVAN

—
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Proxy proof (discrete variables)

If X were observed,

D
P(Y|do(a)) =) P(ylzi, a)P(z;) = P(y|X, a) P(X)
1=1

Because ,

o=~
o
@._X ...... N
X !

P(W|Z,a) = P(W|X)P(X|Z,a) " /\G>
O—
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Proxy proof (discrete variables)

If X were observed,

D
P(Y|do(a)) =) P(ylzi, a)P(z;) = P(y|X, a) P(X)
1=1

Because ,

T
- P(X|Z, a) = “‘
O—

Because Y 1L Z|(A, X),

P(y|Z,a) = P(y|X, a)

P(X|Z,a)

= p(y|X,a) =p(y|Z,a)
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Proof (discrete variables)

From previous slide:

p(ylX,a) = p(y|Z,a)P~H(W|Z, a) P(W|X)

Y /
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Proof (discrete variables)

From previous slide:

p(y|X,a) = p(y|Z,a)P"H(W|Z, a) P(W]|X)

Multiply LHS and RHS by P(X): '\ /

P(Y(@)) .= P(y|X, a)P(X) O—
=p(y|Z,a)P " (W|Z, a) P(W|X)P(X)

P(W)

Average causal effect using only observed data!
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