
1 Covariate Shift by Kernel Mean Matching

Arthur Gretton1

Alex Smola1

Jiayuan Huang

Marcel Schmittfull

Karsten Borgwardt

Bernhard Schölkopf

Given sets of observations of training and test data, we consider the problem of
re-weighting the training data such that its distribution more closely matches that
of the test data. We achieve this goal by matching covariate distributions between
training and test sets in a high dimensional feature space (specifically, a reproducing
kernel Hilbert space). This approach does not require distribution estimation.
Instead, the sample weights are obtained by a simple quadratic programming
procedure. We provide a uniform convergence bound on the distance between
the reweighted training feature mean and the test feature mean, a transductive
bound on the expected loss of an algorithm trained on the reweighted data, and
a connection to single class SVMs. While our method is designed to deal with the
case of simple covariate shift (in the sense of Chapter ??), we have also found
benefits for sample selection bias on the labels. Our correction procedure yields
its greatest and most consistent advantages when the learning algorithm returns a
classifier/regressor that is “simpler” than the data might suggest.

1.1 Introduction

The default assumption in many learning scenarios is that training and test data
are drawn independently and identically (iid) from the same distribution. When
the distributions on training and test set do not match, we face the problem of
dataset shift : given a domain of patterns X and labels Y, we obtain training samples
Ztr =

{
(xtr

1 , y
tr
1), . . . , (xtr

ntr
, ytr
ntr

)
}
⊆ X × Y from a Borel probability distribution

Ptr(x, y), and test samples Zte =
{

(xte
1 , y

te
1), . . . , (xte

nte
, yte
nte

)
}
⊆ X × Y drawn from

another such distribution Pte(x, y).

1. Both authors contributed equally.

2 Covariate Shift by Kernel Mean Matching

Although there exists previous work addressing this problem [Zadrozny, 2004,
Rosset et al., 2004, Heckman, 1979, Lin et al., 2002, Dud́ık et al., 2005, Shimodaira,
2000, Sugiyama and Müller, 2005], dataset shift has typically been ignored in
standard estimation algorithms. Nonetheless, in reality the problem occurs rather
frequently. Below, we give some examples of where dataset shift occurs (following
the terminology defined by Storkey in Chapter ??).

1. Suppose we wish to generate a model to diagnose breast cancer. Suppose,
moreover, that most women who participate in the breast screening test are
middle-aged and likely to have attended the screening in the preceding 3 years.
Consequently our sample includes mostly older women and those who have low risk
of breast cancer because they have been tested before. This problem is referred to
as sample selection bias. The examples do not reflect the general population with
respect to age (which amounts to a bias in Ptr(x)) and they only contain very few
diseased cases (i.e. a bias in Ptr(y|x)).

2. Consider the problem of data analysis using a brain computer interface, where
the distribution over incoming signals is known to change as experiments go on
(subjects tire, the sensor setup changes, etc). In this case it necessary to adapt
the estimator to the new distribution of patterns in order to improve performance
[Sugiyama et al., 2007].

3. Gene expression profile studies using DNA microarrays are used in tumor
diagnosis. A common problem is that the samples are obtained using certain
protocols, microarray platforms and analysis techniques, and typically have small
sample sizes. The test cases are recorded under different conditions, resulting in
a different distribution of gene expression values. In both this and the previous
example, a covariate shift has occurred (see Chapter ??).

In all cases we would intuitively want to assign more weight those observations in
the training set which are most similar to those in the test set, and less weight to
those which rarely occur in the test set.

In this chapter, we use unlabeled data as the basis for a dataset shift correction
procedure for various learning methods. Unlike previous work, we infer the resam-
pling weight directly by non-parametric distribution matching between training and
testing samples. We do not need to estimate the biasing densities or selection proba-
bilities [Zadrozny, 2004, Dud́ık et al., 2005, Shimodaira, 2000], or to assume advance
knowledge of the different class probabilities [Lin et al., 2002]. Rather, we account
for the difference between Ptr(x, y) and Pte(x, y) by reweighting the training points
such that the means of the training and test points in a reproducing kernel Hilbert
space (RKHS) are close. We call this reweighting process kernel mean matching
(KMM), following our presentation in [Huang et al., 2007]. The present chapter
expands on our earlier work in terms of both theoretical and experimental analysis.

Since our approach does not require density estimation, we are able to state re-
sults which apply to arbitrary domains and which do not, in principle, suffer from
the curse of dimensionality that befalls high-dimensional density estimation. When

1.1 Introduction 3

the RKHS is universal [Steinwart, 2002], the population solution to this minimisa-
tion is exactly the ratio Pte(x, y)/Ptr(x, y); we derive performance guarantees which
depend on the maximum ratio between the distributions (but not on the distribu-
tions themselves) and which show that our method is consistent. We remark that
when this ratio is large, however, a large sample size would be required to ensure
the bound is tight (and to guarantee a good approximation).

The required optimisation is a simple quadratic program, and the reweighted
sample can be incorporated straightforwardly into many regression and classifica-
tion algorithms and model selection procedures, such as cross validation. We apply
our method to a variety of regression and classification benchmarks from UCI and
elsewhere, as well as to classification of microarrays from prostate and breast cancer
patients. The experiments demonstrate that sample reweighting by KMM substan-
tially improves learning performance in cases where the class of functions output
by the learning algorithm is “simpler” than the true function (for instance, such a
classification algorithm would estimate a decision boundary deliberately smoother
than the Bayes optimal boundary that emerges as the sample size increases to in-
finity). Indeed, for this case, performance can be improved from close to chance
level to the point of almost matching the performance of a learning algorithm with
the “correct” complexity. KMM reweighting can also improve performance in cases
where the complexity of the leaned classification/regression function is chosen opti-
mally for the data, via parameter selection by cross validation. For most such cases,
however, KMM does not affect performance, or can even make it slightly worse.

In general, the estimation problem with two different distributions Ptr(x, y) and
Pte(x, y) is unsolvable, as the two distributions could be arbitrarily far apart. In
particular, for arbitrary Ptr(y|x) and Pte(y|x), there is no way we could infer a good
estimator based on the training sample. For instance, the distributions Ptr(y = 1|x)
and Pte(y = −1|x) could be swapped in binary classification, leading to arbitrarily
large error. The following assumption allows us to address the problem.

Assumption 1.1 We make the simplifying assumption that Ptr(x, y) and Pte(x, y)
only differ via Ptr(x, y) = P(y|x)Ptr(x) and Pte(x, y) = P(y|x)Pte(x). In other
words, the conditional probabilities of y|x remain unchanged.

This particular case of dataset shift has been termed covariate shift (see examples
above, Chapter ?? and [Shimodaira, 2000]). We will see experimentally that even
in situations where our key assumption is not valid, our method can still be useful
(see Section 1.6).

We begin our presentation in Section 1.2, where we describe the concept of
sample reweighting to match empirical distributions, and show how a reweighted
sample can be incorporated easily into a variety of learning algorithms (penalised 1-
norm classification, penalised logistic regression, penalised LMS regression, Poisson
regression). In Section 1.3, we describe our sample reweighting procedure, which
entails matching the means of the reweighted training sample and the target (test)
sample in a reproducing kernel Hilbert space. We discuss the convergence of the
Hilbert space training and test means in the limit of large sample size, and provide

4 Covariate Shift by Kernel Mean Matching

an empirical optimization procedure to select the training sample weights (this
being a straightforward quadratic program). In Section 1.4, we provide transductive
guarantees on the performance of learning algorithms that use the reweighted
sample, subject to linearity conditions on the loss functions of these algorithms.
We establish a connection between sample bias correction and novelty detection in
Section 1.5, with reference to the single class SVM. We present our experiments in
Section 1.6: these comprise a toy example proposed by Shimodaira [2000], a detailed
analysis of performance for different classifier parameters on the UCI breast cancer
data set, a broader overview of performance on many different UCI datasets, and
experiments on microarray data. We provide proofs of our theoretical results in an
appendix.

1.2 Sample Reweighting

We begin by stating the problem of risk minimization. In general a learning method
aims to minimize the expected risk

R[P, θ, l(x, y, θ)] = E(x,y)∼P [l(x, y, θ)] (1.1)

of a loss function l(x, y, θ) depending on a parameter θ. For instance, the loss
function could be the negative log-likelihood − log P(y|x, θ), a misclassification loss,
or some form of regression loss. However, since typically we only observe examples
(x, y) drawn from P(x, y) rather than P(x, y), we resort to computing the empirical
average

Remp[Z, θ, l(x, y, θ)] =
1
n

n∑
i=1

l(xi, yi, θ). (1.2)

To avoid overfitting, instead of minimizing Remp directly we minimize a regularized
variant,

Rreg[Z, θ, l(x, y, θ)] := Remp[Z, θ, l(x, y, θ)] + λΩ[θ]

where Ω[θ] is a regularizer.

1.2.1 Sample Correction

The problem is more involved if Ptr(x, y) and Pte(x, y) are different. The training
set is drawn from Ptr, however what we would really like is to minimize R[Pte, θ, l]
as we wish to generalize to test examples drawn from Pte. An observation from the

1.2 Sample Reweighting 5

field of importance sampling is that

R[Pte, θ, l(x, y, θ)] = E(x,y)∼Pte [l(x, y, θ)] = E(x,y)∼Ptr

[Pte(x, y)
Ptr(x, y)︸ ︷︷ ︸
:=β(x,y)

l(x, y, θ)
]

= R[Ptr, θ, β(x, y)l(x, y, θ)],

provided that the support of Pte is contained in the support of Ptr. If this does not
hold, reweighting x in order to obtain a risk estimate for Pte(x, y) is impossible.
In fact, the risks could be arbitrarily different, since we have no information about
the behavior of l(x, y, θ) on a subset of the domain of Pte.

Given β(x, y), we can thus compute the risk with respect to Pte using Ptr. Simi-
larly, we can estimate the risk with respect to Pte by computingRemp[Z, θ, β(x, y)l(x, y, θ)].
The key problem is that the coefficients β(x, y) are usually unknown, and must be
estimated from the data. When Ptr and Pte differ in Ptr(x) and Pte(x) only, we have
β(x, y) = Pte(x)/Ptr(x), where β is a reweighting factor for the training examples.
We thus reweight every training observation (xtr

i , y
tr
i) such that observations that

are under-represented in Ptr (relative to Pte) are assigned a higher weight, whereas
over-represented cases are downweighted.

We could estimate Ptr and Pte and subsequently compute β based on those
estimates. This is closely related to the methods of Zadrozny [2004], Lin et al. [2002],
Sugiyama and Müller [2005], who either have to estimate the selection probabilities,
or have prior knowledge of the class distributions. While intuitive, this approach
has three major drawbacks:

1. It only works whenever the estimates for Ptr and Pte (or potentially, the
selection probabilities or class distributions) are good. In particular, small errors
in estimating Ptr can lead to large coefficients β and consequently to a serious
overweighting of the corresponding observations.

2. Estimating both distributions just for the purpose of computing reweighting
coefficients may be overkill: we may be able to directly estimate the coefficients
βi := β(xtr

i , y
tr
i) without having to perform distribution estimation. Furthermore,

we can regularize βi directly with more flexibility, taking prior knowledge into
account (similar to learning methods for other problems).

3. It is well known that using the exact importance-sampler weights may not be
optimal, even when knowing both distributions. See e.g. [Shimodaira, 2000] for a
discussion of the issue. The basic idea is that importance sampler weights β which
deviate strongly from 1 increase the variance significantly. In fact, as we will see in
Lemma 1.8, the effective training sample size is n2

tr/ ‖β‖
2
2. Hence it may be worth

accepting a small bias in return for a larger effective sample size.

6 Covariate Shift by Kernel Mean Matching

1.2.2 Using the sample reweighting in learning algorithms

Before we describe how we will estimate the reweighting coefficients βi, we briefly
discuss how to minimize the reweighted regularized risk

Rreg[Z, β, l(x, y, θ)] :=
1
ntr

ntr∑
i=1

βil(xtr
i , y

tr
i , θ) + λΩ[θ], (1.3)

in four useful settings.

Penalized 1-norm Classification (Support Vector Classification): Using the
formulation of Tsochantaridis et al. [2005], Taskar et al. [2004] we have the following
minimization problem (the original SVMs can be formulated in the same way):

minimize
θ,ξ

1
2
‖θ‖2 + C

ntr∑
i=1

βiξi (1.4a)

subject to
〈
Φ(xtr

i , y
tr
i)− Φ(xtr

i , y), θ
〉
≥ 1− ξi/∆(ytr

i , y) (1.4b)

for all y ∈ Y, and ξi ≥ 0.

Here, Φ(x, y) is a feature map from X × Y to a feature space F, where θ ∈ F and
∆(y, y′) denotes a discrepancy function between y and y′. The dual of (1.4) is

minimize
α

1
2

ntr∑
i,j=1;y,y′∈Y

αiyαjy′k(xtr
i , y, x

tr
j , y

′)−
ntr∑

i=1;y∈Y

αiy (1.5a)

subject to αiy ≥ 0 for all i, y and
∑
y∈Y

αiy/∆(ytr
i , y) ≤ βiC. (1.5b)

Here k(x, y, x′, y′) := 〈Φ(x, y),Φ(x′, y′)〉 denotes the inner product between the
feature maps. This generalizes the observation-dependent binary SV classification
described by Schmidt and Gish [1996]. Many existing solvers, such as SVMStruct
[Tsochantaridis et al., 2005], can be modified easily to take sample-dependent
weights into account.

Penalized Logistic Regression: This is also referred to as Gaussian Process
Classification. In the unweighted case [Williams and Barber, 1998], we minimize∑n
i=1− log p(yi|xi, θ) + λ

2 ‖θ‖
2 with respect to θ. Using (1.3) yields the following

modified optimization problem:

minimize
θ

ntr∑
i=1

−βi log p(ytr
i |xtr

i , θ) +
λ

2
‖θ‖2 . (1.6)

Using an exponential families and kernel approach for

log p(y|x, θ) = 〈Φ(x, y), θ〉 − g(θ|x) (1.7)

where g(θ|x) = log
∑
y∈Y

exp (〈Φ(x, y), θ〉)

1.2 Sample Reweighting 7

we can invoke the representer theorem [Kimeldorf and Wahba, 1970] which leads
to

minimize
α

ntr∑
i=1

βig(α|xtr
i)−

ntr∑
i,j=1;y∈Y

αiyβjk(xtr
i , y, x

tr
j , y

tr
j)

+
ntr∑

i,j=1;y,y′∈Y

αiyαjy′k(xtr
i , y, x

tr
j , y

′) (1.8)

where g(α|xtr
i) := log

∑
y∈Y

exp

 ntr∑
j=1;y′∈Y

αjy′k(xtr
i , y, x

tr
j , y

′)

 .

Penalized LMS Regression: Assume l(x, y, θ) = (y − 〈Φ(x), θ〉)2 and Ω[θ] =
‖θ‖2. Here we solve

minimize
θ

ntr∑
i=1

βi(ytr
i −

〈
Φ(xtr

i), θ
〉
)2 + λ ‖θ‖2 . (1.9)

Denote by β̄ the diagonal matrix with diagonal (β1, . . . , βntr) and by K ∈ Rm×m
the kernel matrix Kij = k(xtr

i , x
tr
j). In this case minimizing (1.9) is equivalent to

solving

minimize
α

(y −Kα)>β̄(y −Kα) + λα>Kα

with respect to α. Assuming that K and β̄ have full rank, the minimization yields

α = (λβ̄−1 +K)−1y

The advantage of this formulation is that it can be solved as easily as the standard
penalized regression problem. Essentially, we rescale the regularizer depending on
the pattern weights: the higher the weight of an observation, the less we regularize.

Poisson Regression: Assume a process of discrete events, such as the distribution
of species over a geographical location or the occurrence of non-infectious diseases.
This process can be modeled by a conditional Poisson distribution,

log p(y|x, θ) = y 〈Φ(x), θ〉 − log y!− exp (〈Φ(x), θ〉) (1.10)

as a member of the nonparametric exponential family (see e.g. [Cressie, 1993]),
where y ∈ N0. Consequently we may obtain a re-weighted risk minimization
problem,

minimize
α

ntr∑
i=1

βi exp ([Kα]i)− βiytr
i [Kα]i + λα>Kα. (1.11)

Here K and α are defined as in the above example. The problem is convex in α.

We provided the above examples to demonstrate that it is fairly straightforward to
turn most risk minimization procedures into re-weighted ones. For those algorithms

8 Covariate Shift by Kernel Mean Matching

which cannot deal with weighted data easily, one may always resort to re-sampling,
see e.g. [Efron and Tibshirani, 1994].

1.3 Distribution Matching

1.3.1 Kernel Mean Matching and its relation to importance sampling

Let Φ : X → F be a feature map into a feature space F and denote by µ : P → F

the expectation operator

µ(P) := Ex∼P(x) [Φ(x)] . (1.12)

Clearly µ is a linear operator mapping the space of all probability distributions P

into feature space. Denote by M(Φ) := {µ(P) where P ∈ P} the image of P under
µ. This set is also often referred to as the marginal polytope. We have the following
theorem, proved in the appendix.

Theorem 1.2 The operator µ is a bijection between the space of all probability
measures and the marginal polytope induced by the feature map Φ(x) if F is an
RKHS with a universal kernel k(x, x′) = 〈Φ(x),Φ(x′)〉 in the sense of Steinwart
[2002] (bearing in mind that universality is defined for kernels on compact domains
X).

The practical consequence of this (rather abstract) result is that if we know
µ(Pte), we can infer a suitable weighting function β by solving the following
minimization problem. We first state the expectation version of the kernel mean
matching (KMM) procedure:

Lemma 1.3 The following optimization problem in β is convex.

minimize
β

∥∥µ(Pte)−Ex∼Ptr(x) [β(x)Φ(x)]
∥∥ (1.13)

subject to β(x) ≥ 0 and Ex∼Ptr(x) [β(x)] = 1. (1.14)

Assume Pte is absolutely continuous with respect to Ptr (so Ptr(A) = 0 implies
Pte(A) = 0), and that k is universal. The solution of (1.13) is then Pte(x) =
β(x)Ptr(x).

Proof: The convexity of the objective function follows from the facts that the
norm is a convex function and the integral is a linear functional in β. The other
constraints are also convex.

By virtue of the constraints, any feasible solution of β corresponds to a distribu-
tion, as

∫
β(x)dPtr(x) = 1. Moreover, the choice of β̂(x) := Pte(x)/Ptr(x) is feasible

as it obviously satisfies the constraints. Moreover, it minimizes the objective func-
tion with value 0. Note that such a β(x) exists due to the absolute continuity of

1.3 Distribution Matching 9

Pte(x) with respect to Ptr(x). Theorem 1.2 implies that there can be only one
distribution β(x)Ptr such that µ(β(x)Ptr) = µ(Pte). Hence β(x)Ptr(x) = Pte(x).

1.3.2 Convergence of reweighted means in feature space

Lemma 1.3 shows that in principle, if we knew Ptr and µ[Pte], we could fully recover
Pte by solving a simple quadratic program. In practice, however, neither µ(Pte) nor
Ptr is known. Instead, we only have samples Xtr and Xte of size ntr and nte, drawn
iid from Ptr and Pte, respectively.

Naively we could just replace the expectations in (1.13) by empirical averages and
hope that the resulting optimization problem will provide us with a good estimate
of β. However, it is to be expected that empirical averages will differ from each other
due to finite sample size effects. In this section, we explore two such effects. First,
we demonstrate that in the finite sample case, for a fixed β, the empirical estimate
of the expectation of β is normally distributed: this provides a natural limit on
the precision with which we should enforce the constraint

∫
β(x)dPtr(x) = 1 when

using empirical expectations (we will return to this point in the next section).

Lemma 1.4 If β(x) ∈ [0, B] is some fixed function of x ∈ X, then given xtr
i ∼ Ptr

iid such that β(xtr
i) has finite mean and finite non-zero variance, the sample mean

1
ntr

∑
i β(xtr

i) converges in distribution to a Gaussian with mean
∫
β(x)dPtr(x) and

standard deviation bounded by B
2
√
ntr

.
This lemma is a direct consequence of the central limit theorem [Casella and Berger,
2002, Theorem 5.5.15]. Alternatively, it is straightforward to get a large deviation
bound that likewise converges as 1/

√
ntr Hoeffding [1963]. In this case, it follows

that with probability at least 1− δ∣∣∣∣∣ 1
ntr

ntr∑
i=1

β(xtr
i)− 1

∣∣∣∣∣ ≤ B√log(2/δ)/2m. (1.15)

Our second result demonstrates the deviation between the empirical means of
Pte and β(x)Ptr in feature space, given β(x) is chosen perfectly in the population
sense.

Lemma 1.5 In addition to the conditions of Lemma 1.4, assume that we draw
Xte :=

{
xte

1 , . . . , x
te
nte

}
iid from X using Pte = β(x)Ptr, and ‖Φ(x)‖ ≤ R for all

x ∈ X. Then with probability at least 1− δ,∥∥∥ 1
ntr

ntr∑
i=1

β(xtr
i)Φ(xtr

i)− 1
nte

nte∑
i=1

Φ(xte
i)
∥∥∥

≤
(

1 +
√

2 log 2/δ
)
R
√
B2/ntr + 1/nte. (1.16)

The proof is in the appendix. Note that this lemma shows that for a given β(x),
which is correct in the population sense, we can bound the deviation between the
mean and the importance-sampled mean in feature space. It is not a guarantee that

10 Covariate Shift by Kernel Mean Matching

we will find coefficients βi which are close to β(xtr
i), when solving the optimization

problem in the next section.
Lemma 1.5 implies we have O(B

√
1/ntr + 1/nteB2) convergence in ntr, nte and

B. This means that for very different distributions, we need a large equivalent sam-
ple size to get reasonable convergence. Our result also implies that it is unrealistic
to assume that the empirical means (reweighted or not) should match exactly. Note
that a somewhat better bound could be obtained by exploiting the interplay be-
tween Ptr,Pte and Φ(x). That is, it is essentially ‖Φ(x)‖Pte(x)/Ptr(x) that matters,
as one can see by a simple modification of the proof. For this reason, we may be
able to tolerate large deviations between the two distributions at little cost, as long
as the feature vector at this location is small.

1.3.3 Empirical KMM optimization

To find suitable values of β ∈ Rntr we want to minimize the discrepancy between
means subject to constraints βi ∈ [0, B] and | 1

ntr

∑ntr
i=1 βi − 1| ≤ ε. The former

limits the scope of discrepancy between Ptr and Pte and ensures robustness by
limiting the influence of individual observations, whereas the latter ensures that
the corresponding measure β(x)Ptr(x) is close to a probability distribution. Note
that for B → 1 we obtain the unweighted solution. The objective function is given
by the discrepancy term between the two empirical means. Using Kij := k(xtr

i , x
tr
j)

and κi := ntr
nte

∑nte
j=1 k(xtr

i , x
te
j) one may check that∥∥∥ 1

ntr

ntr∑
i=1

βiΦ(xtr
i)− 1

nte

nte∑
i=1

Φ(xte
i)
∥∥∥2

=
1
n2

tr

β>Kβ − 2
n2

tr

κ>β + const.

Now we have all necessary ingredients to formulate a quadratic problem to find
suitable β via

minimize
β

1
2
β>Kβ − κ>β subject to βi ∈ [0, B] and

∣∣∣ ntr∑
i=1

βi − ntr

∣∣∣ ≤ ntrε.

(1.17)

In accordance with Lemma 1.4, we conclude that a good choice of ε should be
O(B/

√
ntr). That said, even a change induced by normalizing

∑
i βi = 1 only

changes the value of the objective function by at most ε2R2 + 2εL, where L2 is the
value of the objective function at optimality.

Note that (1.17) is a quadratic program which can be solved efficiently using
interior point methods or any other successive optimization procedure, such as
chunking [Osuna, 1998], SMO [Platt, 1999], or projected gradient methods [Dai and
Fletcher, 2006]. We also point out that (1.17) resembles Single Class SVM [Schölkopf
et al., 2001] using the ν-trick. Besides the approximate equality constraint, the main
difference is the linear correction term by means of κ. Large values of κi correspond
to particularly important observations xtr

i and are likely to lead to large βi. We
discuss further connections in Section 1.5.

1.4 Risk Estimates 11

1.4 Risk Estimates

So far we have been concerned concerned only with distribution matching for the
purpose of finding a reweighting scheme between the empirical feature space means
on training Xtr and test Xte sets. We now show, in the case of linear loss functions,
that as long as the feature means on the test set are well enough approximated, we
will be able to obtain almost unbiased risk estimates regardless of the actual values
of βi vs. their importance sampling weights β(xi). The price is an increase in the
variance of the estimate, where n2

tr/ ‖β‖
2 will act as an effective sample size.

1.4.1 Transductive Bounds

We consider the transductive case: that is, we will make uniform convergence
statements with respect to Ey|x only (recall that this expectation is the same for
the training and test distributions by assumption). In addition, we will require the
loss functions to be linear, as described below.

Assumption 1.6 We require that l(x, θ) be expressible as inner product in feature
space, i.e. l(x, θ) = 〈Ψ(x),Θ〉, where ‖Θ‖ ≤ C. That is, l(x, θ) belongs to a Repro-
ducing Kernel Hilbert Space (RKHS). Likewise, assume l(x, y, θ) can be expressed
as an element of an RKHS via 〈Υ(x, y),Λ〉 with2 ‖Λ‖ ≤ C and ‖Υ(x, y)‖ ≤ R.

We proceed in two steps: first we show that for the expected loss

l(x,Θ) := Ey|xl(x, y,Λ), (1.18)

the coefficients βi can be used to obtain a risk estimate with low bias. Sec-
ond, we show that the random variable

∑
i βil(x

tr
i , y

tr
i ,Λ) is concentrated around∑

i βil(x
tr
i ,Θ), if we condition Y |X. The first lemma is proved in the appendix.

Lemma 1.7 Given assumptions 1.1 and 1.6 are satisfied, and Xtr, Xte iid samples
drawn from Ptr and Pte, respectively. Let G be a class of loss-induced functions
l(x, θ) with ‖Θ‖ ≤ C. Finally, assume that there exist some βi such that∥∥∥∥∥ 1

ntr

ntr∑
i=1

βiΨ(xtr
i)− 1

nte

nte∑
i=1

Ψ(xte
i)

∥∥∥∥∥ ≤ ε .
In this case we can bound the empirical risk estimates as

sup
l(·,·,θ)∈G

∣∣∣∣∣Ey|x

[
1
ntr

ntr∑
i=1

βil(xtr
i , y

tr
i , θ)

]
−Ey|x

[
1
nte

nte∑
i=1

l(xte
i , y

te
i , θ)

]∣∣∣∣∣ ≤ Cε.
(1.19)

2. We use the same constant C to bound both ‖Θ‖ and‖Λ‖ for ease of notation, and
without loss of generality.

12 Covariate Shift by Kernel Mean Matching

The next step in relating a reweighted empirical average using (Xtr, Ytr) and the
expected risk with respect to P (y|x) requires us to bound deviations of the first
term in (1.19). The required lemma is again proved in the appendix.

Lemma 1.8 Given Assumption 1.6, samples ytr
i drawn for each xtr

i according to
P(y|x), and M := n2

tr/ ‖β‖
2
2, then with probability at least 1− δ over all y|x

sup
l(·,·,θ)∈G

∣∣∣∣∣ 1
ntr

ntr∑
i=1

βil(xtr
i , y

tr
i , θ)−

1
ntr

ntr∑
i=1

βil(xtr
i , θ)

∣∣∣∣∣
≤ (2 +

√
2 log(2/δ))CR/

√
M.

We can now combine the bounds from both lemmas to obtain the main result of
this section.

Corollary 1.9 Under the assumptions of Lemma 1.7 and 1.8 we have that with
probability at least 1− δ,

sup
l(·,·,θ)∈G

∣∣∣∣∣ 1
ntr

ntr∑
i=1

βil(xtr
i , y

tr
i , θ)−Ey|x

[
1
nte

nte∑
i=1

l(xte
i , y

te
i , θ)

]∣∣∣∣∣
≤

(2 +
√

2 log(2/δ))CR√
M

+ Cε. (1.20)

This means that if we minimize the reweighted empirical risk we will, with high
probability, be minimizing an upper bound on the expected risk on the test set.

Note that we have an upper bound on ε via Lemma 1.5, although this assumes
the βi correspond to the importance weights. The encouraging news is that as both
ntr and nte →∞ we will obtain a minimizer of the conditional expected risk on Pte.
That said, if the test set is small, it is very likely that the deviations introduced by
the finite test set will give rise to more uncertainty, which implies that additional
training data will be of limited use.

While the above result applies in the case of linear loss functions, we expect a
similar approach to hold more generally. The key requirement is that the expected
loss be a smooth function in the patterns x.

1.4.2 Bounds in Expectation and Cross validation

There are two more important cases worth analyzing: when carrying out covariate
shift correction (or transduction) we may still want to perform model selection
by methods such as cross validation. In this case we need two estimators of the
empirical test risk — one for obtaining a regularized risk minimizer and another
one for assessing the performance of the former.

A first approach is to use the reweighted training set directly for this purpose
similar to what was proposed by Sugiyama et al. [2006]. This will give us an estimate
of the loss on the test set, albeit biased by the deviation between the reweighted
means, as described in Corollary 1.9.

1.5 The Connection to Single Class Support Vector Machines 13

A second approach is to use a modification of the cross validation procedure by
partitioning first and reweighting second. That is, in 10-fold cross validation one
would first partition the training set and then compute correcting weights for both
the 9

10 -th fraction used in training and the 1
10 -th fraction used for validation. While

this increases the cost of computing weights considerably (we need to compute a
total of 10 + 10 + 1 = 21 weighting schemes for model selection and final estimates
in 10-fold cross validation), “transductive cross validation” nonetheless offers a
reduction in sampling bias. Again, the bounds of Corollary 1.9 apply directly.

Finally, let us briefly consider the situation where we have a reference unlabeled
dataset which is drawn from the same distribution as the actual test set, yet it
is not identical with the test set. In this case, risk bounds similar to Lemma 1.5
and Corollary 1.9 can be obtained. The proof is essentially identical to that of the
previous section. Hence we only state the result.

Lemma 1.10 In addition to the conditions of Lemma 1.4, assume that Pte =
β(x)Ptr, and ‖Φ(x)‖ ≤ R for all x ∈ X. Then with probability at least 1− δ∥∥∥ 1

ntr

ntr∑
i=1

β(xtr
i)Φ(xtr

i)−EPte

[
Φ(xte)

]∥∥∥ ≤ (1 +
√

2 log 2/δ
)
RB/

√
ntr (1.21)

This also can be used in combination with Lemma 1.5, via a triangle inequality, to
bound deviations of

∑
i βiΦ(xtr

i) from EPte [Φ(x)] whenever the deviation between
the two reweighted empirical samples is minimized as in (1.17).

To obtain a large deviation result with respect to the expected loss in Pte(x, y),
one would simply need to combine Lemma 1.10 with a uniform convergence bound,
e.g. the bounds by Mendelson [2003].

1.5 The Connection to Single Class Support Vector Machines

1.5.1 Basic Setting

In single class SVM estimation [Schölkopf et al., 2001] one aims to find a function
f which satisfies

f(x)

{
≥ ρ for typical observations x

< ρ for novel observations x
(1.22)

yet at the same time, f should be smooth. For functions in Reproducing Kernel
Hilbert Spaces f(x) = 〈Φ(x), w〉 this is obtained by solving the following optimiza-
tion problem:

minimize
w,ξ

C

n∑
i=1

ξi +
1
2
‖w‖2 (1.23a)

subject to 〈Φ(xi), w〉 ≥ ρ− ξi and ξi ≥ 0. (1.23b)

14 Covariate Shift by Kernel Mean Matching

Since it is desirable to have an approximately fixed number of observations singled
out as novel it is preferable to use the ν-formulation of the problem [Schölkopf et al.,
2000], which leads to

minimize
w,ξ,ρ

n∑
i=1

ξi − νnρ+
1
2
‖w‖2 (1.24a)

subject to 〈Φ(xi), w〉 ≥ ρ− ξi and ξi ≥ 0. (1.24b)

The key difference is that the fixed threshold ρ has been replaced by a variable
threshold, which is penalized by νnρ. Schölkopf et al. [2000] show that for n→∞
the fraction of constraints (1.24b) being active converges to ν.

1.5.2 Relative Novelty Detection

Smola et al. [2005] show that novelty detection can also be understood as density
estimation, where low-density regions are particularly emphasized, whereas high
density regions beyond a certain threshold are ignored, and normalization is dis-
carded. This means that the formulation (1.23) is equivalent to minimizing

C

n∑
i=1

max
(

0,
p(xi;w)

p0 exp (g(w))

)
+

1
2
‖w‖2 (1.25)

where p(x;w) is a member of the exponential family, i.e. p(x;w) = exp (〈Φ(x), w〉 − g(w)).
Here p0 exp(g(w)) acts as a reference threshold. Observations whose density exceeds
this threshold are considered typical, whereas observations below the threshold are
viewed as novel. Note that g(w) is the log-partition function which ensures that p
is suitably normalized.

Having a fixed reference threshold may not be the most desirable criterion for
novelty:

Assume that we have a density p(x) on the domain X. Now assume that we
perform a variable transformation ψ : X → Z. In this case the measure dp(x) is
transformed into dp(z) = dp(x)

∣∣∣dz(x)
dx

∣∣∣. Thus a simple variable transformation could
render observations novel which were considered typical before and vice versa. This
is clearly undesirable.

Assume that we already have a density model of the typical distribution of the
data, e.g. a model of how stars should be distributed in the sky, based on prior
knowledge from astrophysics. We would want to test this assumption subsequently,
to discover whether and where the model has defects. This would provide us with
a list of observations which are particularly rare with respect to this model.

Hence we would need to modify the denominator in (1.25) to reflect this modifica-
tion via p0 ←− p0

∣∣∣dz(x)
dx

∣∣∣ or p0 ←− pmodel.
These cases can be taken care of effectively by extending (1.23) and (1.25) to

take a variable margin into account. For convenience, we do so for the variant using

1.5 The Connection to Single Class Support Vector Machines 15

the ν-trick, as it is easier to parametrize the optimization problem using ν rather
than C.

minimize
w,ξ,ρ

n∑
i=1

ξi − νnρ+
1
2
‖w‖2 (1.26a)

subject to 〈Φ(xi), w〉 ≥ ρi + ρ− ξi and ξi ≥ 0. (1.26b)

Here ρi = log p0(xi), i.e. ρi denotes a reference threshold. By using standard
Lagrange multiplier techniques we see that the dual problem of (1.26) is given
by

minimize
α

1
2

n∑
i,j=1

αiαjk(xi, xj)−
n∑
i=1

ρiαi (1.27a)

subject to
n∑
i=1

αi = νn and αi ∈ [0, 1]. (1.27b)

The only difference to standard ν-style novelty detection is that in the objective
function (1.27a) we have the additional linear term

∑
i ρiαi. This biases the solution

towards nonzero αi for which ρi is large. In other words, where the reference density
p0(xi) is large, the algorithm is more likely to find novel observations (where now
novelty is defined with respect to p0(x)). We state without proof an extension of
the ν-property, as the proof is identical to that of Schölkopf et al. [2001]. Note that
changing ρi → ρi + const. leaves the problem unchanged, as a constant offset in ρi
with a corresponding change of ρ → ρ + const. does not change the optimality of
the solution but merely leads to a constant shift in the objective function.

Theorem 1.11 (ν-Property) Assume the solution of (1.26) satisfies ρ 6= 0. The
following statements hold:

1. ν is an upper bound on the fraction of outliers.

2. ν is a lower bound on the fraction of SVs.

3. Suppose the data X were generated independently from a distribution P(x) which
does not contain discrete components with respect to p0(x). Suppose, moreover, that
the kernel is analytic and non-constant. With probability 1, asymptotically, ν equals
both the fraction of SVs and the fraction of outliers.

1.5.3 From Novelty Detection to Sample Bias Correction

Note the similarity between (1.27) and (1.17). In fact, a simple re-parametrization
of (1.17) (βi −→ Bαi) makes the connection even more clear:

Lemma 1.12 The problems (1.17) and (1.27) are equivalent subject to:

The fraction of nonzero terms is set to ν = 1
B .

16 Covariate Shift by Kernel Mean Matching

The linear term ρi is given by

ρi =
ntr

nteB

nte∑
j=1

k(xtr
i , x

te
j). (1.28)

In other words, we typically will choose only a fraction of 1/B points for the
covariate shift correction. Moreover, we will impose a higher threshold of ’typicality’
for those points which are very well aligned with the mean operator. That is, typical
points are more likely to be recruited for covariate shift correction.

Remark 1.13 (Connection to Parzen Windows) Note that ρi can also be ex-
pressed as ntr

B P̂te(x), that is, the Parzen window density estimate of Pte at location
x rescaled by ntr

B . In keeping with the reasoning above this means that we require
a higher level estimate for observations which are relatively typical with respect to
the test set, and a lower threshold for observations not so typical with respect to the
test set.

1.6 Experiments

1.6.1 Toy regression example

Our first experiment is on toy data, and is intended mainly to provide a comparison
with the approach of Shimodaira [2000]. This method uses an information criterion
to optimise the weights, under certain restrictions on Ptr and Pte (namely, Pte

must be known, while Ptr can be either known exactly, Gaussian with unknown
parameters, or approximated via kernel density estimation).

Our data is generated according to the polynomial regression example from
[Shimodaira, 2000, Section 2], for which Ptr ∼ N(0.5, 0.52) and Pte ∼ N(0, 0.32) are
two normal distributions. The observations are generated according to y = −x+x3,
and are observed in Gaussian noise with standard deviation 0.3 (see the left hand
plot in Figure 1.6.1; the blue curve is the noise-free signal).

We sampled 100 training (darker circles) and testing (lighter crosses) points
from Ptr and Pte respectively. We attempted to model the observations with a
degree 1 polynomial. The black dashed line is a best-case scenario, which is shown
for reference purposes: it represents the model fit using ordinary least squared
(OLS) on the labeled test points. The solid grey line is a second reference result,
derived only from the training data via OLS, and predicts the test data very poorly.
The other three dashed lines are fit with weighted ordinary least square (WOLS),
using one of three weighting schemes: the ratio of the underlying training and test
densities, KMM, and the information criterion of Shimodaira [2000]. A summary of
the performance over 100 trials is shown in Figure 1.6.1. In this case, our method
outperforms the two other reweighting methods. Note that in this case the model
(linear) is much simpler than the equation describing the underlying curve (higher
order polynomial).

1.6 Experiments 17

Figure 1.1 Left: Polynomial models of degree 1 fit with OLS and WOLS; Right:
Average performances of three WOLS methods and OLS on this example. Labels are Ratio
for ratio of test to training density; KMM for our approach; min IC for the approach of
Shimodaira [2000]; and OLS for the model trained on the labeled test points.

1.6.2 Real world datasets

We next test our approach on real world data sets, from which we select training
examples using a deliberately biased procedure (as in Zadrozny [2004], Rosset
et al. [2004]). To describe our biased selection scheme, we need to define an
additional random variable si for each point in the pool of possible training
samples, where si = 1 means the ith sample is included, and si = 0 indicates
an excluded sample. Two situations are considered: the selection bias corresponds
to our key assumption 1.1 regarding the relation between the training and test
distributions, and P (si = 1|xi, yi) = P (si|xi); or si is dependent only on yi, i.e.
P (si|xi, yi) = P (si|yi), which potentially creates a greater challenge since it violates
this assumption. The training and test data were generated by splitting the original
dataset at random, and then resampling the training data according to the biasing
scheme. The combination of splitting and biased resampling was repeated to obtain
an averaged value of test performance. Note that all data features were normalized
to zero mean and unit standard deviation before any other procedure was applied
(including training/test set splits and biased resampling of the training set).

In the following, we compare our method (labeled KMM) against two others: a
baseline unweighted method (unweighted), in which no modification is made, and a
weighting by the inverse of the true sampling distribution (importance sampling),
as in Zadrozny [2004], Rosset et al. [2004]. We emphasise, however, that our method
does not require any prior knowledge of the true sampling probabilities. We used a
Gaussian kernel exp(−|xi − xj |2/(2σ2)) in our kernel classification and regression
algorithms, besides for the microarray data (in Section 1.6.3), where we used a linear
kernel. For kernel mean matching, we always used a Gaussian kernel with identical
size to the kernel in the learning algorithm. In the case of the microarray data, we
did not have this reference value, and thus set the kernel size to the median distance
between sample points. We set the parameters ε = (

√
m − 1)/

√
m and B = 1000

in the optimization (1.17). Note that using the same kernel size for the learning

18 Covariate Shift by Kernel Mean Matching

1 2 3 4 5 6 7 8 90
2 0
4 0
6 0
8 0

 S V M
 i m p . s a m p .
 K M MC = 0 . 0 1

av
era

ge
 te

stl
os

s i
n %

b i a s e d f e a t u r e
1 2 3 4 5 6 7 8 90

1 0
2 0
3 0
4 0 C = 0 . 0 5

av
era

ge
 te

stl
os

s i
n %

b i a s e d f e a t u r e
1 2 3 4 5 6 7 8 90

2
4
6
8 C = 0 . 1

av
era

ge
 te

stl
os

s i
n %

b i a s e d f e a t u r e

1 2 3 4 5 6 7 8 90

2

4
C = 1

av
era

ge
 te

stl
os

s i
n %

b i a s e d f e a t u r e
1 2 3 4 5 6 7 8 90

2

4

6 C = 1 0

av
era

ge
 te

stl
os

s i
n %

b i a s e d f e a t u r e

Figure 1.2 Classification performance on UCI breast cancer data. An individual feature
bias scheme was used. Test error is reported on the y-axis, and the feature being biased
on the x-axis.

7 0 1 4 0 2 1 0 2 8 0 3 5 00

2 0

4 0

6 0 S V M
 i m p . s a m p .
 K M M

C = 0 . 0 1

av
era

ge
 te

stl
os

s i
n %

t r a i n i n g s a m p l e s
7 0 1 4 0 2 1 0 2 8 0 3 5 00

1 0
2 0
3 0 C = 0 . 1

av
era

ge
 te

stl
os

s i
n %

t r a i n i n g s a m p l e s
7 0 1 4 0 2 1 0 2 8 0 3 5 00

2

4

6 C = 1

av
era

ge
 te

stl
os

s i
n %

t r a i n i n g s a m p l e s

7 0 1 4 0 2 1 0 2 8 0 3 5 00
2
4
6 C = 1 0

av
era

ge
 te

stl
os

s i
n %

t r a i n i n g s a m p l e s
7 0 1 4 0 2 1 0 2 8 0 3 5 00

2
4
6
8 C = 1 0 0

av
era

ge
 te

stl
os

s i
n %

t r a i n i n g s a m p l e s

Figure 1.3 Classification performance on UCI breast cancer data. A joint feature bias
scheme was used. Test error is reported on the y-axis, and the initial number of training
points (prior to biased training point selection) on the x-axis.

algorithms and the bias correction has no guarantee of being optimal. The choice
of optimal kernel size for KMM remains an open question (see conclusions for a
suggestion on further work in this direction). The choice of B above is likewise a
heuristic, and was sufficiently large that none of the βi reached the upper bound.
When B was reduced to the point where a small percentage of the βi reached B,
we found empirically on several Table 1.1 datasets that performance either did not
change, or worsened.

1.6 Experiments 19

7 0 1 4 0 2 1 0 2 8 0 3 5 00
2 0
4 0
6 0

av
era

ge
 te

stl
os

s i
n %

t r a i n i n g s a m p l e s

 S V M
 i m p . s a m p .
 K M M

C = 0 . 1

7 0 1 4 0 2 1 0 2 8 0 3 5 00
2
4
6
8 C = 1

av
era

ge
 te

stl
os

s i
n %

t r a i n i n g s a m p l e s

7 0 1 4 0 2 1 0 2 8 0 3 5 00

2

4

6 C = 1 0

av
era

ge
 te

stl
os

s i
n %

t r a i n i n g s a m p l e s
7 0 1 4 0 2 1 0 2 8 0 3 5 00

2
4
6
8 C = 1 0 0

av
era

ge
 te

stl
os

s i
n %

t r a i n i n g s a m p l e s
Figure 1.4 Classification performance on UCI breast cancer data. A label bias scheme
was used. Test error is reported on the y-axis, and the initial number of training points
(prior to biased training point selection) on the x-axis.

1.6.2.1 Breast Cancer Dataset

Before providing a general analysis across multiple datasets, we take a detailed look
at one particular example: the Breast Cancer dataset from the UCI Archive. This
is a binary classification task, and includes 699 examples from 2 classes: benign
(positive label) and malignant (negative label). Our first experiments explore the
effect of varying C on the performance of covariate shift correction, in the case
of a support vector classifier. This is of particular interest since C controls the
tradeoff between regularization and test error (see eq. (1.4)): small values of C
favour smoothness of the decision boundary over minimizing the loss. We fix the
kernel size to σ =

√
5, and vary C over the range C ∈ {0.01, 0.1, 1, 10, 100}. Test

results always represent an average over 15 trials (a trial being a particular random
split of the data into training and test sets).

First, we consider a biased sampling scheme based on the input features, of
which there are nine, with integer values from 0 to 9. The data were first split into
training and test sets, with 25% of data reserved for training. Since smaller feature
values predominate in the unbiased data, the test set was subsampled according to
P (s = 1|x ≤ 5) = 0.2 and P (s = 1|x > 5) = 0.8. This subsampling was repeated for
each of the features in turn. Around 30%-50% of the training points were retained
by the biased sampling procedure (the exact percentage depending on the feature
in question). Average performance is shown in Figure 1.2.

20 Covariate Shift by Kernel Mean Matching

Second, we consider a sampling bias that operates jointly across multiple features.
The data were randomly split into training and test sets, where the proportion
of examples used for training varied from 10% to 50%. We then subsampled
the training set, selecting samples less often when they were further from the
sample mean x over the training data, i.e. P (si|xi) ∝ exp(−γ‖xi − x‖2) where
γ = 1/20. Around 70% of the training points were retained after the resampling. A
performance comparison is given in Figure 1.3.

Finally, we consider a simple biased sampling scheme which depends only on the
label y: P (s = 1|y = 1) = 0.1 and P (s = 1|y = −1) = 0.9 (the data have on average
twice as many positive as negative examples when uniformly sampled). Prior to
this sampling, the data were again randomly split into training and test sets, with
a training proportion from 10% to 50%. Around 40% of the training points were
retained following the biased sampling procedure. Average performance is plotted
in Figure 1.4.

In all three of the above examples, by far the greatest performance advantage
for both importance sampling and KMM-based reweighting is for small values of C
(and thus, for classifiers which put a high priority on a smooth decision boundary).
It is remarkable how great an improvement is found in these cases: the error reduces
to the point where it is very close to its value for optimal choice of C, even though
the unweighted error is on occasion extremely high. This advantage also holds
for bias over the labels, despite this violating our key assumption 1.1. Somewhat
surprisingly, we also see that covariate shift correction confers a small advantage for
very large values of C. While this is seen in all three experiments, it is particularly
apparent in the case of joint bias on the features (Figure 1.2), where - besides for
the smallest training sample size - KMM consistently outperforms the unweighted
and importance sampling cases.

For values C ∈ {1, 10} which fall between these extremes, however, KMM does
not have a consistent effect on performance, and often makes performance slightly
worse. In other words, the classifier is sufficiently powerful that it is able to learn
correctly over the entire input space, regardless of the weighting of particular
training points.

We conclude that for the UCI breast cancer data, covariate shift correction
(whether by importance sampling or KMM) has the advantage of widening the
range of C values for which good performance can be expected (and in particular,
greatly enhancing performance at the lowest C levels), at the risk of slightly
worsening performance at the optimal C range. Our conclusions are mixed, however,
regarding the effect on classifier performance of the number of training points. For
small C values and label bias, the unweighted classification performance approaches
the importance sampling and KMM performance with increasing training sample
size (Figure 1.4). No such effect is seen in the case of joint feature bias (Figure 1.3),
nor are there any clear trends for larger values of C.

We now address the question of cross-validating over σ, in accordance with the
first procedure described in Section 1.4.2: i.e., on the weighted training sample,
without using a second weighting procedure on the validation set. This can be very

1.6 Experiments 21

costly due to our use of the same σ for kernel mean matching as for classification:
we need to recompute the β for each new σ value. That said, we anticipate
that for close to optimal parameter settings, for a sufficiently powerful class of
learning algorithms, the performance optimum for cross validation over σ will occur
at roughly the same location for the weighted and unweighted sample (we bear
in mind the point made by Sugiyama et al. [2007] that cross-validation on the
unweighted training data introduces an additional source of bias in the resulting
test error estimate, for cases of covariate shift). We are led to this conjecture
by the similar performance of the classifier at intermediate C values for the
weighted and unweighted data (Figures 1.2, 1.3, and 1.4). The cross validation
(CV) performance of the classifier for fixed C = 10, σ ∈ {0.1, 1, 10, 100, 1000},
and a 9:1 training:validation split is shown in Figure 1.6.2.1, in the case of joint
bias on the features and an initial training sample size of 70 (prior to resampling;
around 75% of training points were retained following resampling). We note that
the optimum performance is obtained for the same value σ = 10 in all cases
(unweighted, importance weighted with unweighted CV, importance weighted with
weighted CV, KMM with unweighted CV, KMM with weighted CV), although
in both KMM cases the advantage of σ = 10 over σ = 1 is negligible. Thus, in
subsequent experiments, we cross-validate on the unweighted data.

0 , 1 1 1 0 1 0 0 1 0 0 00 , 0

0 , 1

0 , 2

0 , 3

0 , 4
 K M M : u n w e i g h t e d C V
 K M M : w e i g h t e d C V
 i m p . s a m p . : u n w e i g h t e d C V
 i m p . s a m p . : w e i g h t e d C V
 S V M : u n w e i g h t e d C V

av
era

ge
 te

stl
os

s i
n C

V

k e r n e l s i z e s 1 1 0
0 , 0 4

0 , 0 6

0 , 0 8 K M M : u n w e i g h t e d C V
 K M M : w e i g h t e d C V
 i m p . s a m p . : u n w e i g h t e d C V
 i m p . s a m p . : w e i g h t e d C V
 S V M : u n w e i g h t e d C V

av
era

ge
 te

stl
os

s i
n C

V

k e r n e l s i z e s

Figure 1.5 Left: Cross validation error vs σ for unweighted SVM, and weighted
and unweighted cross validation scores for SVM with importance sampling and KMM
reweighted data; Right: Zoomed version of the left hand plot, showing performance for
σ = 1 and σ = 10. Note: in the case of weighted cross-validation, the weighted CV error

1P
i βi

P
i βiIyi 6=f(xi) is plotted.

1.6.2.2 Further Benchmark Datasets

A question of particular interest is whether dataset shift correction can improve
performance when the learning algorithm parameters are chosen by cross-validation,
rather than being chosen to be “simpler” than suggested by the data (as we saw in
Figures 1.2, 1.3, and 1.4 with small C values). Thus, we compare performance of
various learning algorithms on both unweighted and weighted training data from

22 Covariate Shift by Kernel Mean Matching

further benchmark datasets.3 We selected training data via three biased sampling
schemes. For sampling distribution bias on labels, we used either P (s = 1|y) =
exp(a + by)/(1 + exp(a + by)) (denoted label(a,b)), or the simple step distribution
P (s = 1|y = 1) = a, P (s = 1|y = −1) = b (denoted simple label). For the remaining
datasets, we generated biased sampling schemes over the features. We first did PCA,
selecting the first principal component of the training data and the corresponding
projection values. Denoting the minimum value of the projection as m and the mean
as m, we applied a normal distribution with mean m + (m − m)/a and variance
(m−m)/b as the biased sampling scheme. Detailed parameter settings are given in
Table 1.1. Our learning algorithms were penalized LMS for regression, and SVM for
classification. We used a Gaussian kernel for both the kernel mean matching and
the SVM/LMS regression. The kernel size was chosen by ten-fold cross validation
on the unweighted training data over the set σ ∈ {0.1, 1, 10, 100, 1000}. This
cross-validation procedure was also used to search over the remaining parameters
C ∈ {0.1, 1, 10, 100, 1000} (for classification) or λ ∈ {1e − 3, 1e − 2, 0.1, 1, 10} (for
regression). To evaluate generalization performance, we applied the normalized
mean square error (NMSE) given by 1

nte

∑nte
i=1

(yte
i −µi)

2

var yte for regression problems,
and the average test error for classification problems. Results are listed in Table
1.1.

The results from our experiments are mixed. In certain cases, both importance
sampling and KMM give similar results, which improve on the performance of the
unweighted case. These datasets are (7b,11,13,14). In one case (8), KMM alone
improves performance; in two further cases (3,7a), importance sampling improves
performance, whereas KMM does not. That said, the sampling bias for the latter
two datasets violates assumption 1.1, and the result is not surprising.

In a large number of cases, however, both for classification and regression, there
is very little difference between the original, importance weighted, and KMM-
corrected results. In the case of regression, these datasets are (1,4,9,10); for classi-
fication, they are (5a,6b). Performance can even worsen due to the application of
KMM weighting and/or importance sampling. In some cases, the KMM correction
alone gives worse results (2,6a). In the case of dataset 6a, the failure of KMM is
unsurprising, since assumption 1.1 does not hold. KMM does not necessarily fail in
this circumstance, however: in dataset 7a, there is little difference compared with
the unweighted case (although importance sampling improves performance). In yet
further instances, importance sampling worsens performance, but KMM has no ef-
fect (3,15). Finally, there exist cases where both KMM and importance sampling
worsen performance (5b,12). We note that mixed results were also reported inde-
pendently for KMM by Sugiyama et al. [2008, Table 1], with performance being
improved or unchanged for good kernel size choice (KMM(0.3) in this table), and
worsening for poor kernel choice.

3. Regression data from http : //www.liacc.up.pt/ ∼ ltorgo/Regression/DataSets.html;
classification data from UCI.

1.6 Experiments 23

In comparison with the results of Huang et al. [2007, Table 1], the current re-
sults are less favourable to both KMM and importance sampling: in particular, in
the earlier work, KMM always improved performance. This is because our earlier
experiments used parameters resulting in an overly simple classification/regression
function (in particular, the kernels sizes used were relatively large: see the corre-
sponding column in [Huang et al., 2007, Table 1]). We conclude from our Table
1.1 results that while covariate shift can still improve performance in cases where
the classification/regression parameters are chosen by cross validation, this is not
guaranteed; moreover, we have yet to determine what properties of these particular
data are favourable to covariate shift. On the other hand, the application of covari-
ate shift correction through KMM/importance sampling can decrease performance
in this case, though the penalty is not generally too large.

24 Covariate Shift by Kernel Mean Matching

T
a
b
le

1
.1

T
es

t
re

su
lt

s
fo

r
th

re
e

m
et

h
o
d
s

o
n

1
5

d
a
ta

se
ts

w
it

h
d
iff

er
en

t
sa

m
p
li
n
g

sc
h
em

es
.

T
h
e

re
su

lt
s

a
re

av
er

a
g
es

ov
er

1
0

tr
ia

ls
fo

r
re

g
re

ss
io

n
p
ro

b
le

m
s

(m
a
rk

ed
*
)

a
n
d

2
0

tr
ia

ls
fo

r
cl

a
ss

ifi
ca

ti
o
n

p
ro

b
le

m
s.

S
a
m

p
li
n
g

sc
h
em

es
:
si

m
p
le

la
be

l:
P

(s
=

1
|y

=
1
)

=
0
.1

a
n
d

P
(s

=
1
|y

=
−

1
)

=
0
.9

,
la

be
l(
a
,b

):
P

(s
=

1
|y

)
=

ex
p
(a

+
by

)/
(1

+
ex

p
(a

+
by

))
,

P
C

A
(a

,b
,σ
P
C
A
):

b
ia

s
u
si

n
g

k
er

n
el

P
C

A
w

it
h

p
a
ra

m
et

er
s
a
,b
,σ
P
C
A

.
T

h
e

tr
a
in

in
g

se
t

si
ze

is
in

co
lu

m
n
n
tr

,
th

e
n
u
m

b
er

o
f

tr
a
in

in
g

p
o
in

ts
a
ft

er
b
ia

se
d

su
b
sa

m
p
li
n
g

is
in

co
lu

m
n

se
l.

,
a
n
d

th
e

n
u
m

b
er

o
f

te
st

p
o
in

ts
is

in
co

lu
m

n
n
ts
t
.

N
M

S
E
/
te

st
e
r
ro

r
±

st
d
.
e
r
ro

r

D
a
ta

se
t

sa
m

p
li
n
g

sc
h
e
m

e
n

t
r

se
l.

n
t
s

t
S
V

M
im

p
o
rt

a
n
c
e

sa
m

p
.

K
M

M

1
.

A
b
a
lo

n
e
*

la
b

e
l(

1
,1

0
)

2
0
0
0

9
7
3

2
1
7
7

0
.8

3
±

0
.0

2
0
.8

0
±

0
.0

4
0
.8

3
±

0
.0

3

2
.

C
A

H
o
u
si

n
g
*

P
C

A
(1

0
,5

,0
.1

)
8
0
0
0

1
5
9
1

1
2
6
4
0

0
.6

9
4
±

0
.0

0
5

0
.6

8
4
±

0
.0

0
9

0
.7

2
8
±

0
.0

0
7

3
.

D
e
lt

a
A

il
e
ro

n
s*

la
b

e
l(

1
,1

0
)

4
0
0
0

1
9
8
0

3
1
2
9

0
.6

4
±

0
.0

1
0
.4

0
5
±

0
.0

0
9

0
.6

1
3
±

0
.0

0
8

4
.

A
il
e
ro

n
s*

P
C

A
(1

e
3
,4

,0
.1

)
7
1
5
4

7
2
6

6
5
9
6

0
.2

5
±

0
.0

4
0
.2

7
±

0
.0

4
0
.2

4
±

0
.0

3

5
a
.

H
a
b

e
rm

a
n

la
b

e
l(

0
.2

,0
.8

)
1
5
0

6
8

1
5
6

0
.3

0
±

0
.0

2
0
.3

2
±

0
.0

2
0
.3

3
±

0
.0

1

5
b
.

H
a
b

e
rm

a
n

P
C

A
(2

,2
,0

.0
1
)

1
5
0

8
2

1
5
6

0
.2

6
6
±

0
.0

0
8

0
.3

1
8
±

0
.0

0
8

0
.3

3
±

0
.0

2

6
a
.

U
S
P

S
(6

v
s8

)
si

m
p
le

la
b

e
l

5
0
0

2
6
4

1
0
4
2

0
.0

3
5
±

0
.0

0
4

0
.0

3
4
±

0
.0

0
4

0
.0

4
7
±

0
.0

0
4

6
b
.

U
S
P

S
(6

v
s8

)
P

C
A

(3
,3

,1
/
1
2
8
)

5
0
0

1
6
9

1
0
4
2

0
.1

7
±

0
.0

4
0
.1

9
±

0
.0

5
0
.1

9
±

0
.0

4

7
a
.

U
S
P

S
(3

v
s9

)
si

m
p
le

la
b

e
l

5
0
0

2
6
1

1
1
4
5

0
.0

2
0
±

0
.0

0
4

0
.0

1
4
±

0
.0

0
2

0
.0

2
0
±

0
.0

0
3

7
b
.

U
S
P

S
(3

v
s9

)
P

C
A

(3
,3

,1
/
1
2
8
)

5
0
0

1
6
5

1
1
4
5

0
.1

5
±

0
.0

3
0
.0

5
6
±

0
.0

0
7

0
.0

8
±

0
.0

2

8
.

B
a
n
k
8
F

M
*

P
C

A
(3

,6
,0

.1
)

4
5
0
0

5
8
9

3
6
9
2

0
.1

0
±

0
.0

2
0
.1

2
±

0
.0

2
0
.0

6
8
±

0
.0

0
3

9
.

B
a
n
k
3
2
n
h
*

P
C

A
(3

,6
,0

.0
1
)

4
5
0
0

6
7
3

3
6
9
2

0
.5

2
3
±

0
.0

0
8

0
.5

4
±

0
.0

3
0
.5

5
5
±

0
.0

0
8

1
0
.

c
p
u
-a

c
t*

P
C

A
(4

,2
,1

e
-1

2
)

4
0
0
0

1
6
7
2

4
1
9
2

0
.0

9
±

0
.0

3
0
.0

8
±

0
.0

3
0
.1

0
±

0
.0

2

1
1
.

c
p
u
-s

m
a
ll
*

P
C

A
(4

,2
,1

e
-1

2
)

4
0
0
0

1
6
7
4

4
1
9
2

0
.3

2
±

0
.0

9
0
.1

5
±

0
.0

7
0
.1

1
±

0
.0

2

1
2
.

D
e
lt

a
A

il
e
ro

n
s*

P
C

A
(1

e
3
,4

,0
.1

)
4
0
0
0

5
1
1

3
1
2
9

0
.3

8
±

0
.0

2
0
.4

1
±

0
.0

3
0
.4

4
±

0
.0

3

1
3
.

B
o
st

o
n

h
o
u
se

*
P

C
A

(2
,4

,1
e
-4

)
3
0
0

1
0
0

2
0
6

0
.6

3
±

0
.0

8
0
.5
±

0
.2

0
.5

0
±

0
.0

4

1
4
.

k
in

8
n
m

*
P

C
A

(8
,5

,0
.1

)
5
0
0
0

2
9
2

3
1
9
2

1
.0
±

0
.3

0
.7

2
±

0
.0

2
0
.7

4
±

0
.0

4

1
5
.

p
u
m

a
8
n
h
*

P
C

A
(4

,4
,0

.1
)

4
4
9
9

6
8
5

3
6
9
3

0
.7

5
±

0
.0

3
0
.8

3
±

0
.0

6
0
.7

5
±

0
.0

2

1.6 Experiments 25

Table 1.2 Covariate shift correction for microarray data. The notation
“Gruvberger→West” indicates that we train on the data of Gruvberger and test
on that of West.

test error

Dataset SVM importance sampling KMM

Singh 0.40±0.02 0.091±0.006 0.083±0.005

Gruvberger→West 0.061 — 0.061

West→Gruvberger 0.086 — 0.052

Dhanasekaran→Welsh 0.03 — 0.09

Welsh→Dhanasekaran 0.26 — 0.17

1.6.3 Tumor Diagnosis using Microarrays

Our next benchmark is a dataset of 102 microarrays from prostate cancer pa-
tients [Singh et al., 2002]. Each of these microarrays measures the expression levels
of 12,600 genes. The dataset comprises 50 samples from normal tissues (positive
label) and 52 from tumor tissues (negative label). We simulate the realistic scenario
that two sets of microarrays A and B are given with dissimilar proportion of tumor
samples, and we want to perform cancer diagnosis via classification, training on A
and predicting on B. As a preprocessing step, the data were normalised to have
zero mean and unit variance for each feature. We selected training examples via a
biased selection scheme as P (s = 1|y = 1) = 0.85 and P (s = 1|y = −1) = 0.15; the
remaining data points form the test set. We performed SVM classification using
a linear SVM setting C = 1000 (there being too little data for cross-validation),
for the unweighted, the KMM, and the importance sampling approaches. In the
case of KMM, the kernel size was the median distance between training sample
points. Results are given in Table 1.2, and represent the average performance over
50 training/test splits. We note that both importance sampling and KMM result
in a substantial performance improvement, with KMM outperforming importance
sampling (despite the violation of assumption 1.1).

We now use the same setting to investigate dataset shift for microarray studies
on the same tissue by different labs. We first consider two breast cancer microarray
datasets from Gruvberger et al. [2001] and West et al. [2001], measuring the
expression levels of 2,166 common genes for normal and cancer patients [Warnat
et al., 2005]. All settings for the data preprocessing, the SVM, and KMM, were
identical to our first experiment. Results are listed in Table 1.2, and describe both
training on West and testing on Gruvberger, as well as training on Gruvberger and
testing on West.4 In the former case, KMM causes a performance improvement
compared with the unweighted data; in the latter case, performance remains
constant.

4. Note: since the biasing scheme for these data is not know, there is no importance
sampling result.

26 Covariate Shift by Kernel Mean Matching

Finally, we study the same scenario for two prostate cancer datasets, Dhanasekaran
et al. [2001] vs Welsh et al. [2001]. Results are again in Table 1.2. In this case our
results are mixed: while training on Welsh and testing on Dhanasekaran demon-
strates a substantial performance gain when using KMM, the reverse procedure
results in a (smaller) performance reduction for KMM. We conclude that while
KMM more often results in performance increases in microarray data than in the
UCI benchmark sets of the previous section, this performance improvement is not
guaranteed.

1.7 Conclusion

We present a new approach, kernel mean matching (KMM), for dealing with
sampling bias in various learning problems. We directly estimate the resampling
weights by matching training and test distribution feature means in a reproducing
kernel Hilbert space. In addition, we develop bounds on the mean matching error,
and transductive risk bounds, based on the maximum ratio of the distributions and
the sample sizes.

In our experiments, it appears that with properly chosen parameters (via cross
validation), kernel classification and regression methods occasionally benefit from
covariate shift correction, but for the most part do not. This is true both when the
correction is made using KMM, and via the “optimal” reweighting given by the ratio
of test and training probabilities (note that the latter is unavailable in real world
applications). We also emphasise that our results were obtained using the heuristic
that the KMM kernel size was set to the kernel size of the classification/regression
algorithm. Sugiyama et al. [2008, Table 1] demonstrated that kernel size has a
strong effect on KMM performance (though no comparison was made between the
optimal KMM kernel size and that chosen by cross validation for the learning
algorithm). Thus, performance of KMM might be further improved by a more
principled strategy for KMM kernel choice.5

Major benefits can obtained from covariate shift correction when a simple clas-
sification/regression function is used. There are several reasons for not using a
“correct” model, but rather a deliberately simpler one: these include interpretabil-
ity on one hand; and on the other hand difficulties in correct model selection by
cross-validation, especially for higher dimensional data and small sample sizes (for
instance in our microarray experiments, where we used a linear classifier, and where
the performance of KMM was generally better). Covariate shift correction allows us
to make use of these simpler models without too significant a performance penalty.

5. One approach might be along the lines of [Fukumizu et al., 2008], where the variance of
a kernel dependence statistic was computed via both a closed form expression and random
permutations of the sample: a good kernel size caused these quantities to match. In our
case, the relevant statistic is a difference in RKHS means, so an appropriate closed form
variance expression might derive from Gretton et al. [2007].

1.7 Conclusion 27

Acknowledgements: The authors thank Patrick Warnat (DKFZ, Heidelberg)
for providing the microarray datasets, and Paul von Bünau, Olivier Chapelle,
Matthias Hein, Quoc Le, and Klaus-Robert Müller for helpful discussions. The
work is partially supported by by the German Ministry for Education, Science, Re-
search and Technology (BMBF) under grant 031U112F within the Bioinformatics
for the Functional Analysis of Mammalian Genomes project, which is part of the
German Genome Analysis Network. National ICT Australia is funded through the
Australian Government’s Backing Australia’s Ability initiative, in part through the
Australian Research Council. This work was supported in part by the IST Pro-
gramme of the European Community, under the PASCAL Network of Excellence,
IST-2002-506778.

1.8 Proofs

Proof: [Proof of Theorem 1.2] By definition µ is surjective on the marginal
polytope, since the latter is defined as the set of all expectations of Φ(x). We
now prove injectivity.

Let F be a universal RKHS, and let G be the unit ball in F. We need to prove
that Ptr = Pte if µ(Ptr) = µ(Pte), or equivalently ‖µ(Ptr)− µ(Pte)‖ = 0. We have

‖µ(Ptr)− µ(Pte)‖ = sup
f∈G
〈f, µ(Ptr)− µ(Pte)〉

= sup
f∈G

(EPtr [f]−EPte [f])

=: ∆ [G,Ptr,Pte] .

We use a result from Dudley [2002, Lemma 9.3.2]: If Ptr,Pte are two Borel
probability measures defined on a separable metric space X, then Ptr = Pte if
and only if EPtr [f] = EPte [f] for all f ∈ C(X), where C(X) is the space of
continuous bounded functions on X. If we can show that ∆ [C(X),Ptr,Pte] = D

for some D > 0 implies ∆ [G,Ptr,Pte] > 0: this is equivalent to ∆ [G,Ptr,Pte] = 0
implying ∆ [C(X),Ptr,Pte] = 0 (where this last result implies Ptr = Pte). If
∆ [C(X),Ptr,Pte] = D, then there exists some f̃ ∈ C(X) for which EPtr

[
f̃
]
−

EPte

[
f̃
]
≥ D/2. By definition of universality, F is dense in C(X) with respect to the

L∞ norm: this means that for all ε ∈ (0, D/8), we can find some f∗ ∈ F satisfying∥∥∥f∗ − f̃∥∥∥
∞
< ε. Thus, we obtain

∣∣∣EPtr [f∗]−EPtr

[
f̃
]∣∣∣ < ε and consequently

|EPtr [f∗]−EPte [f∗]| >
∣∣∣EPtr

[
f̃
]
−EPte

[
f̃
]∣∣∣− 2ε > D

2 − 2D8 = D
4 > 0.

Finally, using ‖f∗‖ <∞, we have

[EPtr [f∗]−EPte [f∗]] /‖f∗‖ ≥ D/(4 ‖f∗‖) > 0,

and hence ∆ [G,Ptr,Pte] > 0.
For the proof of Lemma 1.5 we need a result by McDiarmid [1989].

Theorem 1.14 Denote by f(x1, . . . , xn) a function of n independent random vari-
ables. Moreover let

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x̄, xi+1, . . . , xn)| ≤ ci (1.29)

for all x1, . . . , xn and x̄. Denote by C :=
∑
i c

2
i . In this case

P {|f(x1, . . . , xn)−Ex1,...xn
[f(x1, . . . , xn)]| > ε} < 2 exp(−2ε2/C). (1.30)

1.8 Proofs 29

Proof: [Proof of Lemma 1.5] Let

Ξ(Xtr, Xte) :=

∥∥∥∥∥ 1
ntr

ntr∑
i=1

β(xtr
i)Φ(xtr

i)− 1
nte

nte∑
i=1

Φ(xte
i)

∥∥∥∥∥ . (1.31)

The proof follows firstly by its tail behavior using a concentration inequality, and
subsequently by bounding the expectation.

To apply McDiarmid’s tail bound, we need to bound the change in Ξ(Xtr, Xte) if
we replace any xtr

i by an arbitrary x ∈ X and likewise if we replace any xte
i by some

x ∈ X. By the triangle inequality the replacement of xtr
i by x can change Ξ(Xtr, Xte)

by at most 1
ntr
‖β(xtr

i)Φ(xtr
i)− β(x)Φ(x)‖ ≤ 2BR

ntr
. Likewise, a replacement of xte

i

by x changes Ξ(Xtr, Xte) by at most 2R
nte

. Since ntr(2BR/ntr)2 + nte(2R/nte)2 =
4R2(B2/ntr + 1/nte) we have

P {|Ξ(Xtr, Xte)−EXtr,Xte [Ξ(Xtr, Xte)]| > ε}
≤ 2 exp

(
−ε2/2R2(B2/ntr + 1/nte)

)
.

Hence with probability 1− δ the deviation of the random variable from its expecta-

tion is bounded by |Ξ(Xtr, Xte)−EXtr,Xte [Ξ(Xtr, Xte)] | ≤ R
√

2 log 2
δ

(
B2

ntr
+ 1

nte

)
.

To bound the expected value of Ξ(Xtr, Xte) we use

EXtr,Xte [Ξ(Xtr, Xte)] ≤
√

EXtr,Xte [Ξ(Xtr, Xte)2].

Expanding out the expectation, and denoting by x̃te a random variable drawn from
Pte and independent of xte, we get

EXtr,Xte

∥∥∥ 1
ntr

ntr∑
i=1

β(xtr
i)Φ(xtr

i)− 1
nte

nte∑
i=1

Φ(xte
i)
∥∥∥2

=
1
n2

tr

EXtr

 ntr∑
i,j=1

β(xtr
i)β(xtr

j)k(xtr
i , x

tr
j)

+
1
n2

te

EXte

 nte∑
i,j=1

k(xte
i , x

te
j)


− 2EXtr,Xte

1
ntrnte

[
ntr∑
i=1

nte∑
i=1

β(xtr
i)k(xtr

i , x
te
j)

]
=EPtek(xte, x̃te) +

1
ntr

EPte

[
β(xte)k(xte, xte)

]
+ EPtek(xte, x̃te)

+
1
nte

EPte

[
k(xte, xte)

]
− 2EPtek(xte, x̃te) +O

(
n−2

tr

)
+O

(
n−2

te

)
/R2 [B/ntr + 1/nte] < R2

[
B2/ntr + 1/nte

]
.

The final line uses that B < B2 since B > 1 (due to the constraint (1.14)).
Combining the bounds on the mean and the tail proves the claim.
Proof: [Proof of Lemma 1.7] To see the claim, first note that by Assumption 1.1
the conditional distributions P(y|x) are the same for Ptr and Pte. By linearity
we can apply the expectation EY |X to each summand individually. Finally, by

30 Covariate Shift by Kernel Mean Matching

Assumption 1.6 the expected loss l(x, θ) can be written as 〈Ψ(x), θ〉. Hence we may
rewrite the LHS of (1.19) as

sup
l(·,θ)∈G

∣∣∣∣∣ 1
ntr

ntr∑
i=1

βil(xtr
i , θ)−

1
nte

nte∑
i=1

l(xte
i , θ)

∣∣∣∣∣
≤ sup
‖Θ‖≤C

∣∣∣∣∣
〈

1
ntr

ntr∑
i=1

βiΨ(xtr
i)− 1

nte

nte∑
i=1

Ψ(xte
i),Θ

〉∣∣∣∣∣
By the definition of norms this is bounded by Cε, which proves the claim.
Proof: [Proof of Lemma 1.8] The strategy is almost identical to that of Lemma 1.5
and of Mendelson [2003]. Let

Ξ(Ytr) := sup
l(·,·,θ)∈G

1
ntr

ntr∑
i=1

βi
[
l(xtr

i , y
tr
i , θ)− l(xtr

i , θ)
]

(1.32)

be the maximum deviation between empirical mean and expectation. Key is that
the random variables ytr

1 , . . . , y
tr
m are conditionally independent given Xtr. Replacing

one ytr
i by an arbitrary y ∈ Y leads to a change in Ξ(Ytr) which is bounded by

βi

ntr
C ‖Υ(xtr

i , y
tr
i)−Υ(xtr

i , y)‖ ≤ 2CRβi/m. Using McDiarmid’s theorem we can
bound

PY |X
{
|Ξ(Ytr)−EY |XΞ(Ytr)| > ε

}
≤ 2 exp

(
−ε2n2

tr/
(

2C2R2 ‖β‖22
))

. (1.33)

In other words, M := n2
tr/ ‖β‖

2
2 acts as an effective sample size when it comes to

determining large deviations. Next we use symmetrization to obtain a bound on
the expectation of Ξ(Ytr), that is

EY |X [Ξ(Ytr)] ≤
1
ntr

EY |XEeY |X
[

sup
l(·,·,θ)∈G

∣∣∣∣∣
ntr∑
i=1

βil(xtr
i , yi, θ)− βil(xtr

i , ỹi, θ)

∣∣∣∣∣
]

≤ 2
ntr

EY |XEσ

[
sup

l(·,·,θ)∈G

∣∣∣∣∣
ntr∑
i=1

σiβil(xtr
i , yi, θ)

∣∣∣∣∣
]
. (1.34)

where the σi take values in {±1} with equal probability, and ỹi is drawn from
P(ỹi|xtr

i) independently of yi. The first inequality follows from convexity. The second
one follows from the fact that all yi, ỹi pairs are independently and identically
distributed, hence we can swap these pairs.

For constant βi the RHS in (1.34) is referred to as the Rademacher average. To
make actual progress in computing this, we use the condition in assumption 1.6
that l(x, y, θ) = 〈Υ(x, y),Λ〉 for some Λ with ‖Λ‖ ≤ C. This allows us to bound the
supremum. This, and the convexity of x2 yields a series of bounds on the RHS in

1.8 Proofs 31

(1.34),

RHS ≤ 2
ntr

EY |XEσC

∥∥∥∥∥
ntr∑
i=1

σiβiΥ(xtr
i , yi)

∥∥∥∥∥
≤ 2
ntr

C

√√√√EY |XEσ

∥∥∥∥∥
ntr∑
i=1

σiβiΥ(xtr
i , yi)

∥∥∥∥∥
2

=
2
ntr

C

√√√√ ntr∑
i=1

β2
i Eyi|xtr

i
‖Υ(xtr

i , yi)‖
2

≤ 2
ntr

CR ‖β‖2 =
2CR√
M
.

Combined with the bound on the expectation and solving the tail bound for ε proves
the claim.

32 Covariate Shift by Kernel Mean Matching

References

G. Casella and R. Berger. Statistical Inference. Duxbury, Pacific Grove, CA, 2nd edition, 2002.

N. A. C. Cressie. Statistics for Spatial Data. John Wiley and Sons, New York, 1993.

Y.-H. Dai and R. Fletcher. New algorithms for singly linearly constrained quadratic programs
subject to lower and upper bounds. Mathematical Programming: Series A and B archive, 106
(3):403–421, 2006.

S. M. Dhanasekaran, T. R. Barrette, D. Ghosh, R. Shah, S. Varambally, K. Kurachi, K. J. Pienta,
M. A. Rubin, and A. M. Chinnaiyan. Delineation of prognostic biomarkers in prostate cancer.
Nature, 412(6849):822–826, Aug 2001.

M. Dud́ık, R. E. Schapire, and S. J. Phillips. Correcting sample selection bias in maximum entropy
density estimation. In Advances in Neural Information Processing Systems 17, 2005.

R. M. Dudley. Real analysis and probability. Cambridge University Press, Cambridge, UK, 2002.

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall, New York,
1994.

K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel measures of conditional dependence. In
Daphne Koller and Yoram Singer, editors, Advances in Neural Information Processing Systems
20, Cambridge, MA, 2008. MIT Press.

A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola. A kernel method for the
two-sample-problem. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural
Information Processing Systems 19, volume 19. MIT Press, 2007.

S. Gruvberger, M. Ringner, Y. Chen, S. Panavally, L. H. Saal, C. Peterson A. Borg, M. Ferno, and
P. S. Meltzer. Estrogen receptor status in breast cancer is associated with remarkably distinct
gene expression patterns. Cancer Research, 61, 2001.

J. J. Heckman. Sample selection bias as a specification error. Econometrica, 47:153–161, 1979.

W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist.
Assoc., 58:13–30, 1963.

J. Huang, A. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf. Correcting sample selection
bias by unlabeled data. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural
Information Processing Systems 19, pages 601–608, 2007.

G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on stochastic
processes and smoothing by splines. Annals of Mathematical Statistics, 41:495–502, 1970.

Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in nonstandard
situations. Machine Learning, 46:191–202, 2002.

C. McDiarmid. On the method of bounded differences. In Survey in Combinatorics, pages 148–
188. Cambridge University Press, 1989.

S. Mendelson. A few notes on statistical learning theory. In S. Mendelson and A. J. Smola, editors,
Advanced Lectures on Machine Learning, number 2600 in LNAI, pages 1–40. Springer-Verlag,
Heidelberg, Germany, 2003.

E. Osuna. Support Vector Machines: Training and Applications. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1998.

J. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods — Support
Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

S. Rosset, J. Zhu, H. Zou, and T. Hastie. A method for inferring label sampling mechanisms in
semi-supervised learning. In Advances in Neural Information Processing Systems 17, 2004.

34 REFERENCES

M. Schmidt and H. Gish. Speaker identification via support vector classifiers. In Proc. ICASSP’96,
pages 105–108, Atlanta, GA, May 1996.

B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms.
Neural Computation, 12:1207–1245, 2000.

B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the
support of a high-dimensional distribution. Neural Comput., 13(7):1443–1471, 2001.

H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Inference, 90:227–244, 2000.

D. Singh, P. Febbo, K. Ross, D. Jackson, J. Manola, C. Ladd, P. Tamayo, A. Renshaw, A. DAmico,
and J. Richie. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1
(2), 2002.

A. J. Smola, S. V. N. Vishwanathan, and T. Hofmann. Kernel methods for missing variables. In
R. G. Cowell and Z. Ghahramani, editors, Proceedings of International Workshop on Artificial
Intelligence and Statistics, pages 325–332. Society for Artificial Intelligence and Statistics, 2005.

I. Steinwart. Support vector machines are universally consistent. J. Complexity, 18:768–791, 2002.

M. Sugiyama and K.-R. Müller. Input-dependent estimation of generalization error under covariate
shift. Statistics & Decisions, 23(4):249–279, 2005.

M. Sugiyama, B. Blankertz, M. Krauledat, G. Dornhege, and K.-R. Müller. Importance weighted
cross-validation for covariate shift. In K. Franke, K.-R. Müller, B. Nickolay, and R. Schäfer,
editors, DAGM 2006, pages 354–363. Springer LNCS 4174, 2006.

M. Sugiyama, M. Krauledat, and K.-R. Müller. Covariate shift adaptation by importance weighted
cross validation. Journal of Machine Learning Research, 8:985–1005, May 2007.

M. Sugiyama, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe. Direct importance
estimation with model selection and its application to covariate shift adaptation. In Daphne
Koller and Yoram Singer, editors, Advances in Neural Information Processing Systems 20,
Cambridge, MA, 2008. MIT Press.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages 25–32,
Cambridge, MA, 2004. MIT Press.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured
and interdependent output variables. J. Mach. Learn. Res., 6:1453–1484, 2005.

P. Warnat, R. Eils, and B. Brors. Cross-platform analysis of cancer microarray data improves
gene expression based classification of phenotypes. BMC Bioinformatics, 6:265, Nov 2005.

J. B. Welsh, L. M. Sapinoso, A. I. Su, S. G. Kern, J. Wang-Rodriguez, C. A. Moskaluk,
J. r. Frierson HF, and G. M. Hampton. Analysis of gene expression identifies candidate markers
and pharmacological targets in prostate cancer. Cancer Res, 61(16):5974–5978, Aug 2001.

M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J. A. Olson Jr,
J. R. Marks, and J. R. Nevins. Predicting the clinical status of human breast cancer by using
gene expression profiles. PNAS, 98(20), 2001.

C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI, 20(12):1342–1351, 1998.

B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In R. Greiner and
D. Schuurmans, editors, Proc. of the 21st Int. Conf. on Machine Learning (ICML), pages
114–122, 2004.

Notation and Symbols

Sets of Numbers

N the set of natural numbers, N = {1, 2, . . . }
R the set of reals

[n] compact notation for {1, . . . , n}
x ∈ [a, b] interval a ≤ x ≤ b
x ∈ (a, b] interval a < x ≤ b
x ∈ (a, b) interval a < x < b

|C| cardinality of a set C (for finite sets, the number of elements)

Data

X the input domain

d (used if X is a vector space) dimension of X

M number of classes (for classification)

n a number of data examples.

ntr number of training examples.

nte number of test examples.

i, j indices, often running over [nte] or [ntr].

xi input patterns xi ∈ X

xtr
i input training patterns xtr

i ∈ X

xte
i input test patterns xte

i ∈ X

yi classes yi ∈ [M] (for regression: target values yi ∈ R)

ytr
i training data classes ytr

i ∈ [M] (for regression: target values ytr
i ∈ R)

yte
i test data classes ytr

i ∈ [M] (for regression: target values yte
i ∈ R)

X a sample of input patterns, X = (x1, . . . , xn)

Xtr a sample of training input patterns, Xtr = (xtr
1 , . . . , x

tr
n)

Xte a sample of test input patterns, Xte = (xte
1 , . . . , x

te
n)

Y a sample of output targets, Y = (y1, . . . , yn)

Y tr a sample of training output targets, Y tr = (ytr
1 , . . . , y

tr
n)

Y te a sample of training output targets, Y te = (yte
1 , . . . , y

te
n)

Kernels

H feature space induced by a kernel

Φ feature map, Φ : X→ H

k (positive definite) kernel

K kernel matrix or Gram matrix, Kij = k(xi, xj)

Vectors, Matrices and Norms

1 vector with all entries equal to one

I identity matrix

A> transposed matrix (or vector)

A−1 inverse matrix (in some cases, pseudo-inverse)

tr (A) trace of a matrix

det (A) determinant of a matrix

〈x,x′〉 dot product between x and x′

‖·‖ 2-norm, ‖x‖ :=
√
〈x,x〉

‖·‖p p-norm , ‖x‖p :=
(∑N

i=1 |xi|p
)1/p

, N ∈ N ∪ {∞}

‖·‖∞ ∞-norm , ‖x‖∞ := supNi=1 |xi|, N ∈ N ∪ {∞}

Functions

ln logarithm to base e

log2 logarithm to base 2

f a function, often from X or [n] to R, RM or [M]

F a family of functions

Lp(X) function spaces, 1 ≤ p ≤ ∞

Probability

P{·} probability of a logical formula

Ptr{·} probability of a logical formula associated with training data distri-
bution.

Pte{·} probability of a logical formula associated with test data distribution.

P(C) probability of a set (event) C

p(x) density evaluated at x ∈ X

ptr(x) density associated with training data distribution evaluated at x ∈ X

pte(x) density associated with test data distribution evaluated at x ∈ X

E [·] expectation of a random variable

Var [·] variance of a random variable

N(µ, σ2) normal distribution with mean µ and variance σ2

Graphs

g graph g = (V,E) with nodes V and edges E

G set of graphs

W weighted adjacency matrix of a graph (Wij 6= 0⇔ (i, j) ∈ E)

D (diagonal) degree matrix of a graph, Dii =
∑
jWij

L normalized graph Laplacian, L = D−1/2WD−1/2

L un-normalized graph Laplacian, L = D −W
SVM-related

ρf (x, y) margin of function f on the example (x, y), i.e., y · f(x)

ρf margin of f on the training set, i.e., minmi=1 ρf (xi, yi)

h VC dimension

C regularization parameter in front of the empirical risk term

λ regularization parameter in front of the regularizer

w weight vector

b constant offset (or threshold)

αi Lagrange multiplier or expansion coefficient

βi Lagrange multiplier

α,β vectors of Lagrange multipliers

ξi slack variables

ξ vector of all slack variables

Q Hessian of a quadratic program

Miscellaneous

IA characteristic (or indicator) function on a set A

i.e., IA(x) = 1 if x ∈ A and 0 otherwise

δij Kronecker δ (δij = 1 if i = j, 0 otherwise)

δx Dirac δ, satisfying
∫
δx(y)f(y)dy = f(x)

O(g(n)) a function f(n) is said to be O(g(n)) if there exist constants C > 0
and n0 ∈ N such that |f(n)| ≤ Cg(n) for all n ≥ n0

o(g(n)) a function f(n) is said to be o(g(n)) if there exist constants c > 0
and n0 ∈ N such that |f(n)| ≥ cg(n) for all n ≥ n0

rhs/lhs shorthand for “right/left hand side”

the end of a proof

