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Introduction: observation vs intervention

Conditioning from observation:
E[Y[A = a] = > scq013 E[Y]a, z]p(z]a)

From our observations of historical hospital data:
m P(Y = cured|A = pills) = 0.85
m P(Y = cured|A = surgery) = 0.72
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Introduction: observation vs intervention

Average causal effect (intervention): E[Y(%)] = >ecfoa} E[Y]a, z]p(z)

From our wntervention (making all patients take a treatment):
n P(Y(®ls) = cured) = 0.64
m P(Y(ueery) — cured) = 0.75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the 2/34
Counterfactual and Graphical Approaches to Causality



We observe symptom 7, not disease X

"
p——
or

jiiiL

m P(Z = fever|X = mild) =0.2
m P(Z = fever| X = severe) = 0.8
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We observe symptom 7, not disease X

m P(Z = fever|X = mild) = 0.2
m P(Z = fever|X = severe) = 0.8

Could we just write: P(Y (%)) L 2 ze{0,1} E[Y]a, z]p(2)
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We observe symptom 7, not disease X

o
£

Results are very bad:
E 226{0,1} E[cured|pills, z]p(z) = 0.8 (# 0.64)
E Zze{o,l} [E[cured|surgery, z]p(z) = 0.73  (# 0.75)

Correct answer impossible without observing X

3/34
Pearl (2010), On Measurement Bias in Causal Inference



Outline

Causal effect estimation, with hidden covariates X:

m Use proxy variables (negative controls)

What'’s new? What is it good for?

m Treatment A, proxy variables, etc can be multivariate, complicated...

® ...by using or feature representations
m Don’t meet-your-herees model your hidden variables!
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Proxy/Negative Control Methods
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Proxy variables: health example

Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:

m X: underlying illness
severity

m A: treatment

® Y: outcome

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmea%l}rse‘fl
confounder.



Proxy variables: health example

Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:

m X: underlying illness
severity

m A: treatment
® Y: outcome

m Z: symptoms

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.
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Proxy variables: health example

Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:

m X: underlying illness
severity

A: treatment

® Y: outcome

Z: symptoms

W: age

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.
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Proxy variables: health example

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:

m X: underlying illness
severity

A: treatment

Y. outcome

Z: symptoms

W age

— Can recover E( Y (%) from observational data!

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.

6/34



Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:

m X: unobserved confounder.

m A: treatment -
m Y: outcome @4—")-()4----->
m 7: treatment proxy *“
m W outcome proxy %
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Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:

m X: unobserved confounder.

m A: treatment -
m Y: outcome @4—")-()4----->
m 7: treatment proxy *“
m W outcome proxy %

O ®

Structural assumptions:

Y 1 Z|(4, X)

7/34



Why proxy variables? A simple proof

The definitions are:
m X: unobserved confounder.
m A: treatment Pt

m Y: outcome -

If X were observed,

de
P(Y@):=3" P(Y|z;, a)P(z;)
dyx1 =1
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Why proxy variables? A simple proof

The definitions are:
m X: unobserved confounder.
m A: treatment Pt

m Y: outcome -

If X were observed,

dy
P(Y®):=5" P(Y|z;, a)P(z;) = P(Y|X,a)P(X)

N—— i=1
dyXl dy)(dz dz><1
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Why proxy variables? A simple proof

The definitions are:
m X: unobserved confounder.
m A: treatment Pt

m Y: outcome -

O—0O

If X were observed,
dz

P(Y@):=3" P(Y|z;, a)P(z;) = P(Y|X,a)P(X)

—— —
dyx1 =1 dyxds  dox1

Goal: “get rid of the blue” X

8/34



..add the outcome proxy W

The definitions are:

m X: unobserved confounder.
m A: treatment

B Y: outcome

m W: outcome proxy

For each a, if we could solve:

P(Y|X,a) =
————

dy X dg

Hy,o P(W]X)
N ——
dyxdw dedz

AV

9/34



..add the outcome proxy W

The definitions are: ' X 14 -

m X: unobserved confounder.

m A: treatment \
B Y: outcome

m W: outcome proxy

For each a, if we could solve:

P( }’\}(, a) = Hy,q f’(lﬂf\)()
———— —— ————
dyx dy dyxdy dwXds

P(Y®) = P(Y|X,a)P(X)
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..add the outcome proxy W

The definitions are: ' X 14 -

m X: unobserved confounder.

m A: treatment \
B Y: outcome

m W: outcome proxy

For each a, if we could solve:

P(Y\X, a) = Hw,aP(W\X)
———— —— ————
dyx dy dyxdy dwXds

P(Y®) = P(Y|X,a)P(X)
= Hy, . P(W|X)P(X)
= Hw,aP( W) 9/34



...now project onto p(X|Z, a)

From last slide,

P(Y|X,a) = Hy, P(W|X)
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dg;Xdz dedz
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dIXdz dedz

Because ,

P(W|X)p(X|Z,a) =
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dg;Xdz dedz

Because ,
P(W|X)p(X|Z,a) =
Because Y 1L Z|(A4, X),
P(Y|X,a)p(X|Z,a) = P(Y|Z,a)
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dLXdz dedz

Because ,
P(W|X)p(X|Z,a) =
Because Y 1L Z|(A4, X),
P(Y|X,a)p(X|Z,a) = P(Y|Z,a)

Solve for Hy 4:
P(Y|Z,a) = Hy,
Everything observed!
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Proxy/Negative Control Methods
in the Real World
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Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544

Search,

Help | Advan{
Computer Science > Machine Learning

[submitted on 10 May 2021 (v1), last revised 9 Oct 2021 (his version, va)]

Proximal Causal Learning with Kernels: Two-Stage
Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet

1
23

Code for NN and kernel proxy methods:

NN features (NeurIPS 2021):

arXiv.org > ¢s > arXiv:2106.03907

Search
Help | Advand
Computer Science > Machine Learning

[Submitted on 7 Jun 2021 (v1), last revised 7 Dec 2021 (this version, v2)]

Deep Proxy Causal Learning and its Application to
Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

https://github.com/1iyuan9988/DeepFeatureProxyVariable/ 12734


https://github.com/liyuan9988/DeepFeatureProxyVariable/

Main theorem

If X were observed, we would write (average treatment effect)
R(Y() = / E(Y|a,z)p(z)dz.

....but we do not observe X.
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Main theorem

If X were observed, we would write (average treatment effect)
R(Y() = / E(Y|a,z)p(z)dz.

....but we do not observe X.

Main theorem: Assume we solved for link function:

E(y|a,z):/why(w,a)p(w|a,z)dw

m “Primary task” E(y|a, 2), “auxiliary task” p(w|a, z), linked by A,
m All variables observed, X not seen or modeled.

(Fredholm equation of first kind: existence of solution requires identifiability condi‘ciolliss/)34



Main theorem

If X were observed, we would write (average treatment effect)

= / E(Y|a,z)p(z)dz
...but we do not observe X.

Main theorem: Assume we solved for link function:

E(y|a,z):/why(w,a)p(w|a,z)dw

m “Primary task” E(y|a, 2), “auxiliary task” p(w|a, z), linked by A,
m All variables observed, X not seen or modeled.

Average treatment effect via p(w

E(Y (%) /h a, w)p(w)dw

(Fredholm equation of first kind: existence of solution requires identifiability condi‘ciolliss/)34



Main theorem

If X were observed, we would write (average treatment effect)

= / E(Y|a,z)p(z)dz
...but we do not observe X.

Main theorem: Assume we solved for link function:

E(y|a,z):/why(w,a)p(w|a,z)dw

m “Primary task” E(y|a, 2), “auxiliary task” p(w|a, z), linked by A,
m All variables observed, X not seen or modeled.

Average treatment effect via p(w

E(Y (%) /h a, w)p(w)dw

Challenge: need to parametrize and solve for A,

(Fredholm equation of first kind: existence of solution requires identifiability condi‘ciolliss/)34



Link function NN parametrization

The link function takes the form

hy(a’1 w) = ’YT [(Pg('w) ®<pg(a)] :‘X S EEELE

Assume we have:
m output proxy NN features pg(w)

m treatment NN features ¢:(a) A —> @
m linear final layer

(argument of feature map indicates feature space)
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Link function NN parametrization

The link function takes the form

hy(a’1 w) = ’YT [(Pg(w) ®<pg(a)] :‘X S EEELE

Assume we have:
m output proxy NN features pg(w)

m treatment NN features ¢:(a) A —> @
m linear final layer

(argument of feature map indicates feature space)

Questions:
m Why feature map s(w) ® p¢(a)?
m Why final linear layer 7

Both are necessary (next slides)!
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NN ridge regression for A, (w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p(W|a, Z)dw
w

Ridge regression solution: minimize

~

2
hy = arg n}LinEy,A,z (Y —Ewa,zhy(W, A)) + Aol [P
Y

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

15/34
Xu, Kanagawa, G. (2021).



NN ridge regression for A, (w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p(W|a, Z)dw
w

Ridge regression solution: minimize

~

2

hy = arg n}LinEy,A,z (Y —Ewa,zhy(W, A)) + Aol [P
Y

....where

Ewia,zhy(W,A) =Ew|a,z [’YT (pa(V) ® ‘P&(A))}

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
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NN ridge regression for A, (w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p(W|a, Z)dw
Ridge regression solution: minuilmize
ﬁy = arg n}LiynEy,A,Z (Y —Ewa,zhy (W, A))2 + A2l|7]2
....where

Eov oo hy (W, A) = Eipa 2 |17 (0e( 1) © pe(A))]
=T (B0 [ps ()] @ 02(4))

cond. feat. mean

(this is why linear 7y and feature map po(w) ® ¢¢(a))

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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NN ridge regression for A, (w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p(W|a, Z)dw
Ridge regression solution: minui}mize
ﬁy = arg n}LiynEy,A,Z (Y —Ewa,zhy (W, A))2 + A2l|7]2
....Wwhere

Eov oo hy (W, A) = Eipa 2 |17 (0e( 1) © pe(A))]

=47 (EW|A,Z [pe(V)] ® ‘p5(A))

cond. feat. mean

How to get conditional feature mean [y 4 7 [po(1V)]?
Density estimation for p(W|a, z)? Sample from p(W|a, z)?

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
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NN ridge regression for A, (w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p(W|a, Z)dw
Ridge regression solution: minuilmize
ﬁy = arg n}LiynEy,A,Z (Y —Ewa,zhy (W, A))2 + A2l|7]2
....where

Eov oo hy (W, A) = Eipa 2 |17 (0e( 1) © pe(A))]

=47 (EW|A,Z [pa(V)] ® ‘p5(A))

cond. feat. mean

How to get conditional feature mean [y 4 7 [po(1V)]?
Density estimation for p(W|a, z)? Sample from p(W|a, z)?

Answer: ridge regression (again!)
Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

15/34
Xu, Kanagawa, G. (2021).



Learning the auxiliary task

We have
Ewa lpe(W)] = Fococ(a, 2)
where /7y, € R%*4 minimizes Stage 1 RR loss:

Ew,a,zl9e(W) = Foc (4, Z)|* + M| 7]

1 4
Xu, Kanagawa, G. (2021). 6/3



Learning the auxiliary task

We have
[po(W)] = Focpc(a, 2)
where /g € R% >4 minimizes Stage 1 RR loss:
Ew,a,zlps(W) = Foc(4, 2)|* + M| 7|7
9, in closed form wrt ¢g, ¢ :
60 =Cwaz(Caz+MI)""  Cw,az =Elps(W)$ (4, 7))
Caz = Elp:(A, 2)¢/ (A, Z)]

Plug 74 into 51 loss, take gradient steps for ( (...but not 6...)

Xu, Kanagawa, G. (2021). 16/34



Final algorithm

Stage 2 RR loss:

Evaz (Y =7 (s los(W)) @ pe(4))) + Aalla]?

17/34
Xu, Kanagawa, G. (2021).



Final algorithm

Stage 2 RR loss:

2
Ev,az (Y =77 (5w 2z 0a(1)] @ 0e(4))) + Aol
Stage 1 regression (auxiliary): NN params ( and Fg,gz
Eopiazlpa(W)] & Focdc(A, Z)

17/34
Xu, Kanagawa, G. (2021).



Final algorithm

Stage 2 RR loss:

2
Ev,az (Y =77 (5w 2z 0a(1)] @ 0e(4))) + Aol
Stage 1 regression (auxiliary): NN params ( and Fg,gz
Eopiazlpa(W)] & Focdc(A, Z)

Solution procedure: for 7,6, ¢:
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Final algorithm

Stage 2 RR loss:

2
Ev,az (Y =77 (5w 2z 0a(1)] @ 0e(4))) + Aol
Stage 1 regression (auxiliary): NN params ( and Fg,gz
Eazloa( W) = Fo 0 (A, Z)
Solution procedure: for 7,6, ¢:

m Get 4 in closed form as function of 7y ¢. (4, Z) and p(A)

17/34
Xu, Kanagawa, G. (2021).



Final algorithm

Stage 2 RR loss:

2
Ey 4z (Y —q" (EW\A,Z [ps( V)] ® <P5(A))) + A2||711?
Stage 1 regression (auxiliary): NN params ( and Fg,gz
EL/V|A,Z[‘PG( W) ~ pe,g‘ﬁc(A; Z)

Solution procedure: for 7,6, ¢:

m Get 4 in closed form as function of 7y ¢. (4, Z) and p(A)
m Substitute 4 into Stage 2, minimize wrt 9, ¢
® [y, remains optimal wrt current .

17/34
Xu, Kanagawa, G. (2021).



Final algorithm

Stage 2 RR loss:

2
Ey 4z (Y —q" (EW\A,Z [ps( V)] ® <P5(A))) + A2||711?
Stage 1 regression (auxiliary): NN params ( and Fg,gz
Evazlpe(W)] ~ Fodc(A, Z)

Solution procedure: for 7,6, ¢:

m Get 4 in closed form as function of 7y ¢. (4, Z) and p(A)
m Substitute 4 into Stage 2, minimize wrt 9, ¢

® [y, remains optimal wrt current .

® Iterate between 6, ¢ and ¢

17/34
Xu, Kanagawa, G. (2021).



Final algorithm
Stage 2 RR loss:

2
Eyaz (Y =77 ( [ps ()] @ 0e(A))) " + Kall7l?
NN params ¢ and g :
[e(W)] = Fo, ¢ (A, Z)
Solution procedure: for 7,0, ¢:

m Get 4 in closed form as function of /¢ ;¢ (A, Z) and p¢(A)
m Substitute 4 into Stage 2, minimize wrt 9, ¢
¢,c remains optimal wrt current 5.
Iterate between 6, ¢ and

Key point: features @s( W) learned specially for primary task:

E(Y]a, Z) :/why(W, a) dw

Contrast with autoencoders/sampling: must reconstruct/sample all of W.

34

Xu, Kanagawa, G. (2021).




Experiments
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Synthetic experiment, adaptive neural net features

dSprite example:

B X = {scale,rotation, posX,posY} =

B Treatment A is the image generated (with
Gaussian noise)

N
o

B Outcome Y is quadratic function of A with

Algorithm
KPV
multiplicative confounding by posY.

£ PMMR
10 CEVAE

1000 5000
Data Size

B Z = {scale,rotation, posX},
W = noisy image sharing posY

m Comparison with CEVAE (Lougios et al.

2017)

Out-of-Sample MSE

0

20

40

60
0 25 50

Louizos, Shalit, Mooij, Sontag, Zemel, Welling, Causal Effect Inference with Deep Latent-Variable19/34
Models (2017)




Confounded offline policy evaluation

Synthetic dataset, demand prediction

for flight purchase. 1ol T - -
m Treatment A is ticket price. N ?
o
m Policy A ~ m(Z) depends on fuel 5 ,
. o Algorithm
price. £ 1 - Flme
2 & DFPV
=}
Q
<
0.1
1500 7500
Data Size
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Conclusion
Causal effect estimation with unobserved X, (possibly) complex
nonlinear effects on A, Y
We need to observe:

m Treatment proxy Z (interacts

with A, but not directly with Y')

m Outcome proxy W (no direct
interaction with A, can affect Y')

21/34


https://github.com/liyuan9988/DeepFeatureProxyVariable/

Conclusion

Causal effect estimation with unobserved X, (possibly) complex
nonlinear effects on A, Y

We need to observe:

\
r

m Treatment proxy Z (interacts
with A, but not directly with Y')

m Outcome proxy W (no direct
interaction with A, can affect Y')

i

0z

Key messages: £

m Don’t model or sample from latents X

m Don’t model all of W, only relevant features

m “Ridge regression is all you need”
Code available:
https://github.com/1iyuan9988/DeepFeatureProxyVariable/
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Questions?

23/34



Web ads example

Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:

e: “interest in cycling”

'A: blke ad on browser Visited bike website Interest in cycling Gym member
o= °
. TIREIC ’ W
Y': purchase e e (2 L E ) @ \&
Z: visit to bike website -
—> cookies

Viewed ad Bike purchase
W membership of gym 9 @ @ é

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.

Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.

Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially
Observable Dynamical Systems.
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Main theorem

If ¢ were observed, we would write (average treatment effect)

p(y|do(a /p yla,€)p

...but we do not observe ¢.
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Main theorem: Assume we solved:
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Both p(y|a, z) and are in terms of observed quantities.
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Main theorem

If ¢ were observed, we would write (average treatment effect)

p(y|do(a /p yla,€)p

...but we do not observe ¢.

Main theorem: Assume we solved:
plyla,2) = [ hy(w,a)p(wla, 2)du

Both p(y|a, z) and p(w|a, z) are in terms of observed quantities.

Average treatment effect via p(w):
= / hy(a, w)p(w)dw

25/34



Proof (1)

Because €, we have
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Proof (1)

Because €, we have

:/ € p(5|a,Z)d€ <—-:r:_)<-.....>

Because Y 1L Z|(A,¢) we have @—>@

p(vla,2) = [ p(vla,e)p(ela, 2)de

26/34



Given the solution h, to:

p(vla,2) = [ hy(w, a)p(w|a, 2)du

(well defined under identifiability conditions for Fredholm equation of first kind)
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Given the solution h, to:

p(vla,2) = [ hy(w, a)p(w|a, 2)du

(well defined under identifiability conditions for Fredholm equation of first kind)
From last slide

/p (y|a,e)p(e|a, 2) ds—/h (w, a)/p(w\e)p(e|a,z)dedw
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Proof (3)

Given the solution h, to:

p(vla,2) = [ hy(w,a) du

(well defined under identifiability conditions for Fredholm equation of first kind)
From last slide

/p(y|a,6)p(€|a,z)ds = /hy(w,a)/ e)p(ela, z)dedw

This implies:
p(y\a,s) :/hy(w,a) €)dw

under identifiability condition

E[f(e)|JA=a,Z =2z] =0, V(z,a) < f(e) =0, Pga=gas. (4Q)

27/34



Proof (4)

From last slide,

p(vla,e) = [ hy(w, a)p(ule)du
Thus

p(y|do(a)) = / p(yla,e)p(e) du
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Proof (4)

From last slide,

Thus
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Proof (4)

From last slide,

Thus
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How not to do 25LS for proxy methods
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Feature implementation

Stage 2: minimize
2
hy, = argmin By, (v= (Poiw o ®9(a))) + Xallnll3,
which is conditional feature mean implementation of

p(y|a, 2) :/hy(w, a)p(w|a, z)dw

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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Feature implementation
Stage 2: minimize
. = argmin By,ae (v = (B @ 9(a))) + dalll
which is conditional feature mean implementation of
p(vle,z) = [ hulw, )plula,2)dw
Stage 1: ridge regression
= arg min Byq .z [|¢(w) - /[4(a) ® $(2)]I134y,, + Al I

which gives us

= . [¢(a) ® ¢(2)]

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021). 30/34
Xu, Kanagawa, G. (2021).



Feature implementation

Stage 2: minimize
. = argmin By,ae (v = (B @ 9(a))) + dalll
which is conditional feature mean implementation of
p(vle,z) = [ hulw, )plula,2)dw
Stage 1: ridge regression
= arg min Byq .z [|¢(w) - /[4(a) ® $(2)]113, + Al 7l s

which gives us
= . [¢(a) ® ¢(2)]

Average treatment effect estimate:

Ey(yldo(a)) = (. ¢(a) ® pw),
where py = Ew¢(W)

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021). 30/34
Xu, Kanagawa, G. (2021).



How not to do it
Stage 2: minimize
hy, = arg%i'}.{lEy'a’z (y - <h, >)2 + Aol B3,
which is conditional feature mean implementation of
p(vle,z) = [ hulw, )p(ula,2)dw
Stage 1: ridge regression
= argminBy q . |4(w) ® ¢(a) — F[¢(a) ® $(2)]l3s,, + Ml 71 s

which gives us

= 1. [¢(a) ® ¢(2)]
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How not to do it

Stage 2: minimize
hy, = argﬁiql.{lEy'a’z (y - <h, >)2 + Aol B3,
which is conditional feature mean implementation of
p(vle,z) = [ hulw, )p(ula,2)dw
Stage 1: ridge regression
= argminBy q . |4(w) ® ¢(a) — F[¢(a) ® $(2)]l3s,, + Ml 71 s

which gives us
= . [¢(a) ® ¢(2)]
Problem: ridge regressing from ¢(a) to ¢(a).
Theoretical issue: 73, is not Hilbert-Schmidt so consistency of /' not
established.
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Demo: bias introduced by stage 1 RR

Implementation issue: this can introduce unnecessary bias.

1.5
Stage 1:
a ~ N(0,0?).
Stage 2:
a ~U[-3,3].
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Demo: bias introduced by stage 1 RR

Implementation issue: this can introduce unnecessary bias.

1.5 .
10 . | Stage 1:
g 0.5 a ~N(0,0%).
'g 0 Stage 2:
o
g-05 a ~U[-3,3].
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Demo: bias introduced by stage 1 RR

Implementation issue: this can introduce unnecessary bias.

1.5
Stage 1:
a ~ N(0,0?).
Stage 2:
—wrong a~U[-3,3].
== correct | -
* data
-1.5 ‘ ‘ ‘ ‘ ‘
-3 -2 -1 0 1 2 3

32/34



Failures of identifiability assumptions (1)

Recall (one of the) identifiability assumptions:
E[f(e)]A=a,Z =2]=0, Pga—qas. < f(e) =0, Pja—gas. (4)

For conciseness, assume conditioning on some a.

Failure 1: Z 1L € (no information about € in proxy)

g(e) = §(e) — Ecgle)
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Failures of identifiability assumptions (2)
Failure 2: “exploitable invariance” of p(e|z)
e ~N(0,1),
= le[ + N (0,1),

where p(e|z) «x p(z|e)p(e) symmetric in . Consider square integrable
antisymmetric function g(e) = —g(—¢). Then

| s@pelde

_/ p(e|z) ds+/ g(e)p(e|z)de

If distribution of €| Z retains the same “symmetry class” over a set of
Z with nonzero measure, then the assumption is violated by g(e) with
zero mean on this class.
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